Properties

Label 35.6.a.c.1.3
Level $35$
Weight $6$
Character 35.1
Self dual yes
Analytic conductor $5.613$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,6,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.61343369345\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.577880.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 98x - 232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(10.9200\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.91996 q^{2} +13.7828 q^{3} +47.5657 q^{4} -25.0000 q^{5} +122.942 q^{6} +49.0000 q^{7} +138.845 q^{8} -53.0335 q^{9} -222.999 q^{10} -187.840 q^{11} +655.590 q^{12} +255.647 q^{13} +437.078 q^{14} -344.571 q^{15} -283.609 q^{16} -1104.53 q^{17} -473.057 q^{18} +2278.71 q^{19} -1189.14 q^{20} +675.359 q^{21} -1675.52 q^{22} -475.149 q^{23} +1913.68 q^{24} +625.000 q^{25} +2280.36 q^{26} -4080.18 q^{27} +2330.72 q^{28} -3047.37 q^{29} -3073.56 q^{30} +4779.97 q^{31} -6972.82 q^{32} -2588.96 q^{33} -9852.39 q^{34} -1225.00 q^{35} -2522.57 q^{36} -13604.7 q^{37} +20326.0 q^{38} +3523.54 q^{39} -3471.13 q^{40} +12567.3 q^{41} +6024.17 q^{42} +23949.3 q^{43} -8934.71 q^{44} +1325.84 q^{45} -4238.31 q^{46} +20926.4 q^{47} -3908.93 q^{48} +2401.00 q^{49} +5574.97 q^{50} -15223.6 q^{51} +12160.0 q^{52} +22526.7 q^{53} -36395.0 q^{54} +4695.99 q^{55} +6803.41 q^{56} +31407.1 q^{57} -27182.5 q^{58} +14021.5 q^{59} -16389.7 q^{60} -3611.32 q^{61} +42637.1 q^{62} -2598.64 q^{63} -53121.8 q^{64} -6391.18 q^{65} -23093.4 q^{66} -33402.0 q^{67} -52537.9 q^{68} -6548.90 q^{69} -10926.9 q^{70} -41567.8 q^{71} -7363.44 q^{72} +2922.09 q^{73} -121353. q^{74} +8614.27 q^{75} +108388. q^{76} -9204.14 q^{77} +31429.8 q^{78} +22335.7 q^{79} +7090.22 q^{80} -43349.3 q^{81} +112100. q^{82} +42634.0 q^{83} +32123.9 q^{84} +27613.3 q^{85} +213627. q^{86} -42001.4 q^{87} -26080.6 q^{88} -127049. q^{89} +11826.4 q^{90} +12526.7 q^{91} -22600.8 q^{92} +65881.5 q^{93} +186663. q^{94} -56967.8 q^{95} -96105.2 q^{96} +13277.9 q^{97} +21416.8 q^{98} +9961.79 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 26 q^{3} + 112 q^{4} - 75 q^{5} - 96 q^{6} + 147 q^{7} - 120 q^{8} + 489 q^{9} + 150 q^{10} - 194 q^{11} + 2956 q^{12} + 1892 q^{13} - 294 q^{14} - 650 q^{15} + 1496 q^{16} - 184 q^{17}+ \cdots - 60752 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.91996 1.57684 0.788420 0.615137i \(-0.210899\pi\)
0.788420 + 0.615137i \(0.210899\pi\)
\(3\) 13.7828 0.884169 0.442085 0.896973i \(-0.354239\pi\)
0.442085 + 0.896973i \(0.354239\pi\)
\(4\) 47.5657 1.48643
\(5\) −25.0000 −0.447214
\(6\) 122.942 1.39419
\(7\) 49.0000 0.377964
\(8\) 138.845 0.767018
\(9\) −53.0335 −0.218245
\(10\) −222.999 −0.705185
\(11\) −187.840 −0.468064 −0.234032 0.972229i \(-0.575192\pi\)
−0.234032 + 0.972229i \(0.575192\pi\)
\(12\) 655.590 1.31425
\(13\) 255.647 0.419549 0.209774 0.977750i \(-0.432727\pi\)
0.209774 + 0.977750i \(0.432727\pi\)
\(14\) 437.078 0.595990
\(15\) −344.571 −0.395412
\(16\) −283.609 −0.276962
\(17\) −1104.53 −0.926950 −0.463475 0.886110i \(-0.653398\pi\)
−0.463475 + 0.886110i \(0.653398\pi\)
\(18\) −473.057 −0.344138
\(19\) 2278.71 1.44812 0.724062 0.689735i \(-0.242273\pi\)
0.724062 + 0.689735i \(0.242273\pi\)
\(20\) −1189.14 −0.664750
\(21\) 675.359 0.334185
\(22\) −1675.52 −0.738062
\(23\) −475.149 −0.187288 −0.0936440 0.995606i \(-0.529852\pi\)
−0.0936440 + 0.995606i \(0.529852\pi\)
\(24\) 1913.68 0.678174
\(25\) 625.000 0.200000
\(26\) 2280.36 0.661562
\(27\) −4080.18 −1.07713
\(28\) 2330.72 0.561817
\(29\) −3047.37 −0.672869 −0.336435 0.941707i \(-0.609221\pi\)
−0.336435 + 0.941707i \(0.609221\pi\)
\(30\) −3073.56 −0.623503
\(31\) 4779.97 0.893349 0.446674 0.894697i \(-0.352608\pi\)
