Properties

Label 35.6.a.d.1.2
Level $35$
Weight $6$
Character 35.1
Self dual yes
Analytic conductor $5.613$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,6,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.61343369345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 82x^{2} + 58x + 1168 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.73688\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73688 q^{2} -28.3358 q^{3} -24.5095 q^{4} +25.0000 q^{5} +77.5516 q^{6} -49.0000 q^{7} +154.660 q^{8} +559.917 q^{9} -68.4220 q^{10} +63.4296 q^{11} +694.496 q^{12} -868.146 q^{13} +134.107 q^{14} -708.395 q^{15} +361.019 q^{16} +1189.74 q^{17} -1532.43 q^{18} +1532.71 q^{19} -612.737 q^{20} +1388.45 q^{21} -173.599 q^{22} -2337.74 q^{23} -4382.40 q^{24} +625.000 q^{25} +2376.01 q^{26} -8980.10 q^{27} +1200.97 q^{28} +8169.03 q^{29} +1938.79 q^{30} -2369.72 q^{31} -5937.17 q^{32} -1797.33 q^{33} -3256.18 q^{34} -1225.00 q^{35} -13723.3 q^{36} +12841.3 q^{37} -4194.85 q^{38} +24599.6 q^{39} +3866.49 q^{40} +1652.93 q^{41} -3800.03 q^{42} +12971.1 q^{43} -1554.63 q^{44} +13997.9 q^{45} +6398.11 q^{46} -6219.00 q^{47} -10229.8 q^{48} +2401.00 q^{49} -1710.55 q^{50} -33712.3 q^{51} +21277.8 q^{52} +19944.4 q^{53} +24577.5 q^{54} +1585.74 q^{55} -7578.32 q^{56} -43430.7 q^{57} -22357.7 q^{58} -30708.0 q^{59} +17362.4 q^{60} +19901.3 q^{61} +6485.64 q^{62} -27435.9 q^{63} +4696.70 q^{64} -21703.6 q^{65} +4919.07 q^{66} +31668.6 q^{67} -29160.0 q^{68} +66241.7 q^{69} +3352.68 q^{70} -32747.5 q^{71} +86596.6 q^{72} -54441.9 q^{73} -35145.0 q^{74} -17709.9 q^{75} -37566.1 q^{76} -3108.05 q^{77} -67326.1 q^{78} +47649.2 q^{79} +9025.48 q^{80} +118398. q^{81} -4523.87 q^{82} -56509.0 q^{83} -34030.3 q^{84} +29743.6 q^{85} -35500.2 q^{86} -231476. q^{87} +9810.00 q^{88} +2533.69 q^{89} -38310.6 q^{90} +42539.1 q^{91} +57296.8 q^{92} +67148.0 q^{93} +17020.7 q^{94} +38317.9 q^{95} +168235. q^{96} +58075.1 q^{97} -6571.25 q^{98} +35515.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 7 q^{2} + 14 q^{3} + 49 q^{4} + 100 q^{5} + 136 q^{6} - 196 q^{7} + 489 q^{8} + 774 q^{9} + 175 q^{10} + 770 q^{11} + 840 q^{12} + 58 q^{13} - 343 q^{14} + 350 q^{15} - 615 q^{16} + 2006 q^{17} - 1409 q^{18}+ \cdots - 420668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73688 −0.483816 −0.241908 0.970299i \(-0.577773\pi\)
−0.241908 + 0.970299i \(0.577773\pi\)
\(3\) −28.3358 −1.81774 −0.908871 0.417077i \(-0.863054\pi\)
−0.908871 + 0.417077i \(0.863054\pi\)
\(4\) −24.5095 −0.765922
\(5\) 25.0000 0.447214
\(6\) 77.5516 0.879453
\(7\) −49.0000 −0.377964
\(8\) 154.660 0.854382
\(9\) 559.917 2.30419
\(10\) −68.4220 −0.216369
\(11\) 63.4296 0.158056 0.0790279 0.996872i \(-0.474818\pi\)
0.0790279 + 0.996872i \(0.474818\pi\)
\(12\) 694.496 1.39225
\(13\) −868.146 −1.42474 −0.712368 0.701806i \(-0.752377\pi\)
−0.712368 + 0.701806i \(0.752377\pi\)
\(14\) 134.107 0.182865
\(15\) −708.395 −0.812919
\(16\) 361.019 0.352558
\(17\) 1189.74 0.998460 0.499230 0.866469i \(-0.333616\pi\)
0.499230 + 0.866469i \(0.333616\pi\)
\(18\) −1532.43 −1.11480
\(19\) 1532.71 0.974041 0.487020 0.873391i \(-0.338084\pi\)
0.487020 + 0.873391i \(0.338084\pi\)
\(20\) −612.737 −0.342531
\(21\) 1388.45 0.687042
\(22\) −173.599 −0.0764699
\(23\) −2337.74 −0.921460 −0.460730 0.887540i \(-0.652412\pi\)
−0.460730 + 0.887540i \(0.652412\pi\)
\(24\) −4382.40 −1.55305
\(25\) 625.000 0.200000
\(26\) 2376.01 0.689310
\(27\) −8980.10 −2.37067
\(28\) 1200.97 0.289491
\(29\) 8169.03 1.80375 0.901874 0.432000i \(-0.142192\pi\)
0.901874 + 0.432000i \(0.142192\pi\)
\(30\) 1938.79 0.393303
\(31\) −2369.72 −0.442887 −0.221444 0.975173i \(-0.571077\pi\)
−0.221444 + 0.975173i \(0.571077\pi\)
\(32\) −5937.17 −1.02496
\(33\) −1797.33 −0.287305
\(34\) −3256.18 −0.483071
\(35\) −1225.00 −0.169031
\(36\) −13723.3 −1.76483
\(37\) 12841.3 1.54207 0.771035 0.636793i \(-0.219739\pi\)
0.771035 + 0.636793i \(0.219739\pi\)
\(38\) −4194.85 −0.471257
\(39\) 24599.6 2.58980
\(40\) 3866.49 0.382091
\(41\) 1652.93 0.153566 0.0767830 0.997048i \(-0.475535\pi\)
0.0767830 + 0.997048i \(0.475535\pi\)
\(42\) −3800.03 −0.332402
\(43\) 12971.1 1.06980 0.534902 0.844914i \(-0.320348\pi\)
0.534902 + 0.844914i \(0.320348\pi\)
\(44\) −1554.63 −0.121058
\(45\) 13997.9 1.03046
\(46\) 6398.11 0.445817
\(47\) −6219.00 −0.410654 −0.205327 0.978693i \(-0.565826\pi\)
−0.205327 + 0.978693i \(0.565826\pi\)
\(48\) −10229.8 −0.640859
\(49\) 2401.00 0.142857
\(50\) −1710.55 −0.0967633
\(51\) −33712.3 −1.81494
\(52\) 21277.8 1.09124
\(53\) 19944.4 0.975283 0.487642 0.873044i \(-0.337857\pi\)
0.487642 + 0.873044i \(0.337857\pi\)
\(54\) 24577.5 1.14697
\(55\) 1585.74 0.0706847
\(56\) −7578.32 −0.322926
\(57\) −43430.7 −1.77056
\(58\) −22357.7 −0.872682
\(59\) −30708.0 −1.14847 −0.574237 0.818689i \(-0.694701\pi\)
−0.574237 + 0.818689i \(0.694701\pi\)
\(60\) 17362.4 0.622632
\(61\) 19901.3 0.684790 0.342395 0.939556i \(-0.388762\pi\)
0.342395 + 0.939556i \(0.388762\pi\)
\(62\) 6485.64 0.214276
\(63\) −27435.9 −0.870901
\(64\) 4696.70 0.143332
\(65\) −21703.6 −0.637161
\(66\) 4919.07 0.139003
\(67\) 31668.6 0.861869 0.430935 0.902383i \(-0.358184\pi\)
0.430935 + 0.902383i \(0.358184\pi\)
\(68\) −29160.0 −0.764743
\(69\) 66241.7 1.67498
\(70\) 3352.68 0.0817799