0.446674 + 0.894697i \(0.352608\pi\)
\(32\) −6972.82 −1.20374
\(33\) −2588.96 −0.413848
\(34\) −9852.39 −1.46165
\(35\) −1225.00 −0.169031
\(36\) −2522.57 −0.324405
\(37\) −13604.7 −1.63374 −0.816872 0.576819i \(-0.804294\pi\)
−0.816872 + 0.576819i \(0.804294\pi\)
\(38\) 20326.0 2.28346
\(39\) 3523.54 0.370952
\(40\) −3471.13 −0.343021
\(41\) 12567.3 1.16757 0.583783 0.811910i \(-0.301572\pi\)
0.583783 + 0.811910i \(0.301572\pi\)
\(42\) 6024.17 0.526956
\(43\) 23949.3 1.97525 0.987623 0.156846i \(-0.0501328\pi\)
0.987623 + 0.156846i \(0.0501328\pi\)
\(44\) −8934.71 −0.695743
\(45\) 1325.84 0.0976021
\(46\) −4238.31 −0.295323
\(47\) 20926.4 1.38182 0.690909 0.722942i \(-0.257211\pi\)
0.690909 + 0.722942i \(0.257211\pi\)
\(48\) −3908.93 −0.244881
\(49\) 2401.00 0.142857
\(50\) 5574.97 0.315368
\(51\) −15223.6 −0.819581
\(52\) 12160.0 0.623629
\(53\) 22526.7 1.10156 0.550780 0.834651i \(-0.314330\pi\)
0.550780 + 0.834651i \(0.314330\pi\)
\(54\) −36395.0 −1.69847
\(55\) 4695.99 0.209325
\(56\) 6803.41 0.289906
\(57\) 31407.1 1.28039
\(58\) −27182.5 −1.06101
\(59\) 14021.5 0.524404 0.262202 0.965013i \(-0.415551\pi\)
0.262202 + 0.965013i \(0.415551\pi\)
\(60\) −16389.7 −0.587752
\(61\) −3611.32 −0.124263 −0.0621314 0.998068i \(-0.519790\pi\)
−0.0621314 + 0.998068i \(0.519790\pi\)
\(62\) 42637.1 1.40867
\(63\) −2598.64 −0.0824888
\(64\) −53121.8 −1.62115
\(65\) −6391.18 −0.187628
\(66\) −23093.4 −0.652572
\(67\) −33402.0 −0.909045 −0.454522 0.890735i \(-0.650190\pi\)
−0.454522 + 0.890735i \(0.650190\pi\)
\(68\) −52537.9 −1.37784
\(69\) −6548.90 −0.165594
\(70\) −10926.9 −0.266535
\(71\) −41567.8 −0.978614 −0.489307 0.872112i \(-0.662750\pi\)
−0.489307 + 0.872112i \(0.662750\pi\)
\(72\) −7363.44 −0.167398
\(73\) 2922.09 0.0641781 0.0320890 0.999485i \(-0.489784\pi\)
0.0320890 + 0.999485i \(0.489784\pi\)
\(74\) −121353. −2.57615
\(75\) 8614.27 0.176834
\(76\) 108388. 2.15253
\(77\) −9204.14 −0.176912
\(78\) 31429.8 0.584933
\(79\) 22335.7 0.402654 0.201327 0.979524i \(-0.435475\pi\)
0.201327 + 0.979524i \(0.435475\pi\)
\(80\) 7090.22 0.123861
\(81\) −43349.3 −0.734124
\(82\) 112100. 1.84107
\(83\) 42634.0 0.679298 0.339649 0.940552i \(-0.389692\pi\)
0.339649 + 0.940552i \(0.389692\pi\)
\(84\) 32123.9 0.496741
\(85\) 27613.3 0.414545
\(86\) 213627. 3.11465
\(87\) −42001.4 −0.594930
\(88\) −26080.6 −0.359014
\(89\) −127049. −1.70019 −0.850094 0.526631i \(-0.823455\pi\)
−0.850094 + 0.526631i \(0.823455\pi\)
\(90\) 11826.4 0.153903
\(91\) 12526.7 0.158575
\(92\) −22600.8 −0.278390
\(93\) 65881.5 0.789871
\(94\) 186663. 2.17891
\(95\) −56967.8 −0.647620
\(96\) −96105.2 −1.06431
\(97\) 13277.9 0.143285 0.0716426 0.997430i \(-0.477176\pi\)
0.0716426 + 0.997430i \(0.477176\pi\)
\(98\) 21416.8 0.225263
\(99\) 9961.79 0.102153
\(100\) 29728.5 0.297285
\(101\) −134560. −1.31254 −0.656272 0.754525i \(-0.727867\pi\)
−0.656272 + 0.754525i \(0.727867\pi\)
\(102\) −135794. −1.29235
\(103\) −126101. −1.17119 −0.585594 0.810604i \(-0.699139\pi\)
−0.585594 + 0.810604i \(0.699139\pi\)
\(104\) 35495.4 0.321802
\(105\) −16884.0 −0.149452
\(106\) 200937. 1.73698
\(107\) −194824. −1.64506 −0.822531 0.568720i \(-0.807439\pi\)
−0.822531 + 0.568720i \(0.807439\pi\)
\(108\) −194077. −1.60108
\(109\) 213435. 1.72068 0.860339 0.509722i \(-0.170252\pi\)
0.860339 + 0.509722i \(0.170252\pi\)
\(110\) 41888.0 0.330072
\(111\) −187511. −1.44451
\(112\) −13896.8 −0.104682
\(113\) 153621. 1.13176 0.565880 0.824488i \(-0.308537\pi\)
0.565880 + 0.824488i \(0.308537\pi\)
\(114\) 280150. 2.01897
\(115\) 11878.7 0.0837578
\(116\) −144950. −1.00017
\(117\) −13557.9 −0.0915644
\(118\) 125072. 0.826902
\(119\) −54122.1 −0.350354
\(120\) −47842.0 −0.303288
\(121\) −125767. −0.780916
\(122\) −32212.8 −0.195943