\(71\) −32747.5 −0.770960 −0.385480 0.922716i \(-0.625964\pi\)
−0.385480 + 0.922716i \(0.625964\pi\)
\(72\) 86596.6 1.96865
\(73\) −54441.9 −1.19571 −0.597856 0.801604i \(-0.703980\pi\)
−0.597856 + 0.801604i \(0.703980\pi\)
\(74\) −35145.0 −0.746078
\(75\) −17709.9 −0.363548
\(76\) −37566.1 −0.746039
\(77\) −3108.05 −0.0597394
\(78\) −67326.1 −1.25299
\(79\) 47649.2 0.858989 0.429495 0.903069i \(-0.358692\pi\)
0.429495 + 0.903069i \(0.358692\pi\)
\(80\) 9025.48 0.157669
\(81\) 118398. 2.00509
\(82\) −4523.87 −0.0742977
\(83\) −56509.0 −0.900372 −0.450186 0.892935i \(-0.648642\pi\)
−0.450186 + 0.892935i \(0.648642\pi\)
\(84\) −34030.3 −0.526220
\(85\) 29743.6 0.446525
\(86\) −35500.2 −0.517589
\(87\) −231476. −3.27875
\(88\) 9810.00 0.135040
\(89\) 2533.69 0.0339061 0.0169531 0.999856i \(-0.494603\pi\)
0.0169531 + 0.999856i \(0.494603\pi\)
\(90\) −38310.6 −0.498555
\(91\) 42539.1 0.538499
\(92\) 57296.8 0.705766
\(93\) 67148.0 0.805055
\(94\) 17020.7 0.198681
\(95\) 38317.9 0.435604
\(96\) 168235. 1.86310
\(97\) 58075.1 0.626701 0.313350 0.949638i \(-0.398549\pi\)
0.313350 + 0.949638i \(0.398549\pi\)
\(98\) −6571.25 −0.0691166
\(99\) 35515.3 0.364190
\(100\) −15318.4 −0.153184
\(101\) 98422.7 0.960045 0.480023 0.877256i \(-0.340628\pi\)
0.480023 + 0.877256i \(0.340628\pi\)
\(102\) 92266.5 0.878099
\(103\) 179343. 1.66568 0.832840 0.553514i \(-0.186713\pi\)
0.832840 + 0.553514i \(0.186713\pi\)
\(104\) −134267. −1.21727
\(105\) 34711.3 0.307254
\(106\) −54585.3 −0.471858
\(107\) 159436. 1.34626 0.673128 0.739526i \(-0.264950\pi\)
0.673128 + 0.739526i \(0.264950\pi\)
\(108\) 220098. 1.81575
\(109\) −97547.7 −0.786413 −0.393207 0.919450i \(-0.628634\pi\)
−0.393207 + 0.919450i \(0.628634\pi\)
\(110\) −4339.98 −0.0341984
\(111\) −363868. −2.80308
\(112\) −17689.9 −0.133254
\(113\) 140601. 1.03584 0.517919 0.855430i \(-0.326707\pi\)
0.517919 + 0.855430i \(0.326707\pi\)
\(114\) 118864. 0.856623
\(115\) −58443.5 −0.412090
\(116\) −200219. −1.38153
\(117\) −486090. −3.28286
\(118\) 84044.0 0.555650
\(119\) −58297.4 −0.377383
\(120\) −109560. −0.694543
\(121\) −157028. −0.975018
\(122\) −54467.5 −0.331312
\(123\) −46837.1 −0.279143
\(124\) 58080.7 0.339217
\(125\) 15625.0 0.0894427
\(126\) 75088.9 0.421356
\(127\) 233889. 1.28677 0.643385 0.765543i \(-0.277529\pi\)
0.643385 + 0.765543i \(0.277529\pi\)
\(128\) 177135. 0.955609
\(129\) −367546. −1.94463
\(130\) 59400.2 0.308269
\(131\) 181216. 0.922610 0.461305 0.887242i \(-0.347381\pi\)
0.461305 + 0.887242i \(0.347381\pi\)
\(132\) 44051.6 0.220053
\(133\) −75103.0 −0.368153
\(134\) −86673.0 −0.416986
\(135\) −224503. −1.06020
\(136\) 184005. 0.853066
\(137\) −203830. −0.927827 −0.463914 0.885880i \(-0.653555\pi\)
−0.463914 + 0.885880i \(0.653555\pi\)
\(138\) −181296. −0.810381
\(139\) 51086.4 0.224269 0.112134 0.993693i \(-0.464231\pi\)
0.112134 + 0.993693i \(0.464231\pi\)
\(140\) 30024.1 0.129464
\(141\) 176220. 0.746463
\(142\) 89625.8 0.373003
\(143\) −55066.1 −0.225188
\(144\) 202141. 0.812359
\(145\) 204226. 0.806660
\(146\) 149001. 0.578505
\(147\) −68034.2 −0.259677
\(148\) −314733. −1.18110
\(149\) −307059. −1.13307 −0.566533 0.824039i \(-0.691716\pi\)
−0.566533 + 0.824039i \(0.691716\pi\)
\(150\) 48469.8 0.175891
\(151\) 358221. 1.27852 0.639261 0.768990i \(-0.279240\pi\)
0.639261 + 0.768990i \(0.279240\pi\)
\(152\) 237049. 0.832203
\(153\) 666158. 2.30064
\(154\) 8506.36 0.0289029
\(155\) −59243.0 −0.198065
\(156\) −602924. −1.98359
\(157\) 437769. 1.41741 0.708705 0.705505i \(-0.249280\pi\)
0.708705 + 0.705505i \(0.249280\pi\)
\(158\) −130410. −0.415593
\(159\) −565140. −1.77281
\(160\) −148429. −0.458374
\(161\) 114549. 0.348279
\(162\) −324042. −0.970095
\(163\) −430265. −1.26843 −0.634216 0.773156i \(-0.718677\pi\)
−0.634216 + 0.773156i \(0.718677\pi\)
\(164\) −40512.5 −0.117620
\(165\) −44933.2 −0.128486
\(166\) 154658. 0.435615
\(167\) 229736. 0.637437 0.318718 0.947849i \(-0.396748\pi\)
0.318718 + 0.947849i \(0.396748\pi\)
\(168\) 214738. 0.586996
\(169\) 382384. 1.02987
\(170\) −81404.6 −0.216036
\(171\) 858193. 2.24437
\(172\) −317914. −0.819387
\(173\) 67029.4 0.170275 0.0851374 0.996369i \(-0.472867\pi\)
0.0851374 + 0.996369i \(0.472867\pi\)
\(174\) 633522. 1.58631
\(175\) −30625.0 −0.0755929
\(176\) 22899.3 0.0557238
\(177\) 870135. 2.08763
\(178\) −6934.39 −0.0164043
\(179\) −234462. −0.546940 −0.273470 0.961881i \(-0.588171\pi\)
−0.273470 + 0.961881i \(0.588171\pi\)
\(180\) −343082. −0.789254
\(181\) −199344. −0.452278 −0.226139 0.974095i \(-0.572610\pi\)
−0.226139 + 0.974095i \(0.572610\pi\)
\(182\) −116424. −0.260535
\(183\) −563920. −1.24477
\(184\) −361554. −0.787279
\(185\) 321032. 0.689634
\(186\) −183776. −0.389499
\(187\) 75464.9 0.157812
\(188\) 152425. 0.314529
\(189\) 440025. 0.896031
\(190\) −104871. −0.210752
\(191\) 300904. 0.596821 0.298410 0.954438i \(-0.403544\pi\)
0.298410 + 0.954438i \(0.403544\pi\)
\(192\) −133085. −0.260541
\(193\) −173138. −0.334579 −0.167289 0.985908i \(-0.553501\pi\)
−0.167289 + 0.985908i \(0.553501\pi\)
\(194\) −158944. −0.303208
\(195\) 614990. 1.15819
\(196\) −58847.3 −0.109417
\(197\) 100950. 0.185329 0.0926644 0.995697i \(-0.470462\pi\)
0.0926644 + 0.995697i \(0.470462\pi\)
\(198\) −97201.1 −0.176201
\(199\) −809079. −1.44830 −0.724149 0.689643i \(-0.757767\pi\)
−0.724149 + 0.689643i \(0.757767\pi\)
\(200\) 96662.3 0.170876
\(201\) −897354. −1.56666
\(202\) −269371. −0.464486
\(203\) −400283. −0.681752
\(204\) 826272. 1.39010
\(205\) 41323.3 0.0686768
\(206\) −490840. −0.805883
\(207\) −1.30894e6 −2.12322
\(208\) −313417. −0.502302
\(209\) 97219.4 0.153953
\(210\) −95000.7 −0.148655
\(211\) 183306. 0.283446 0.141723 0.989906i \(-0.454736\pi\)
0.141723 + 0.989906i \(0.454736\pi\)
\(212\) −488826. −0.746991
\(213\) 927925. 1.40141
\(214\) −436358. −0.651340
\(215\) 324277. 0.478431
\(216\) −1.38886e6 −2.02546
\(217\) 116116. 0.167396
\(218\) 266976. 0.380480
\(219\) 1.54266e6 2.17350
\(220\) −38865.7 −0.0541389
\(221\) −1.03287e6 −1.42254
\(222\) 995862. 1.35618
\(223\) −678874. −0.914171 −0.457085 0.889423i \(-0.651107\pi\)
−0.457085 + 0.889423i \(0.651107\pi\)
\(224\) 290922. 0.387397
\(225\) 349948. 0.460837
\(226\) −384808. −0.501156
\(227\) −256484. −0.330366 −0.165183 0.986263i \(-0.552821\pi\)
−0.165183 + 0.986263i \(0.552821\pi\)
\(228\) 1.06446e6 1.35611
\(229\) 321802. 0.405509 0.202754 0.979230i \(-0.435011\pi\)
0.202754 + 0.979230i \(0.435011\pi\)
\(230\) 159953. 0.199376
\(231\) 88069.1 0.108591
\(232\) 1.26342e6 1.54109
\(233\) 193589. 0.233609 0.116805 0.993155i \(-0.462735\pi\)
0.116805 + 0.993155i \(0.462735\pi\)
\(234\) 1.33037e6 1.58830
\(235\) −155475. −0.183650
\(236\) 752637. 0.879641
\(237\) −1.35018e6 −1.56142
\(238\) 159553. 0.182584
\(239\) −482857. −0.546794 −0.273397 0.961901i \(-0.588147\pi\)
−0.273397 + 0.961901i \(0.588147\pi\)
\(240\) −255744. −0.286601
\(241\) −1.06213e6 −1.17797 −0.588984 0.808145i \(-0.700472\pi\)
−0.588984 + 0.808145i \(0.700472\pi\)
\(242\) 429766. 0.471730
\(243\) −1.17275e6 −1.27406
\(244\) −487771. −0.524495
\(245\) 60025.0 0.0638877
\(246\) 128188. 0.135054
\(247\) −1.33062e6 −1.38775
\(248\) −366500. −0.378395
\(249\) 1.60123e6 1.63664
\(250\) −42763.7 −0.0432738
\(251\) 1.43228e6 1.43497 0.717484 0.696575i \(-0.245293\pi\)
0.717484 + 0.696575i \(0.245293\pi\)
\(252\) 672441. 0.667042
\(253\) −148282. −0.145642
\(254\) −640126. −0.622560
\(255\) −842808. −0.811667
\(256\) −635092. −0.605671
\(257\) −491843. −0.464508 −0.232254 0.972655i \(-0.574610\pi\)
−0.232254 + 0.972655i \(0.574610\pi\)
\(258\) 1.00593e6 0.940844
\(259\) −629223. −0.582847
\(260\) 531945. 0.488016
\(261\) 4.57398e6 4.15617
\(262\) −495966. −0.446374
\(263\) −1.41098e6 −1.25786 −0.628928 0.777464i \(-0.716506\pi\)
−0.628928 + 0.777464i \(0.716506\pi\)
\(264\) −277974. −0.245468
\(265\) 498609. 0.436160
\(266\) 205548. 0.178118
\(267\) −71794.0 −0.0616325
\(268\) −776181. −0.660124
\(269\) 847237. 0.713878 0.356939 0.934128i \(-0.383820\pi\)
0.356939 + 0.934128i \(0.383820\pi\)
\(270\) 614436. 0.512941
\(271\) 1.14845e6 0.949923 0.474961 0.880007i \(-0.342462\pi\)
0.474961 + 0.880007i \(0.342462\pi\)
\(272\) 429520. 0.352015
\(273\) −1.20538e6 −0.978853
\(274\) 557859. 0.448898
\(275\) 39643.5 0.0316111
\(276\) −1.62355e6 −1.28290
\(277\) 1.17885e6 0.923124 0.461562 0.887108i \(-0.347289\pi\)
0.461562 + 0.887108i \(0.347289\pi\)
\(278\) −139817. −0.108505
\(279\) −1.32685e6 −1.02049
\(280\) −189458. −0.144417
\(281\) 112265. 0.0848164 0.0424082 0.999100i \(-0.486497\pi\)
0.0424082 + 0.999100i \(0.486497\pi\)
\(282\) −482294. −0.361151
\(283\) 1.67112e6 1.24034 0.620172 0.784466i \(-0.287063\pi\)
0.620172 + 0.784466i \(0.287063\pi\)
\(284\) 802624. 0.590495
\(285\) −1.08577e6 −0.791816
\(286\) 150709. 0.108949
\(287\) −80993.6 −0.0580425
\(288\) −3.32433e6 −2.36169
\(289\) −4368.41 −0.00307665
\(290\) −558941. −0.390275
\(291\) −1.64560e6 −1.13918
\(292\) 1.33434e6 0.915822
\(293\) 2.28723e6 1.55647 0.778235 0.627973i \(-0.216115\pi\)
0.778235 + 0.627973i \(0.216115\pi\)
\(294\) 186201. 0.125636
\(295\) −767699. −0.513613
\(296\) 1.98603e6 1.31752
\(297\) −569604. −0.374699
\(298\) 840382. 0.548196
\(299\) 2.02950e6 1.31284
\(300\) 434060. 0.278450
\(301\) −635582. −0.404348
\(302\) −980406. −0.618570
\(303\) −2.78888e6 −1.74511
\(304\) 553339. 0.343406
\(305\) 497533. 0.306247
\(306\) −1.82319e6 −1.11309
\(307\) 449789. 0.272372 0.136186 0.990683i \(-0.456515\pi\)
0.136186 + 0.990683i \(0.456515\pi\)
\(308\) 76176.7 0.0457557
\(309\) −5.08183e6 −3.02778
\(310\) 162141. 0.0958272
\(311\) −605586. −0.355038 −0.177519 0.984117i \(-0.556807\pi\)
−0.177519 + 0.984117i \(0.556807\pi\)
\(312\) 3.80456e6 2.21268
\(313\) −2.03261e6 −1.17272 −0.586359 0.810052i \(-0.699439\pi\)
−0.586359 + 0.810052i \(0.699439\pi\)
\(314\) −1.19812e6 −0.685766
\(315\) −685899. −0.389479
\(316\) −1.16786e6 −0.657918
\(317\) −2.61940e6 −1.46404 −0.732021 0.681282i \(-0.761423\pi\)
−0.732021 + 0.681282i \(0.761423\pi\)
\(318\) 1.54672e6 0.857716
\(319\) 518158. 0.285093
\(320\) 117418. 0.0641000
\(321\) −4.51775e6 −2.44715
\(322\) −313507. −0.168503
\(323\) 1.82354e6 0.972541
\(324\) −2.90189e6 −1.53574
\(325\) −542591. −0.284947
\(326\) 1.17758e6 0.613688
\(327\) 2.76409e6 1.42950
\(328\) 255642. 0.131204
\(329\) 304731. 0.155213
\(330\) 122977. 0.0621639
\(331\) 1.79427e6 0.900155 0.450078 0.892989i \(-0.351396\pi\)
0.450078 + 0.892989i \(0.351396\pi\)
\(332\) 1.38501e6 0.689615
\(333\) 7.19005e6 3.55322
\(334\) −628758. −0.308402
\(335\) 791714. 0.385440
\(336\) 501259. 0.242222