\(123\) 173213. 1.03233
\(124\) 227363. 1.32790
\(125\) −15625.0 −0.0894427
\(126\) −23179.8 −0.130072
\(127\) 223543. 1.22985 0.614924 0.788586i \(-0.289187\pi\)
0.614924 + 0.788586i \(0.289187\pi\)
\(128\) −250714. −1.35255
\(129\) 330089. 1.74645
\(130\) −57009.1 −0.295859
\(131\) −226357. −1.15243 −0.576216 0.817297i \(-0.695471\pi\)
−0.576216 + 0.817297i \(0.695471\pi\)
\(132\) −123146. −0.615154
\(133\) 111657. 0.547339
\(134\) −297944. −1.43342
\(135\) 102005. 0.481709
\(136\) −153359. −0.710988
\(137\) −58436.2 −0.265999 −0.133000 0.991116i \(-0.542461\pi\)
−0.133000 + 0.991116i \(0.542461\pi\)
\(138\) −58415.9 −0.261116
\(139\) −326896. −1.43507 −0.717535 0.696523i \(-0.754730\pi\)
−0.717535 + 0.696523i \(0.754730\pi\)
\(140\) −58267.9 −0.251252
\(141\) 288426. 1.22176
\(142\) −370783. −1.54312
\(143\) −48020.6 −0.196376
\(144\) 15040.8 0.0604455
\(145\) 76184.4 0.300916
\(146\) 26064.9 0.101199
\(147\) 33092.6 0.126310
\(148\) −647116. −2.42844
\(149\) −41732.6 −0.153996 −0.0769981 0.997031i \(-0.524534\pi\)
−0.0769981 + 0.997031i \(0.524534\pi\)
\(150\) 76838.9 0.278839
\(151\) 237948. 0.849259 0.424629 0.905367i \(-0.360404\pi\)
0.424629 + 0.905367i \(0.360404\pi\)
\(152\) 316388. 1.11074
\(153\) 58577.3 0.202302
\(154\) −82100.5 −0.278961
\(155\) −119499. −0.399518
\(156\) 167600. 0.551393
\(157\) 376331. 1.21849 0.609243 0.792983i \(-0.291473\pi\)
0.609243 + 0.792983i \(0.291473\pi\)
\(158\) 199234. 0.634921
\(159\) 310482. 0.973965
\(160\) 174321. 0.538330
\(161\) −23282.3 −0.0707882
\(162\) −386674. −1.15760
\(163\) −604784. −1.78292 −0.891459 0.453101i \(-0.850318\pi\)
−0.891459 + 0.453101i \(0.850318\pi\)
\(164\) 597771. 1.73550
\(165\) 64724.0 0.185078
\(166\) 380293. 1.07115
\(167\) −66189.0 −0.183652 −0.0918258 0.995775i \(-0.529270\pi\)
−0.0918258 + 0.995775i \(0.529270\pi\)
\(168\) 93770.3 0.256326
\(169\) −305938. −0.823979
\(170\) 246310. 0.653671
\(171\) −120848. −0.316046
\(172\) 1.13916e6 2.93606
\(173\) 267726. 0.680103 0.340052 0.940407i \(-0.389555\pi\)
0.340052 + 0.940407i \(0.389555\pi\)
\(174\) −374651. −0.938111
\(175\) 30625.0 0.0755929
\(176\) 53272.9 0.129636
\(177\) 193257. 0.463662
\(178\) −1.13327e6 −2.68093
\(179\) −425882. −0.993475 −0.496738 0.867901i \(-0.665469\pi\)
−0.496738 + 0.867901i \(0.665469\pi\)
\(180\) 63064.4 0.145078
\(181\) −143066. −0.324594 −0.162297 0.986742i \(-0.551890\pi\)
−0.162297 + 0.986742i \(0.551890\pi\)
\(182\) 111738. 0.250047
\(183\) −49774.2 −0.109869
\(184\) −65972.1 −0.143653
\(185\) 340117. 0.730633
\(186\) 587661. 1.24550
\(187\) 207475. 0.433872
\(188\) 995380. 2.05397
\(189\) −199929. −0.407119
\(190\) −508151. −1.02119
\(191\) −451436. −0.895391 −0.447695 0.894186i \(-0.647755\pi\)
−0.447695 + 0.894186i \(0.647755\pi\)
\(192\) −732169. −1.43337
\(193\) 783634. 1.51433 0.757164 0.653225i \(-0.226584\pi\)
0.757164 + 0.653225i \(0.226584\pi\)
\(194\) 118439. 0.225938
\(195\) −88088.5 −0.165895
\(196\) 114205. 0.212347
\(197\) 701313. 1.28750 0.643749 0.765237i \(-0.277378\pi\)
0.643749 + 0.765237i \(0.277378\pi\)
\(198\) 88858.7 0.161078
\(199\) 469668. 0.840733 0.420366 0.907354i \(-0.361902\pi\)
0.420366 + 0.907354i \(0.361902\pi\)
\(200\) 86778.2 0.153404
\(201\) −460374. −0.803749
\(202\) −1.20027e6 −2.06967
\(203\) −149321. −0.254321
\(204\) −724121. −1.21825
\(205\) −314182. −0.522151
\(206\) −1.12482e6 −1.84678
\(207\) 25198.8 0.0408747
\(208\) −72503.8 −0.116199
\(209\) −428032. −0.677814
\(210\) −150604. −0.235662
\(211\) −40052.3 −0.0619329 −0.0309665 0.999520i \(-0.509859\pi\)
−0.0309665 + 0.999520i \(0.509859\pi\)
\(212\) 1.07150e6 1.63739
\(213\) −572922. −0.865260
\(214\) −1.73782e6 −2.59400
\(215\) −598732. −0.883357
\(216\) −566513. −0.826182
\(217\) 234219. 0.337654
\(218\) 1.90383e6 2.71324
\(219\) 40274.7 0.0567443
\(220\) 223368. 0.311146
\(221\) −282371. −0.388901
\(222\) −1.67259e6 −2.27776
\(223\) −388002. −0.522483 −0.261241 0.965273i \(-0.584132\pi\)
−0.261241 + 0.965273i \(0.584132\pi\)
\(224\) −341668. −0.454972
\(225\) −33145.9 −0.0436490
\(226\) 1.37029e6 1.78460
\(227\) 749133. 0.964927 0.482463 0.875916i \(-0.339742\pi\)
0.482463 + 0.875916i \(0.339742\pi\)
\(228\) 1.49390e6 1.90320
\(229\) 1.34662e6 1.69690 0.848449 0.529276i \(-0.177537\pi\)
0.848449 + 0.529276i \(0.177537\pi\)
\(230\) 105958. 0.132073
\(231\) −126859. −0.156420
\(232\) −423113. −0.516103
\(233\) −287439. −0.346862 −0.173431 0.984846i \(-0.555485\pi\)
−0.173431 + 0.984846i \(0.555485\pi\)
\(234\) −120936. −0.144383
\(235\) −523161. −0.617968
\(236\) 666944. 0.779488
\(237\) 307849. 0.356014
\(238\) −482767. −0.552453
\(239\) 884752. 1.00191 0.500953 0.865475i \(-0.332983\pi\)
0.500953 + 0.865475i \(0.332983\pi\)
\(240\) 97723.3 0.109514
\(241\) 226417. 0.251112 0.125556 0.992087i \(-0.459929\pi\)
0.125556 + 0.992087i \(0.459929\pi\)
\(242\) −1.12184e6 −1.23138
\(243\) 394008. 0.428045
\(244\) −171775. −0.184708
\(245\) −60025.0 −0.0638877
\(246\) 1.54505e6 1.62781
\(247\) 582546. 0.607559
\(248\) 663676. 0.685215
\(249\) 587617. 0.600615
\(250\) −139374. −0.141037
\(251\) 153345. 0.153633 0.0768167 0.997045i \(-0.475524\pi\)
0.0768167 + 0.997045i \(0.475524\pi\)
\(252\) −123606. −0.122614
\(253\) 89251.7 0.0876628
\(254\) 1.99399e6 1.93927
\(255\) 380590. 0.366528
\(256\) −536461. −0.511609
\(257\) −979616. −0.925174 −0.462587 0.886574i \(-0.653079\pi\)
−0.462587 + 0.886574i \(0.653079\pi\)
\(258\) 2.94438e6 2.75388
\(259\) −666629. −0.617497
\(260\) −304001. −0.278895
\(261\) 161613. 0.146850
\(262\) −2.01909e6 −1.81720
\(263\) −796798. −0.710328 −0.355164 0.934804i \(-0.615575\pi\)
−0.355164 + 0.934804i \(0.615575\pi\)
\(264\) −359464. −0.317429
\(265\) −563167. −0.492632
\(266\) 995975. 0.863067
\(267\) −1.75110e6 −1.50325
\(268\) −1.58879e6 −1.35123
\(269\) −4881.02 −0.00411273 −0.00205637 0.999998i \(-0.500655\pi\)
−0.00205637 + 0.999998i \(0.500655\pi\)
\(270\) 909876. 0.759579
\(271\) 1.76108e6 1.45665 0.728325 0.685232i \(-0.240299\pi\)
0.728325 + 0.685232i \(0.240299\pi\)
\(272\) 313255. 0.256730
\(273\) 172654. 0.140207
\(274\) −521249. −0.419439
\(275\) −117400. −0.0936128
\(276\) −311503. −0.246144
\(277\) 65248.7 0.0510943 0.0255472 0.999674i \(-0.491867\pi\)
0.0255472 + 0.999674i \(0.491867\pi\)
\(278\) −2.91590e6 −2.26288
\(279\) −253499. −0.194969
\(280\) −170085. −0.129650
\(281\) −1.29220e6 −0.976258 −0.488129 0.872772i \(-0.662320\pi\)
−0.488129 + 0.872772i \(0.662320\pi\)
\(282\) 2.57274e6 1.92652
\(283\) −682719. −0.506729 −0.253365 0.967371i \(-0.581537\pi\)
−0.253365 + 0.967371i \(0.581537\pi\)
\(284\) −1.97720e6 −1.45464
\(285\) −785178. −0.572606
\(286\) −428342. −0.309653
\(287\) 615796. 0.441298
\(288\) 369793. 0.262711
\(289\) −199863. −0.140763
\(290\) 679561. 0.474497
\(291\) 183008. 0.126688
\(292\) 138991. 0.0953961
\(293\) 1.19779e6 0.815102 0.407551 0.913183i \(-0.366383\pi\)
0.407551 + 0.913183i \(0.366383\pi\)
\(294\) 295184. 0.199171
\(295\) −350539. −0.234521
\(296\) −1.88894e6 −1.25311
\(297\) 766419. 0.504168
\(298\) −372253. −0.242828
\(299\) −121470. −0.0785765
\(300\) 409744. 0.262851
\(301\) 1.17351e6 0.746573
\(302\) 2.12249e6 1.33915
\(303\) −1.85462e6 −1.16051
\(304\) −646263. −0.401075
\(305\) 90283.0 0.0555720
\(306\) 522507. 0.318998
\(307\) 1.74933e6 1.05932 0.529658 0.848211i \(-0.322320\pi\)
0.529658 + 0.848211i \(0.322320\pi\)
\(308\) −437801. −0.262966
\(309\) −1.73803e6 −1.03553
\(310\) −1.06593e6 −0.629976