\(337\) −1.10766e6 −0.531292 −0.265646 0.964071i \(-0.585585\pi\)
−0.265646 + 0.964071i \(0.585585\pi\)
\(338\) −1.04654e6 −0.498269
\(339\) −3.98404e6 −1.88289
\(340\) −729000. −0.342003
\(341\) −150311. −0.0700009
\(342\) −2.34877e6 −1.08586
\(343\) −117649. −0.0539949
\(344\) 2.00610e6 0.914022
\(345\) 1.65604e6 0.749072
\(346\) −183451. −0.0823817
\(347\) −2.46825e6 −1.10044 −0.550218 0.835021i \(-0.685455\pi\)
−0.550218 + 0.835021i \(0.685455\pi\)
\(348\) 5.67336e6 2.51126
\(349\) 2.41856e6 1.06290 0.531451 0.847089i \(-0.321647\pi\)
0.531451 + 0.847089i \(0.321647\pi\)
\(350\) 83816.9 0.0365731
\(351\) 7.79604e6 3.37758
\(352\) −376593. −0.162000
\(353\) −1.84853e6 −0.789570 −0.394785 0.918774i \(-0.629181\pi\)
−0.394785 + 0.918774i \(0.629181\pi\)
\(354\) −2.38145e6 −1.01003
\(355\) −818687. −0.344784
\(356\) −62099.4 −0.0259694
\(357\) 1.65190e6 0.685984
\(358\) 641693. 0.264618
\(359\) −552362. −0.226197 −0.113099 0.993584i \(-0.536078\pi\)
−0.113099 + 0.993584i \(0.536078\pi\)
\(360\) 2.16491e6 0.880409
\(361\) −126886. −0.0512444
\(362\) 545579. 0.218820
\(363\) 4.44950e6 1.77233
\(364\) −1.04261e6 −0.412448
\(365\) −1.36105e6 −0.534739
\(366\) 1.54338e6 0.602241
\(367\) 4.18145e6 1.62055 0.810273 0.586053i \(-0.199319\pi\)
0.810273 + 0.586053i \(0.199319\pi\)
\(368\) −843969. −0.324868
\(369\) 925505. 0.353845
\(370\) −878625. −0.333656
\(371\) −977274. −0.368622
\(372\) −1.64576e6 −0.616609
\(373\) 2.29821e6 0.855300 0.427650 0.903944i \(-0.359342\pi\)
0.427650 + 0.903944i \(0.359342\pi\)
\(374\) −206538. −0.0763522
\(375\) −442747. −0.162584
\(376\) −961829. −0.350855
\(377\) −7.09191e6 −2.56986
\(378\) −1.20430e6 −0.433514
\(379\) 3.55567e6 1.27152 0.635760 0.771886i \(-0.280687\pi\)
0.635760 + 0.771886i \(0.280687\pi\)
\(380\) −939151. −0.333639
\(381\) −6.62744e6 −2.33902
\(382\) −823536. −0.288752
\(383\) −1.57080e6 −0.547172 −0.273586 0.961848i \(-0.588210\pi\)
−0.273586 + 0.961848i \(0.588210\pi\)
\(384\) −5.01927e6 −1.73705
\(385\) −77701.3 −0.0267163
\(386\) 473857. 0.161875
\(387\) 7.26273e6 2.46503
\(388\) −1.42339e6 −0.480004
\(389\) −1.33556e6 −0.447495 −0.223747 0.974647i \(-0.571829\pi\)
−0.223747 + 0.974647i \(0.571829\pi\)
\(390\) −1.68315e6 −0.560353
\(391\) −2.78131e6 −0.920042
\(392\) 371338. 0.122055
\(393\) −5.13490e6 −1.67707
\(394\) −276289. −0.0896651
\(395\) 1.19123e6 0.384152
\(396\) −870463. −0.278941
\(397\) −1.47124e6 −0.468496 −0.234248 0.972177i \(-0.575263\pi\)
−0.234248 + 0.972177i \(0.575263\pi\)
\(398\) 2.21435e6 0.700710
\(399\) 2.12810e6 0.669207
\(400\) 225637. 0.0705116
\(401\) 994719. 0.308915 0.154458 0.987999i \(-0.450637\pi\)
0.154458 + 0.987999i \(0.450637\pi\)
\(402\) 2.45595e6 0.757974
\(403\) 2.05726e6 0.630997
\(404\) −2.41229e6 −0.735320
\(405\) 2.95996e6 0.896703
\(406\) 1.09552e6 0.329843
\(407\) 814517. 0.243733
\(408\) −5.21393e6 −1.55065
\(409\) −995359. −0.294220 −0.147110 0.989120i \(-0.546997\pi\)
−0.147110 + 0.989120i \(0.546997\pi\)
\(410\) −113097. −0.0332270
\(411\) 5.77569e6 1.68655
\(412\) −4.39561e6 −1.27578
\(413\) 1.50469e6 0.434082
\(414\) 3.58241e6 1.02725
\(415\) −1.41272e6 −0.402659
\(416\) 5.15433e6 1.46029
\(417\) −1.44757e6 −0.407662
\(418\) −266078. −0.0744848
\(419\) 62520.7 0.0173976 0.00869879 0.999962i \(-0.497231\pi\)
0.00869879 + 0.999962i \(0.497231\pi\)
\(420\) −850758. −0.235333
\(421\) 3.26482e6 0.897747 0.448874 0.893595i \(-0.351825\pi\)
0.448874 + 0.893595i \(0.351825\pi\)
\(422\) −501686. −0.137136
\(423\) −3.48213e6 −0.946224
\(424\) 3.08459e6 0.833264
\(425\) 743589. 0.199692
\(426\) −2.53962e6 −0.678023
\(427\) −975165. −0.258826
\(428\) −3.90770e6 −1.03113
\(429\) 1.56034e6 0.409333
\(430\) −887506. −0.231473
\(431\) −2.05017e6 −0.531615 −0.265807 0.964026i \(-0.585639\pi\)
−0.265807 + 0.964026i \(0.585639\pi\)
\(432\) −3.24199e6 −0.835800
\(433\) 627607. 0.160867 0.0804337 0.996760i \(-0.474369\pi\)
0.0804337 + 0.996760i \(0.474369\pi\)
\(434\) −317796. −0.0809887
\(435\) −5.78690e6 −1.46630
\(436\) 2.39085e6 0.602331
\(437\) −3.58309e6 −0.897540
\(438\) −4.22206e6 −1.05157
\(439\) 6.13266e6 1.51876 0.759378 0.650650i \(-0.225504\pi\)
0.759378 + 0.650650i \(0.225504\pi\)
\(440\) 245250. 0.0603917
\(441\) 1.34436e6 0.329169
\(442\) 2.82684e6 0.688249
\(443\) −2.08811e6 −0.505526 −0.252763 0.967528i \(-0.581339\pi\)
−0.252763 + 0.967528i \(0.581339\pi\)
\(444\) 8.91822e6 2.14694
\(445\) 63342.2 0.0151633
\(446\) 1.85800e6 0.442291
\(447\) 8.70075e6 2.05962
\(448\) −230139. −0.0541744
\(449\) −6.77740e6 −1.58653 −0.793263 0.608880i \(-0.791619\pi\)
−0.793263 + 0.608880i \(0.791619\pi\)
\(450\) −957766. −0.222961
\(451\) 104845. 0.0242720
\(452\) −3.44606e6 −0.793371
\(453\) −1.01505e7 −2.32402
\(454\) 701965. 0.159836
\(455\) 1.06348e6 0.240824
\(456\) −6.71697e6 −1.51273
\(457\) 3.89825e6 0.873131 0.436566 0.899672i \(-0.356195\pi\)
0.436566 + 0.899672i \(0.356195\pi\)
\(458\) −880733. −0.196192
\(459\) −1.06840e7 −2.36702
\(460\) 1.43242e6 0.315628
\(461\) 4.27807e6 0.937552 0.468776 0.883317i \(-0.344695\pi\)
0.468776 + 0.883317i \(0.344695\pi\)
\(462\) −241034. −0.0525381
\(463\) 7.18974e6 1.55869 0.779347 0.626593i \(-0.215551\pi\)
0.779347 + 0.626593i \(0.215551\pi\)
\(464\) 2.94918e6 0.635925
\(465\) 1.67870e6 0.360031
\(466\) −529829. −0.113024
\(467\) −5.72641e6 −1.21504 −0.607519 0.794305i \(-0.707835\pi\)
−0.607519 + 0.794305i \(0.707835\pi\)
\(468\) 1.19138e7 2.51441
\(469\) −1.55176e6 −0.325756
\(470\) 425516. 0.0888529
\(471\) −1.24045e7 −2.57649
\(472\) −4.74928e6 −0.981235
\(473\) 822750. 0.169089
\(474\) 3.69527e6 0.755441
\(475\) 957946. 0.194808
\(476\) 1.42884e6 0.289046
\(477\) 1.11672e7 2.24723
\(478\) 1.32152e6 0.264548
\(479\) −696853. −0.138772 −0.0693861 0.997590i \(-0.522104\pi\)
−0.0693861 + 0.997590i \(0.522104\pi\)
\(480\) 4.20586e6 0.833205
\(481\) −1.11481e7 −2.19704
\(482\) 2.90691e6 0.569920
\(483\) −3.24584e6 −0.633082
\(484\) 3.84867e6 0.746788
\(485\) 1.45188e6 0.280269
\(486\) 3.20967e6 0.616411
\(487\) 7.51712e6 1.43625 0.718123 0.695916i \(-0.245001\pi\)
0.718123 + 0.695916i \(0.245001\pi\)
\(488\) 3.07793e6 0.585072
\(489\) 1.21919e7 2.30568
\(490\) −164281. −0.0309099
\(491\) −255540. −0.0478360 −0.0239180 0.999714i \(-0.507614\pi\)
−0.0239180 + 0.999714i \(0.507614\pi\)
\(492\) 1.14795e6 0.213802
\(493\) 9.71905e6 1.80097
\(494\) 3.64174e6 0.671416
\(495\) 887883. 0.162871
\(496\) −855515. −0.156143
\(497\) 1.60463e6 0.291395
\(498\) −4.38236e6 −0.791835
\(499\) 8.14998e6 1.46523 0.732614 0.680645i \(-0.238300\pi\)
0.732614 + 0.680645i \(0.238300\pi\)
\(500\) −382961. −0.0685061
\(501\) −6.50974e6 −1.15870
\(502\) −3.91997e6 −0.694261
\(503\) 5.64001e6 0.993939 0.496969 0.867768i \(-0.334446\pi\)
0.496969 + 0.867768i \(0.334446\pi\)
\(504\) −4.24323e6 −0.744082
\(505\) 2.46057e6 0.429345
\(506\) 405829. 0.0704640
\(507\) −1.08352e7 −1.87204
\(508\) −5.73251e6 −0.985565
\(509\) −7.79954e6 −1.33436 −0.667182 0.744895i \(-0.732500\pi\)
−0.667182 + 0.744895i \(0.732500\pi\)
\(510\) 2.30666e6 0.392698
\(511\) 2.66766e6 0.451937
\(512\) −3.93016e6 −0.662575
\(513\) −1.37639e7 −2.30913
\(514\) 1.34611e6 0.224737
\(515\) 4.48358e6 0.744915
\(516\) 9.00836e6 1.48943
\(517\) −394469. −0.0649062
\(518\) 1.72211e6 0.281991
\(519\) −1.89933e6 −0.309516
\(520\) −3.35668e6 −0.544379
\(521\) 6.04835e6 0.976208 0.488104 0.872786i \(-0.337689\pi\)
0.488104 + 0.872786i \(0.337689\pi\)
\(522\) −1.25184e7 −2.01082
\(523\) −7.64614e6 −1.22233 −0.611165 0.791503i \(-0.709299\pi\)
−0.611165 + 0.791503i \(0.709299\pi\)
\(524\) −4.44151e6 −0.706647
\(525\) 867784. 0.137408
\(526\) 3.86167e6 0.608571
\(527\) −2.81936e6 −0.442205
\(528\) −648870. −0.101291
\(529\) −971316. −0.150911
\(530\) −1.36463e6 −0.211021
\(531\) −1.71939e7 −2.64630
\(532\) 1.84074e6 0.281976
\(533\) −1.43499e6 −0.218791
\(534\) 196492. 0.0298188
\(535\) 3.98591e6 0.602064
\(536\) 4.89785e6 0.736365
\(537\) 6.64366e6 0.994195
\(538\) −2.31878e6 −0.345386
\(539\) 152294. 0.0225794
\(540\) 5.50245e6 0.812029
\(541\) −1.17724e7 −1.72930 −0.864651 0.502374i \(-0.832460\pi\)
−0.864651 + 0.502374i \(0.832460\pi\)
\(542\) −3.14316e6 −0.459588
\(543\) 5.64856e6 0.822125
\(544\) −7.06371e6 −1.02338
\(545\) −2.43869e6 −0.351695
\(546\) 3.29898e6 0.473585
\(547\) 930880. 0.133023 0.0665113 0.997786i \(-0.478813\pi\)
0.0665113 + 0.997786i \(0.478813\pi\)
\(548\) 4.99578e6 0.710643
\(549\) 1.11431e7 1.57788
\(550\) −108499. −0.0152940
\(551\) 1.25208e7 1.75692
\(552\) 1.02449e7 1.43107
\(553\) −2.33481e6 −0.324667
\(554\) −3.22638e6 −0.446622
\(555\) −9.09670e6 −1.25358
\(556\) −1.25210e6 −0.171772
\(557\) −4.66844e6 −0.637579 −0.318790 0.947825i \(-0.603276\pi\)
−0.318790 + 0.947825i \(0.603276\pi\)
\(558\) 3.63142e6 0.493732
\(559\) −1.12608e7 −1.52419
\(560\) −442249. −0.0595932
\(561\) −2.13836e6 −0.286862
\(562\) −307256. −0.0410355
\(563\) 1.30772e6 0.173878 0.0869388 0.996214i \(-0.472292\pi\)
0.0869388 + 0.996214i \(0.472292\pi\)
\(564\) −4.31907e6 −0.571732
\(565\) 3.51502e6 0.463241
\(566\) −4.57366e6 −0.600099
\(567\) −5.80153e6 −0.757852
\(568\) −5.06471e6 −0.658694
\(569\) 1.46759e7 1.90031 0.950154 0.311779i \(-0.100925\pi\)
0.950154 + 0.311779i \(0.100925\pi\)
\(570\) 2.97161e6 0.383094
\(571\) 1.12905e6 0.144918 0.0724590 0.997371i \(-0.476915\pi\)
0.0724590 + 0.997371i \(0.476915\pi\)
\(572\) 1.34964e6 0.172476
\(573\) −8.52634e6 −1.08487
\(574\) 221670. 0.0280819
\(575\) −1.46109e6 −0.184292
\(576\) 2.62977e6 0.330264
\(577\) 8.94245e6 1.11819 0.559097 0.829102i \(-0.311148\pi\)
0.559097 + 0.829102i \(0.311148\pi\)
\(578\) 11955.8 0.00148854
\(579\) 4.90600e6 0.608178
\(580\) −5.00547e6 −0.617839
\(581\) 2.76894e6 0.340309
\(582\) 4.50382e6 0.551154
\(583\) 1.26506e6 0.154149
\(584\) −8.41997e6 −1.02159
\(585\) −1.21522e7 −1.46814
\(586\) −6.25987e6 −0.753046
\(587\) 3.97509e6 0.476158 0.238079 0.971246i \(-0.423482\pi\)
0.238079 + 0.971246i \(0.423482\pi\)
\(588\) 1.66749e6 0.198893
\(589\) −3.63211e6 −0.431390
\(590\) 2.10110e6 0.248494
\(591\) −2.86051e6 −0.336880
\(592\) 4.63595e6 0.543669
\(593\) −3.27487e6 −0.382434 −0.191217 0.981548i \(-0.561243\pi\)
−0.191217 + 0.981548i \(0.561243\pi\)
\(594\) 1.55894e6 0.181285
\(595\) −1.45744e6 −0.168771
\(596\) 7.52585e6 0.867841
\(597\) 2.29259e7 2.63263
\(598\) −5.55449e6 −0.635172
\(599\) −4.45624e6 −0.507460 −0.253730 0.967275i \(-0.581657\pi\)
−0.253730 + 0.967275i \(0.581657\pi\)
\(600\) −2.73900e6 −0.310609
\(601\) −8.18581e6 −0.924433 −0.462216 0.886767i \(-0.652946\pi\)
−0.462216 + 0.886767i \(0.652946\pi\)
\(602\) 1.73951e6 0.195630
\(603\) 1.77318e7 1.98591