\(311\) −281786. −0.165203 −0.0826016 0.996583i \(-0.526323\pi\)
−0.0826016 + 0.996583i \(0.526323\pi\)
\(312\) 489227. 0.284527
\(313\) −1.14765e6 −0.662136 −0.331068 0.943607i \(-0.607409\pi\)
−0.331068 + 0.943607i \(0.607409\pi\)
\(314\) 3.35686e6 1.92136
\(315\) 64966.1 0.0368901
\(316\) 1.06241e6 0.598516
\(317\) −2.82020e6 −1.57627 −0.788136 0.615501i \(-0.788954\pi\)
−0.788136 + 0.615501i \(0.788954\pi\)
\(318\) 2.76948e6 1.53579
\(319\) 572417. 0.314946
\(320\) 1.32805e6 0.725000
\(321\) −2.68522e6 −1.45451
\(322\) −207677. −0.111622
\(323\) −2.51691e6 −1.34234
\(324\) −2.06194e6 −1.09122
\(325\) 159779. 0.0839098
\(326\) −5.39465e6 −2.81138
\(327\) 2.94174e6 1.52137
\(328\) 1.74490e6 0.895544
\(329\) 1.02540e6 0.522278
\(330\) 577336. 0.291839
\(331\) 603651. 0.302842 0.151421 0.988469i \(-0.451615\pi\)
0.151421 + 0.988469i \(0.451615\pi\)
\(332\) 2.02791e6 1.00973
\(333\) 721504. 0.356556
\(334\) −590403. −0.289589
\(335\) 835050. 0.406537
\(336\) −191538. −0.0925563
\(337\) 1.09597e6 0.525684 0.262842 0.964839i \(-0.415340\pi\)
0.262842 + 0.964839i \(0.415340\pi\)
\(338\) −2.72895e6 −1.29928
\(339\) 2.11733e6 1.00067
\(340\) 1.31345e6 0.616191
\(341\) −897867. −0.418144
\(342\) −1.07796e6 −0.498354
\(343\) 117649. 0.0539949
\(344\) 3.32524e6 1.51505
\(345\) 163722. 0.0740560
\(346\) 2.38810e6 1.07241
\(347\) −2.53615e6 −1.13071 −0.565355 0.824848i \(-0.691261\pi\)
−0.565355 + 0.824848i \(0.691261\pi\)
\(348\) −1.99783e6 −0.884321
\(349\) −1.31958e6 −0.579927 −0.289963 0.957038i \(-0.593643\pi\)
−0.289963 + 0.957038i \(0.593643\pi\)
\(350\) 273174. 0.119198
\(351\) −1.04309e6 −0.451911
\(352\) 1.30977e6 0.563429
\(353\) 1.68374e6 0.719181 0.359591 0.933110i \(-0.382916\pi\)
0.359591 + 0.933110i \(0.382916\pi\)
\(354\) 1.72384e6 0.731121
\(355\) 1.03920e6 0.437650
\(356\) −6.04318e6 −2.52721
\(357\) −745956. −0.309772
\(358\) −3.79885e6 −1.56655
\(359\) −1.66512e6 −0.681882 −0.340941 0.940085i \(-0.610746\pi\)
−0.340941 + 0.940085i \(0.610746\pi\)
\(360\) 184086. 0.0748626
\(361\) 2.71643e6 1.09706
\(362\) −1.27614e6 −0.511832
\(363\) −1.73343e6 −0.690462
\(364\) 595841. 0.235710
\(365\) −73052.3 −0.0287013
\(366\) −443984. −0.173247
\(367\) −1.22452e6 −0.474570 −0.237285 0.971440i \(-0.576258\pi\)
−0.237285 + 0.971440i \(0.576258\pi\)
\(368\) 134756. 0.0518716
\(369\) −666487. −0.254815
\(370\) 3.03383e6 1.15209
\(371\) 1.10381e6 0.416350
\(372\) 3.13370e6 1.17409
\(373\) 3.14643e6 1.17097 0.585486 0.810683i \(-0.300904\pi\)
0.585486 + 0.810683i \(0.300904\pi\)
\(374\) 1.85067e6 0.684147
\(375\) −215357. −0.0790825
\(376\) 2.90553e6 1.05988
\(377\) −779053. −0.282302
\(378\) −1.78336e6 −0.641961
\(379\) 3.25784e6 1.16502 0.582508 0.812825i \(-0.302071\pi\)
0.582508 + 0.812825i \(0.302071\pi\)
\(380\) −2.70971e6 −0.962641
\(381\) 3.08105e6 1.08739
\(382\) −4.02679e6 −1.41189
\(383\) 4.63245e6 1.61367 0.806833 0.590780i \(-0.201180\pi\)
0.806833 + 0.590780i \(0.201180\pi\)
\(384\) −3.45555e6 −1.19588
\(385\) 230103. 0.0791173
\(386\) 6.98998e6 2.38785
\(387\) −1.27011e6 −0.431087
\(388\) 631574. 0.212983
\(389\) 1.93239e6 0.647471 0.323735 0.946148i \(-0.395061\pi\)
0.323735 + 0.946148i \(0.395061\pi\)
\(390\) −785746. −0.261590
\(391\) 524818. 0.173607
\(392\) 333367. 0.109574
\(393\) −3.11984e6 −1.01894
\(394\) 6.25568e6 2.03018
\(395\) −558393. −0.180072
\(396\) 473839. 0.151842
\(397\) 2.59643e6 0.826800 0.413400 0.910550i \(-0.364341\pi\)
0.413400 + 0.910550i \(0.364341\pi\)
\(398\) 4.18942e6 1.32570
\(399\) 1.53895e6 0.483940
\(400\) −177255. −0.0553923
\(401\) −703617. −0.218512 −0.109256 0.994014i \(-0.534847\pi\)
−0.109256 + 0.994014i \(0.534847\pi\)
\(402\) −4.10652e6 −1.26738
\(403\) 1.22199e6 0.374803
\(404\) −6.40045e6 −1.95100