\(604\) −8.77981e6 −0.979248
\(605\) −3.92569e6 −0.436041
\(606\) 7.63284e6 0.844315
\(607\) −6.82736e6 −0.752109 −0.376055 0.926598i \(-0.622719\pi\)
−0.376055 + 0.926598i \(0.622719\pi\)
\(608\) −9.09999e6 −0.998348
\(609\) 1.13423e7 1.23925
\(610\) −1.36169e6 −0.148167
\(611\) 5.39900e6 0.585073
\(612\) −1.63272e7 −1.76211
\(613\) 6.39746e6 0.687632 0.343816 0.939037i \(-0.388280\pi\)
0.343816 + 0.939037i \(0.388280\pi\)
\(614\) −1.23102e6 −0.131778
\(615\) −1.17093e6 −0.124837
\(616\) −480690. −0.0510403
\(617\) −1.68341e7 −1.78024 −0.890118 0.455730i \(-0.849378\pi\)
−0.890118 + 0.455730i \(0.849378\pi\)
\(618\) 1.39083e7 1.46489
\(619\) −8.82274e6 −0.925501 −0.462751 0.886488i \(-0.653137\pi\)
−0.462751 + 0.886488i \(0.653137\pi\)
\(620\) 1.45202e6 0.151702
\(621\) 2.09931e7 2.18448
\(622\) 1.65742e6 0.171773
\(623\) −124151. −0.0128153
\(624\) 8.88093e6 0.913055
\(625\) 390625. 0.0400000
\(626\) 5.56301e6 0.567380
\(627\) −2.75479e6 −0.279846
\(628\) −1.07295e7 −1.08563
\(629\) 1.52778e7 1.53970
\(630\) 1.87722e6 0.188436
\(631\) −375030. −0.0374966 −0.0187483 0.999824i \(-0.505968\pi\)
−0.0187483 + 0.999824i \(0.505968\pi\)
\(632\) 7.36940e6 0.733905
\(633\) −5.19412e6 −0.515232
\(634\) 7.16898e6 0.708328
\(635\) 5.84723e6 0.575461
\(636\) 1.38513e7 1.35784
\(637\) −2.08442e6 −0.203534
\(638\) −1.41814e6 −0.137932
\(639\) −1.83359e7 −1.77644
\(640\) 4.42838e6 0.427361
\(641\) 3.25010e6 0.312430 0.156215 0.987723i \(-0.450071\pi\)
0.156215 + 0.987723i \(0.450071\pi\)
\(642\) 1.23645e7 1.18397
\(643\) 2.71365e6 0.258837 0.129418 0.991590i \(-0.458689\pi\)
0.129418 + 0.991590i \(0.458689\pi\)
\(644\) −2.80754e6 −0.266755
\(645\) −9.18864e6 −0.869665
\(646\) −4.99080e6 −0.470531
\(647\) 1.67261e7 1.57085 0.785426 0.618956i \(-0.212444\pi\)
0.785426 + 0.618956i \(0.212444\pi\)
\(648\) 1.83115e7 1.71311
\(649\) −1.94779e6 −0.181523
\(650\) 1.48501e6 0.137862
\(651\) −3.29025e6 −0.304282
\(652\) 1.05456e7 0.971519
\(653\) −1.17470e7 −1.07806 −0.539031 0.842286i \(-0.681209\pi\)
−0.539031 + 0.842286i \(0.681209\pi\)
\(654\) −7.56499e6 −0.691614
\(655\) 4.53040e6 0.412604
\(656\) 596740. 0.0541409
\(657\) −3.04830e7 −2.75514
\(658\) −834012. −0.0750944
\(659\) −9.16720e6 −0.822286 −0.411143 0.911571i \(-0.634870\pi\)
−0.411143 + 0.911571i \(0.634870\pi\)
\(660\) 1.10129e6 0.0984106
\(661\) 9.54925e6 0.850092 0.425046 0.905172i \(-0.360258\pi\)
0.425046 + 0.905172i \(0.360258\pi\)
\(662\) −4.91069e6 −0.435510
\(663\) 2.92672e7 2.58581
\(664\) −8.73965e6 −0.769262
\(665\) −1.87757e6 −0.164643
\(666\) −1.96783e7 −1.71910
\(667\) −1.90971e7 −1.66208
\(668\) −5.63070e6 −0.488227
\(669\) 1.92364e7 1.66173
\(670\) −2.16683e6 −0.186482
\(671\) 1.26233e6 0.108235
\(672\) −8.24349e6 −0.704187
\(673\) 3.70373e6 0.315211 0.157606 0.987502i \(-0.449623\pi\)
0.157606 + 0.987502i \(0.449623\pi\)
\(674\) 3.03154e6 0.257048
\(675\) −5.61256e6 −0.474135
\(676\) −9.37204e6 −0.788801
\(677\) 1.93998e7 1.62677 0.813386 0.581724i \(-0.197622\pi\)
0.813386 + 0.581724i \(0.197622\pi\)
\(678\) 1.09038e7 0.910972
\(679\) −2.84568e6 −0.236871
\(680\) 4.60013e6 0.381503
\(681\) 7.26767e6 0.600520
\(682\) 411382. 0.0338676
\(683\) 290718. 0.0238463 0.0119231 0.999929i \(-0.496205\pi\)
0.0119231 + 0.999929i \(0.496205\pi\)
\(684\) −2.10339e7 −1.71901
\(685\) −5.09576e6 −0.414937
\(686\) 321991. 0.0261236
\(687\) −9.11852e6 −0.737110
\(688\) 4.68281e6 0.377168
\(689\) −1.73146e7 −1.38952
\(690\) −4.53239e6 −0.362413
\(691\) −2.05452e7 −1.63688 −0.818438 0.574594i \(-0.805160\pi\)
−0.818438 + 0.574594i \(0.805160\pi\)
\(692\) −1.64286e6 −0.130417
\(693\) −1.74025e6 −0.137651
\(694\) 6.75529e6 0.532409
\(695\) 1.27716e6 0.100296
\(696\) −3.58000e7 −2.80130
\(697\) 1.96656e6 0.153330
\(698\) −6.61930e6 −0.514249
\(699\) −5.48549e6 −0.424642
\(700\) 750603. 0.0578982
\(701\) −1.57106e7 −1.20753 −0.603764 0.797163i \(-0.706333\pi\)
−0.603764 + 0.797163i \(0.706333\pi\)
\(702\) −2.13368e7 −1.63413
\(703\) 1.96820e7 1.50204
\(704\) 297910. 0.0226545
\(705\) 4.40551e6 0.333829
\(706\) 5.05921e6 0.382007
\(707\) −4.82271e6 −0.362863
\(708\) −2.13266e7 −1.59896
\(709\) −6.48343e6 −0.484383 −0.242192 0.970228i \(-0.577866\pi\)
−0.242192 + 0.970228i \(0.577866\pi\)
\(710\) 2.24065e6 0.166812
\(711\) 2.66796e7 1.97927
\(712\) 391859. 0.0289688
\(713\) 5.53979e6 0.408103
\(714\) −4.52106e6 −0.331890
\(715\) −1.37665e6 −0.100707
\(716\) 5.74654e6 0.418913
\(717\) 1.36821e7 0.993930
\(718\) 1.51175e6 0.109438
\(719\) −4.83478e6 −0.348782 −0.174391 0.984676i \(-0.555796\pi\)
−0.174391 + 0.984676i \(0.555796\pi\)
\(720\) 5.05352e6 0.363298
\(721\) −8.78781e6 −0.629568
\(722\) 347272. 0.0247929
\(723\) 3.00962e7 2.14124
\(724\) 4.88581e6 0.346410
\(725\) 5.10565e6 0.360749
\(726\) −1.21778e7 −0.857483
\(727\) 8.57824e6 0.601953 0.300976 0.953632i \(-0.402687\pi\)
0.300976 + 0.953632i \(0.402687\pi\)
\(728\) 6.57909e6 0.460084
\(729\) 4.45997e6 0.310823
\(730\) 3.72502e6 0.258715
\(731\) 1.54322e7 1.06816
\(732\) 1.38214e7 0.953397
\(733\) 863417. 0.0593555 0.0296777 0.999560i \(-0.490552\pi\)
0.0296777 + 0.999560i \(0.490552\pi\)
\(734\) −1.14441e7 −0.784047
\(735\) −1.70086e6 −0.116131
\(736\) 1.38796e7 0.944455
\(737\) 2.00872e6 0.136223
\(738\) −2.53299e6 −0.171196
\(739\) 1.26850e7 0.854436 0.427218 0.904149i \(-0.359494\pi\)