\(405\) 1.08373e6 0.328310
\(406\) −1.33194e6 −0.401023
\(407\) 2.55550e6 0.764697
\(408\) −2.11372e6 −0.628633
\(409\) −6.16366e6 −1.82192 −0.910962 0.412491i \(-0.864659\pi\)
−0.910962 + 0.412491i \(0.864659\pi\)
\(410\) −2.80249e6 −0.823350
\(411\) −805416. −0.235188
\(412\) −5.99810e6 −1.74089
\(413\) 687056. 0.198206
\(414\) 224772. 0.0644528
\(415\) −1.06585e6 −0.303791
\(416\) −1.78258e6 −0.505029
\(417\) −4.50556e6 −1.26884
\(418\) −3.81803e6 −1.06881
\(419\) 3.63250e6 1.01081 0.505406 0.862882i \(-0.331343\pi\)
0.505406 + 0.862882i \(0.331343\pi\)
\(420\) −803097. −0.222149
\(421\) −5.63096e6 −1.54838 −0.774190 0.632953i \(-0.781842\pi\)
−0.774190 + 0.632953i \(0.781842\pi\)
\(422\) −357265. −0.0976584
\(423\) −1.10980e6 −0.301575
\(424\) 3.12772e6 0.844916
\(425\) −690333. −0.185390
\(426\) −5.11044e6 −1.36438
\(427\) −176955. −0.0469669
\(428\) −9.26692e6 −2.44527
\(429\) −661860. −0.173629
\(430\) −5.34066e6 −1.39291
\(431\) −1.22251e6 −0.317000 −0.158500 0.987359i \(-0.550666\pi\)
−0.158500 + 0.987359i \(0.550666\pi\)
\(432\) 1.15717e6 0.298325
\(433\) 5.89069e6 1.50989 0.754946 0.655787i \(-0.227663\pi\)
0.754946 + 0.655787i \(0.227663\pi\)
\(434\) 2.08922e6 0.532427
\(435\) 1.05004e6 0.266061
\(436\) 1.01522e7 2.55766
\(437\) −1.08273e6 −0.271216
\(438\) 359249. 0.0894767
\(439\) 25.5425 6.32561e−6 0 3.16281e−6 1.00000i \(-0.499999\pi\)
3.16281e−6 1.00000i \(0.499999\pi\)
\(440\) 652015. 0.160556
\(441\) −127333. −0.0311778
\(442\) −2.51874e6 −0.613235
\(443\) 4.51430e6 1.09290 0.546451 0.837491i \(-0.315979\pi\)
0.546451 + 0.837491i \(0.315979\pi\)
\(444\) −8.91909e6 −2.14715
\(445\) 3.17623e6 0.760347
\(446\) −3.46096e6 −0.823872
\(447\) −575194. −0.136159
\(448\) −2.60297e6 −0.612737
\(449\) 3.13133e6 0.733015 0.366507 0.930415i \(-0.380553\pi\)
0.366507 + 0.930415i \(0.380553\pi\)
\(450\) −295660. −0.0688275
\(451\) −2.36063e6 −0.546496
\(452\) 7.30708e6 1.68228
\(453\) 3.27960e6 0.750888
\(454\) 6.68223e6 1.52154
\(455\) −313168. −0.0709167
\(456\) 4.36072e6 0.982079
\(457\) 926153. 0.207440 0.103720 0.994607i \(-0.466925\pi\)
0.103720 + 0.994607i \(0.466925\pi\)
\(458\) 1.20118e7 2.67574
\(459\) 4.50669e6 0.998450
\(460\) 565019. 0.124500
\(461\) 1.78674e6 0.391570 0.195785 0.980647i \(-0.437275\pi\)
0.195785 + 0.980647i \(0.437275\pi\)
\(462\) −1.13158e6 −0.246649
\(463\) −4.33387e6 −0.939558 −0.469779 0.882784i \(-0.655666\pi\)
−0.469779 + 0.882784i \(0.655666\pi\)
\(464\) 864262. 0.186359
\(465\) −1.64704e6 −0.353241
\(466\) −2.56395e6 −0.546946
\(467\) 8.04215e6 1.70640 0.853198 0.521587i \(-0.174660\pi\)
0.853198 + 0.521587i \(0.174660\pi\)
\(468\) −644889. −0.136104
\(469\) −1.63670e6 −0.343587
\(470\) −4.66657e6 −0.974436
\(471\) 5.18691e6 1.07735
\(472\) 1.94682e6 0.402227
\(473\) −4.49862e6 −0.924541
\(474\) 2.74600e6 0.561378
\(475\) 1.42420e6 0.289625
\(476\) −2.57436e6 −0.520776
\(477\) −1.19467e6 −0.240410
\(478\) 7.89195e6 1.57985
\(479\) −5.75325e6 −1.14571 −0.572855 0.819657i \(-0.694164\pi\)
−0.572855 + 0.819657i \(0.694164\pi\)
\(480\) 2.40263e6 0.475975
\(481\) −3.47800e6 −0.685436
\(482\) 2.01963e6 0.395963
\(483\) −320896. −0.0625888
\(484\) −5.98221e6 −1.16077
\(485\) −331948. −0.0640791
\(486\) 3.51453e6 0.674958
\(487\) −1.05952e6 −0.202435 −0.101217 0.994864i \(-0.532274\pi\)
−0.101217 + 0.994864i \(0.532274\pi\)
\(488\) −501414. −0.0953118
\(489\) −8.33564e6 −1.57640
\(490\) −535421. −0.100741
\(491\) 2.61349e6 0.489235 0.244618 0.969620i \(-0.421338\pi\)
0.244618 + 0.969620i \(0.421338\pi\)
\(492\) 8.23897e6 1.53448
\(493\) 3.36593e6 0.623717
\(494\) 5.19629e6 0.958023
\(495\) −249045. −0.0456840
\(496\) −1.35564e6 −0.247423
\(497\) −2.03682e6 −0.369881
\(498\) 5.24152e6 0.947074
\(499\) −7.96728e6 −1.43238 −0.716191 0.697904i \(-0.754116\pi\)
−0.716191 + 0.697904i \(0.754116\pi\)
\(500\) −743214. −0.132950
\(501\) −912272. −0.162379
\(502\) 1.36783e6 0.242255
\(503\) 2.56418e6 0.451885 0.225942 0.974141i \(-0.427454\pi\)
0.225942 + 0.974141i \(0.427454\pi\)
\(504\) −360809. −0.0632704
\(505\) 3.36401e6 0.586987
\(506\) 796122. 0.138230
\(507\) −4.21669e6 −0.728537
\(508\) 1.06330e7 1.82808
\(509\) −9.92048e6 −1.69722 −0.848610 0.529019i \(-0.822560\pi\)
−0.848610 + 0.529019i \(0.822560\pi\)
\(510\) 3.39485e6 0.577956
\(511\) 143183. 0.0242570
\(512\) 3.23764e6 0.545825
\(513\) −9.29756e6 −1.55982
\(514\) −8.73814e6 −1.45885
\(515\) 3.15253e6 0.523771
\(516\) 1.57009e7 2.59597
\(517\) −3.93081e6 −0.646779
\(518\) −5.94631e6 −0.973695
\(519\) 3.69002e6 0.601327
\(520\) −887384. −0.143914
\(521\) −537196. −0.0867039 −0.0433519 0.999060i \(-0.513804\pi\)
−0.0433519 + 0.999060i \(0.513804\pi\)
\(522\) 1.44158e6 0.231560
\(523\) −1.69124e6 −0.270366 −0.135183 0.990821i \(-0.543162\pi\)
−0.135183 + 0.990821i \(0.543162\pi\)
\(524\) −1.07668e7 −1.71301
\(525\) 422099. 0.0668369
\(526\) −7.10740e6 −1.12007
\(527\) −5.27964e6 −0.828090
\(528\) 734252. 0.114620
\(529\) −6.21058e6 −0.964923
\(530\) −5.02343e6 −0.776803
\(531\) −743612. −0.114449
\(532\) 5.31104e6 0.813580
\(533\) 3.21279e6 0.489851
\(534\) −1.56197e7 −2.37039
\(535\) 4.87059e6 0.735694
\(536\) −4.63770e6 −0.697254
\(537\) −5.86986e6 −0.878400
\(538\) −43538.5 −0.00648512
\(539\) −451003. −0.0668663
\(540\) 4.85191e6 0.716026
\(541\) 8.27002e6 1.21482 0.607412 0.794387i \(-0.292208\pi\)
0.607412 + 0.794387i \(0.292208\pi\)
\(542\) 1.57087e7 2.29690
\(543\) −1.97185e6 −0.286996
\(544\) 7.70171e6 1.11581
\(545\) −5.33588e6 −0.769511
\(546\) 1.54006e6 0.221084
\(547\) −8.70811e6 −1.24439 −0.622193 0.782864i \(-0.713758\pi\)
−0.622193 + 0.782864i \(0.713758\pi\)
\(548\) −2.77956e6 −0.395389
\(549\) 191521. 0.0271197
\(550\) −1.04720e6 −0.147612
\(551\) −6.94409e6 −0.974398
\(552\) −909282. −0.127014
\(553\) 1.09445e6 0.152189
\(554\) 582016. 0.0805676
\(555\) 4.68778e6 0.646003
\(556\) −1.55490e7 −2.13313
\(557\) 9.16586e6 1.25180 0.625901 0.779903i \(-0.284732\pi\)
0.625901 + 0.779903i \(0.284732\pi\)
\(558\) −2.26120e6 −0.307435
\(559\) 6.12256e6 0.828712
\(560\) 347421. 0.0468151
\(561\) 2.85959e6 0.383616
\(562\) −1.15264e7 −1.53940
\(563\) 6.96113e6 0.925568 0.462784 0.886471i \(-0.346850\pi\)
0.462784 + 0.886471i \(0.346850\pi\)
\(564\) 1.37192e7 1.81606
\(565\) −3.84052e6 −0.506138
\(566\) −6.08983e6 −0.799031
\(567\) −2.12412e6 −0.277473
\(568\) −5.77149e6 −0.750615
\(569\) −5.44814e6 −0.705452 −0.352726 0.935727i \(-0.614745\pi\)
−0.352726 + 0.935727i \(0.614745\pi\)
\(570\) −7.00375e6 −0.902909
\(571\) 3.38027e6 0.433872 0.216936 0.976186i \(-0.430394\pi\)
0.216936 + 0.976186i \(0.430394\pi\)
\(572\) −2.28413e6 −0.291898
\(573\) −6.22206e6 −0.791677
\(574\) 5.49288e6 0.695857
\(575\) −296968. −0.0374576
\(576\) 2.81724e6 0.353807
\(577\) 4.09888e6 0.512537 0.256269 0.966606i \(-0.417507\pi\)
0.256269 + 0.966606i \(0.417507\pi\)
\(578\) −1.78277e6 −0.221961
\(579\) 1.08007e7 1.33892
\(580\) 3.62376e6 0.447290
\(581\) 2.08906e6 0.256751
\(582\) 1.63242e6 0.199767
\(583\) −4.23140e6 −0.515600
\(584\) 405718. 0.0492258
\(585\) 338947. 0.0409489
\(586\) 1.06842e7 1.28529
\(587\) −4.79895e6 −0.574845 −0.287423 0.957804i \(-0.592798\pi\)
−0.287423 + 0.957804i \(0.592798\pi\)
\(588\) 1.57407e6 0.187750
\(589\) 1.08922e7 1.29368
\(590\) −3.12679e6 −0.369802
\(591\) 9.66608e6 1.13837
\(592\) 3.85841e6 0.452485
\(593\) −1.70681e6 −0.199319 −0.0996595 0.995022i \(-0.531775\pi\)
−0.0996595 + 0.995022i \(0.531775\pi\)
\(594\) 6.83643e6 0.794993
\(595\) 1.35305e6 0.156683