0.427218 + 0.904149i \(0.359494\pi\)
\(740\) −7.86833e6 −0.528206
\(741\) 3.77042e7 2.52257
\(742\) 2.67468e6 0.178346
\(743\) 1.16786e7 0.776104 0.388052 0.921637i \(-0.373148\pi\)
0.388052 + 0.921637i \(0.373148\pi\)
\(744\) 1.03851e7 0.687824
\(745\) −7.67646e6 −0.506723
\(746\) −6.28993e6 −0.413808
\(747\) −3.16403e7 −2.07463
\(748\) −1.84961e6 −0.120872
\(749\) −7.81237e6 −0.508837
\(750\) 1.21174e6 0.0786607
\(751\) −6.46655e6 −0.418382 −0.209191 0.977875i \(-0.567083\pi\)
−0.209191 + 0.977875i \(0.567083\pi\)
\(752\) −2.24518e6 −0.144779
\(753\) −4.05847e7 −2.60840
\(754\) 1.94097e7 1.24334
\(755\) 8.95551e6 0.571772
\(756\) −1.07848e7 −0.686289
\(757\) 3.00203e6 0.190404 0.0952018 0.995458i \(-0.469650\pi\)
0.0952018 + 0.995458i \(0.469650\pi\)
\(758\) −9.73144e6 −0.615183
\(759\) 4.20169e6 0.264740
\(760\) 5.92622e6 0.372172
\(761\) −2.83373e7 −1.77377 −0.886885 0.461989i \(-0.847136\pi\)
−0.886885 + 0.461989i \(0.847136\pi\)
\(762\) 1.81385e7 1.13165
\(763\) 4.77984e6 0.297236
\(764\) −7.37499e6 −0.457118
\(765\) 1.66539e7 1.02888
\(766\) 4.29909e6 0.264731
\(767\) 2.66590e7 1.63627
\(768\) 1.79958e7 1.10095
\(769\) −4.74192e6 −0.289160 −0.144580 0.989493i \(-0.546183\pi\)
−0.144580 + 0.989493i \(0.546183\pi\)
\(770\) 212659. 0.0129258
\(771\) 1.39368e7 0.844356
\(772\) 4.24352e6 0.256261
\(773\) −1.37810e7 −0.829530 −0.414765 0.909928i \(-0.636136\pi\)
−0.414765 + 0.909928i \(0.636136\pi\)
\(774\) −1.98772e7 −1.19262
\(775\) −1.48108e6 −0.0885774
\(776\) 8.98187e6 0.535442
\(777\) 1.78295e7 1.05947
\(778\) 3.65525e6 0.216505
\(779\) 2.53347e6 0.149580
\(780\) −1.50731e7 −0.887086
\(781\) −2.07716e6 −0.121855
\(782\) 7.61211e6 0.445131
\(783\) −7.33588e7 −4.27610
\(784\) 866807. 0.0503654
\(785\) 1.09442e7 0.633885
\(786\) 1.40536e7 0.811392
\(787\) 1.22505e7 0.705046 0.352523 0.935803i \(-0.385324\pi\)
0.352523 + 0.935803i \(0.385324\pi\)
\(788\) −2.47424e6 −0.141947
\(789\) 3.99812e7 2.28646
\(790\) −3.26025e6 −0.185859
\(791\) −6.88944e6 −0.391510
\(792\) 5.49279e6 0.311157
\(793\) −1.72772e7 −0.975644
\(794\) 4.02659e6 0.226666
\(795\) −1.41285e7 −0.792826
\(796\) 1.98301e7 1.10928
\(797\) −1.42979e7 −0.797310 −0.398655 0.917101i \(-0.630523\pi\)
−0.398655 + 0.917101i \(0.630523\pi\)
\(798\) −5.82436e6 −0.323773
\(799\) −7.39902e6 −0.410022
\(800\) −3.71073e6 −0.204991
\(801\) 1.41865e6 0.0781260
\(802\) −2.72242e6 −0.149458
\(803\) −3.45323e6 −0.188989
\(804\) 2.19937e7 1.19994
\(805\) 2.86373e6 0.155755
\(806\) −5.63048e6 −0.305287
\(807\) −2.40071e7 −1.29765
\(808\) 1.52220e7 0.820245
\(809\) 3.38944e7 1.82078 0.910389 0.413753i \(-0.135782\pi\)
0.910389 + 0.413753i \(0.135782\pi\)
\(810\) −8.10106e6 −0.433839
\(811\) −1.94505e7 −1.03843 −0.519216 0.854643i \(-0.673776\pi\)
−0.519216 + 0.854643i \(0.673776\pi\)
\(812\) 9.81073e6 0.522169
\(813\) −3.25422e7 −1.72671
\(814\) −2.22923e6 −0.117922
\(815\) −1.07566e7 −0.567260
\(816\) −1.21708e7 −0.639873
\(817\) 1.98809e7 1.04203
\(818\) 2.72418e6 0.142348
\(819\) 2.38184e7 1.24080
\(820\) −1.01281e6 −0.0526011
\(821\) 5.51562e6 0.285586 0.142793 0.989753i \(-0.454392\pi\)
0.142793 + 0.989753i \(0.454392\pi\)
\(822\) −1.58074e7 −0.815981
\(823\) −2.72639e7 −1.40310 −0.701549 0.712621i \(-0.747508\pi\)
−0.701549 + 0.712621i \(0.747508\pi\)
\(824\) 2.77371e7 1.42313
\(825\) −1.12333e6 −0.0574609
\(826\) −4.11815e6 −0.210016
\(827\) −5.97531e6 −0.303806 −0.151903 0.988395i \(-0.548540\pi\)
−0.151903 + 0.988395i \(0.548540\pi\)
\(828\) 3.20815e7 1.62622
\(829\) 6.28083e6 0.317418 0.158709 0.987325i \(-0.449267\pi\)
0.158709 + 0.987325i \(0.449267\pi\)
\(830\) 3.86645e6 0.194813
\(831\) −3.34037e7 −1.67800
\(832\) −4.07742e6 −0.204210
\(833\) 2.85657e6 0.142637
\(834\) 3.96183e6 0.197234
\(835\) 5.74339e6 0.285070
\(836\) −2.38280e6 −0.117916
\(837\) 2.12803e7 1.04994
\(838\) −171112. −0.00841724
\(839\) −1.22748e7 −0.602019 −0.301010 0.953621i \(-0.597324\pi\)
−0.301010 + 0.953621i \(0.597324\pi\)
\(840\) 5.36844e6 0.262513
\(841\) 4.62220e7 2.25350
\(842\) −8.93542e6 −0.434345
\(843\) −3.18113e6 −0.154174
\(844\) −4.49274e6 −0.217098
\(845\) 9.55960e6 0.460572
\(846\) 9.53016e6 0.457798
\(847\) 7.69436e6 0.368522
\(848\) 7.20030e6 0.343844
\(849\) −4.73526e7 −2.25463
\(850\) −2.03511e6 −0.0966143
\(851\) −3.00196e7 −1.42096
\(852\) −2.27430e7 −1.07337
\(853\) 6.63619e6 0.312281 0.156141 0.987735i \(-0.450095\pi\)
0.156141 + 0.987735i \(0.450095\pi\)
\(854\) 2.66891e6 0.125224
\(855\) 2.14548e7 1.00371
\(856\) 2.46583e7 1.15022
\(857\) −3.01234e7 −1.40105 −0.700523 0.713630i \(-0.747050\pi\)
−0.700523 + 0.713630i \(0.747050\pi\)
\(858\) −4.27047e6 −0.198042
\(859\) −4.11124e7 −1.90103 −0.950517 0.310672i \(-0.899446\pi\)
−0.950517 + 0.310672i \(0.899446\pi\)
\(860\) −7.94786e6 −0.366441
\(861\) 2.29502e6 0.105506
\(862\) 5.61107e6 0.257204
\(863\) −3.41903e6 −0.156270 −0.0781351 0.996943i \(-0.524897\pi\)
−0.0781351 + 0.996943i \(0.524897\pi\)
\(864\) 5.33164e7 2.42983
\(865\) 1.67574e6 0.0761492
\(866\) −1.71768e6 −0.0778303
\(867\) 123782. 0.00559256
\(868\) −2.84595e6 −0.128212
\(869\) 3.02237e6 0.135768
\(870\) 1.58380e7 0.709420
\(871\) −2.74929e7 −1.22794
\(872\) −1.50867e7 −0.671897
\(873\) 3.25172e7 1.44404
\(874\) 9.80647e6 0.434244
\(875\) −765625. −0.0338062
\(876\) −3.78097e7 −1.66473
\(877\) −2.94070e7 −1.29108 −0.645538 0.763728i \(-0.723367\pi\)
−0.645538 + 0.763728i \(0.723367\pi\)
\(878\) −1.67844e7 −0.734798
\(879\) −6.48105e7 −2.82926
\(880\) 572483. 0.0249204
\(881\) 3.32494e7 1.44326 0.721628 0.692281i \(-0.243394\pi\)
0.721628 + 0.692281i \(0.243394\pi\)
\(882\) −3.67935e6 −0.159258
\(883\) 2.53523e7 1.09425 0.547124 0.837051i \(-0.315722\pi\)
0.547124 + 0.837051i \(0.315722\pi\)
\(884\) 2.53151e7 1.08956
\(885\) 2.17534e7 0.933616
\(886\) 5.71490e6 0.244582
\(887\) 1.95997e6 0.0836450 0.0418225 0.999125i \(-0.486684\pi\)
0.0418225 + 0.999125i \(0.486684\pi\)
\(888\) −5.62757e7 −2.39490
\(889\) −1.14606e7 −0.486353
\(890\) −173360. −0.00733624
\(891\) 7.50997e6 0.316916
\(892\) 1.66389e7 0.700183
\(893\) −9.53196e6 −0.399994
\(894\) −2.38129e7 −0.996480
\(895\) −5.86154e6 −0.244599
\(896\) −8.67963e6 −0.361186
\(897\) −5.75075e7 −2.38640
\(898\) 1.85489e7 0.767587
\(899\) −1.93583e7 −0.798857
\(900\) −8.57706e6 −0.352965
\(901\) 2.37287e7 0.973782
\(902\) −286947. −0.0117432
\(903\) 1.80097e7 0.735001
\(904\) 2.17453e7 0.885002
\(905\) −4.98359e6 −0.202265
\(906\) 2.77806e7 1.12440
\(907\) −8.69678e6 −0.351027 −0.175513 0.984477i \(-0.556159\pi\)
−0.175513 + 0.984477i \(0.556159\pi\)
\(908\) 6.28629e6 0.253034
\(909\) 5.51086e7 2.21212
\(910\) −2.91061e6 −0.116515
\(911\) −3.87563e7 −1.54720 −0.773600 0.633674i \(-0.781546\pi\)
−0.773600 + 0.633674i \(0.781546\pi\)
\(912\) −1.56793e7 −0.624223
\(913\) −3.58434e6 −0.142309
\(914\) −1.06690e7 −0.422435
\(915\) −1.40980e7 −0.556679
\(916\) −7.88721e6 −0.310588
\(917\) −8.87958e6 −0.348714
\(918\) 2.92409e7 1.14521
\(919\) −1.97989e7 −0.773309 −0.386655 0.922225i \(-0.626369\pi\)
−0.386655 + 0.922225i \(0.626369\pi\)
\(920\) −9.03885e6 −0.352082
\(921\) −1.27451e7 −0.495103
\(922\) −1.17085e7 −0.453603
\(923\) 2.84296e7 1.09841
\(924\) −2.15853e6 −0.0831721
\(925\) 8.02580e6 0.308414
\(926\) −1.96774e7 −0.754121
\(927\) 1.00417e8 3.83804
\(928\) −4.85010e7 −1.84876
\(929\) 4.20864e7 1.59993 0.799967 0.600044i \(-0.204850\pi\)
0.799967 + 0.600044i \(0.204850\pi\)
\(930\) −4.59439e6 −0.174189
\(931\) 3.68005e6 0.139149
\(932\) −4.74476e6 −0.178927
\(933\) 1.71598e7 0.645368
\(934\) 1.56725e7 0.587856
\(935\) 1.88662e6 0.0705758
\(936\) −7.51785e7 −2.80481
\(937\) 2.14089e7 0.796608 0.398304 0.917254i \(-0.369599\pi\)
0.398304 + 0.917254i \(0.369599\pi\)
\(938\) 4.24698e6 0.157606
\(939\) 5.75956e7 2.13170
\(940\) 3.81062e6 0.140662
\(941\) −2.30140e7 −0.847264 −0.423632 0.905834i \(-0.639245\pi\)
−0.423632 + 0.905834i \(0.639245\pi\)
\(942\) 3.39497e7 1.24655
\(943\) −3.86412e6 −0.141505
\(944\) −1.10862e7 −0.404904
\(945\) 1.10006e7 0.400717
\(946\) −2.25177e6 −0.0818079
\(947\) −1.69350e7 −0.613636 −0.306818 0.951768i \(-0.599264\pi\)
−0.306818 + 0.951768i \(0.599264\pi\)
\(948\) 3.30922e7 1.19593
\(949\) 4.72635e7 1.70357
\(950\) −2.62178e6 −0.0942514
\(951\) 7.42228e7 2.66125
\(952\) −9.01626e6 −0.322429
\(953\) 2.73067e7 0.973952 0.486976 0.873415i \(-0.338100\pi\)
0.486976 + 0.873415i \(0.338100\pi\)
\(954\) −3.05633e7 −1.08725
\(955\) 7.52259e6 0.266906
\(956\) 1.18346e7 0.418801
\(957\) −1.46824e7 −0.518225
\(958\) 1.90720e6 0.0671402
\(959\) 9.98768e6 0.350686
\(960\) −3.32712e6 −0.116517
\(961\) −2.30136e7 −0.803851
\(962\) 3.05110e7 1.06296
\(963\) 8.92711e7 3.10202
\(964\) 2.60322e7 0.902232
\(965\) −4.32844e6 −0.149628
\(966\) 8.88348e6 0.306295
\(967\) −1.08494e7 −0.373111 −0.186555 0.982444i \(-0.559732\pi\)
−0.186555 + 0.982444i \(0.559732\pi\)
\(968\) −2.42858e7 −0.833038
\(969\) −5.16713e7 −1.76783
\(970\) −3.97361e6 −0.135599
\(971\) 5.42053e7 1.84499 0.922495 0.386010i \(-0.126147\pi\)
0.922495 + 0.386010i \(0.126147\pi\)
\(972\) 2.87435e7 0.975830
\(973\) −2.50323e6 −0.0847656
\(974\) −2.05734e7 −0.694879
\(975\) 1.53748e7 0.517960
\(976\) 7.18476e6 0.241428
\(977\) −4.07229e7 −1.36490 −0.682452 0.730930i \(-0.739086\pi\)
−0.682452 + 0.730930i \(0.739086\pi\)
\(978\) −3.33678e7 −1.11553
\(979\) 160711. 0.00535905
\(980\) −1.47118e6 −0.0489329
\(981\) −5.46187e7 −1.81204
\(982\) 699382. 0.0231438
\(983\) 1.40230e7 0.462869 0.231434 0.972851i \(-0.425658\pi\)
0.231434 + 0.972851i \(0.425658\pi\)
\(984\) −7.24381e6 −0.238495
\(985\) 2.52376e6 0.0828815
\(986\) −2.65999e7 −0.871339
\(987\) −8.63480e6 −0.282137
\(988\) 3.26128e7 1.06291
\(989\) −3.03230e7 −0.985783
\(990\) −2.43003e6 −0.0787995
\(991\) 3.52354e7 1.13971 0.569855 0.821745i \(-0.306999\pi\)
0.569855 + 0.821745i \(0.306999\pi\)
\(992\) 1.40695e7 0.453939
\(993\) −5.08420e7 −1.63625
\(994\) −4.39167e6 −0.140982
\(995\) −2.02270e7 −0.647699
\(996\) −3.92453e7 −1.25354
\(997\) −1.29377e7 −0.412210 −0.206105 0.978530i \(-0.566079\pi\)
−0.206105 + 0.978530i \(0.566079\pi\)
\(998\) −2.23055e7 −0.708901
\(999\) −1.15316e8 −3.65574
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.6.a.d.1.2 4
3.2 odd 2 315.6.a.l.1.3 4
4.3 odd 2 560.6.a.v.1.4 4
5.2 odd 4 175.6.b.f.99.4 8
5.3 odd 4 175.6.b.f.99.5 8
5.4 even 2 175.6.a.f.1.3 4
7.6 odd 2 245.6.a.e.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.6.a.d.1.2 4 1.1 even 1 trivial
175.6.a.f.1.3 4 5.4 even 2
175.6.b.f.99.4 8 5.2 odd 4
175.6.b.f.99.5 8 5.3 odd 4
245.6.a.e.1.2 4 7.6 odd 2
315.6.a.l.1.3 4 3.2 odd 2
560.6.a.v.1.4 4 4.3 odd 2