\(596\) −1.98504e6 −0.228904
\(597\) 6.47335e6 0.743350
\(598\) −1.08351e6 −0.123903
\(599\) −6.81366e6 −0.775914 −0.387957 0.921677i \(-0.626819\pi\)
−0.387957 + 0.921677i \(0.626819\pi\)
\(600\) 1.19605e6 0.135635
\(601\) −4.99344e6 −0.563915 −0.281957 0.959427i \(-0.590984\pi\)
−0.281957 + 0.959427i \(0.590984\pi\)
\(602\) 1.04677e7 1.17723
\(603\) 1.77142e6 0.198394
\(604\) 1.13182e7 1.26236
\(605\) 3.14418e6 0.349236
\(606\) −1.65432e7 −1.82994
\(607\) 5.00268e6 0.551101 0.275550 0.961287i \(-0.411140\pi\)
0.275550 + 0.961287i \(0.411140\pi\)
\(608\) −1.58891e7 −1.74317
\(609\) −2.05807e6 −0.224863
\(610\) 805320. 0.0876282
\(611\) 5.34978e6 0.579740
\(612\) 2.78627e6 0.300707
\(613\) 5.71699e6 0.614492 0.307246 0.951630i \(-0.400593\pi\)
0.307246 + 0.951630i \(0.400593\pi\)
\(614\) 1.56039e7 1.67037
\(615\) −4.33032e6 −0.461670
\(616\) −1.27795e6 −0.135694
\(617\) −6.02422e6 −0.637071 −0.318535 0.947911i \(-0.603191\pi\)
−0.318535 + 0.947911i \(0.603191\pi\)
\(618\) −1.55032e7 −1.63286
\(619\) 4.84414e6 0.508148 0.254074 0.967185i \(-0.418229\pi\)
0.254074 + 0.967185i \(0.418229\pi\)
\(620\) −5.68406e6 −0.593854
\(621\) 1.93869e6 0.201734
\(622\) −2.51352e6 −0.260499
\(623\) −6.22541e6 −0.642611
\(624\) −999307. −0.102740
\(625\) 390625. 0.0400000
\(626\) −1.02370e7 −1.04408
\(627\) −5.89950e6 −0.599303
\(628\) 1.79004e7 1.81119
\(629\) 1.50268e7 1.51440
\(630\) 579495. 0.0581699
\(631\) −1.16421e7 −1.16401 −0.582007 0.813184i \(-0.697732\pi\)
−0.582007 + 0.813184i \(0.697732\pi\)
\(632\) 3.10120e6 0.308843
\(633\) −552035. −0.0547592
\(634\) −2.51560e7 −2.48553
\(635\) −5.58857e6 −0.550005
\(636\) 1.47683e7 1.44773
\(637\) 613809. 0.0599356
\(638\) 5.10594e6 0.496620
\(639\) 2.20449e6 0.213578
\(640\) 6.26785e6 0.604879
\(641\) 1.63116e7 1.56802 0.784008 0.620750i \(-0.213172\pi\)
0.784008 + 0.620750i \(0.213172\pi\)
\(642\) −2.39521e7 −2.29354
\(643\) 6.53140e6 0.622987 0.311493 0.950248i \(-0.399171\pi\)
0.311493 + 0.950248i \(0.399171\pi\)
\(644\) −1.10744e6 −0.105222
\(645\) −8.25222e6 −0.781037
\(646\) −2.24508e7 −2.11665
\(647\) −1.13473e7 −1.06570 −0.532848 0.846211i \(-0.678878\pi\)
−0.532848 + 0.846211i \(0.678878\pi\)
\(648\) −6.01884e6 −0.563087
\(649\) −2.63380e6 −0.245455
\(650\) 1.42523e6 0.132312
\(651\) 3.22820e6 0.298543
\(652\) −2.87670e7 −2.65018
\(653\) 1.15947e7 1.06408 0.532041 0.846718i \(-0.321425\pi\)
0.532041 + 0.846718i \(0.321425\pi\)
\(654\) 2.62402e7 2.39896
\(655\) 5.65892e6 0.515383
\(656\) −3.56419e6 −0.323371
\(657\) −154969. −0.0140065
\(658\) 9.14649e6 0.823549
\(659\) 1.10765e7 0.993548 0.496774 0.867880i \(-0.334518\pi\)
0.496774 + 0.867880i \(0.334518\pi\)
\(660\) 3.07864e6 0.275105
\(661\) 1.98578e7 1.76778 0.883888 0.467699i \(-0.154917\pi\)
0.883888 + 0.467699i \(0.154917\pi\)
\(662\) 5.38454e6 0.477534
\(663\) −3.89187e6 −0.343854
\(664\) 5.91952e6 0.521034
\(665\) −2.79142e6 −0.244778
\(666\) 6.43579e6 0.562233
\(667\) 1.44796e6 0.126020
\(668\) −3.14832e6 −0.272985
\(669\) −5.34777e6 −0.461963
\(670\) 7.44861e6 0.641044
\(671\) 678348. 0.0581630
\(672\) −4.70916e6 −0.402272
\(673\) 9.87863e6 0.840735 0.420368 0.907354i \(-0.361901\pi\)
0.420368 + 0.907354i \(0.361901\pi\)
\(674\) 9.77602e6 0.828919
\(675\) −2.55011e6 −0.215427
\(676\) −1.45521e7 −1.22478
\(677\) 3.21637e6 0.269708 0.134854 0.990865i \(-0.456943\pi\)
0.134854 + 0.990865i \(0.456943\pi\)
\(678\) 1.88865e7 1.57789
\(679\) 650619. 0.0541567
\(680\) 3.83398e6 0.317963
\(681\) 1.03252e7 0.853158
\(682\) −8.00894e6 −0.659347
\(683\) −1.96620e7 −1.61278 −0.806390 0.591384i \(-0.798582\pi\)
−0.806390 + 0.591384i \(0.798582\pi\)
\(684\) −5.74822e6 −0.469779
\(685\) 1.46091e6 0.118959
\(686\) 1.04942e6 0.0851414
\(687\) 1.85602e7 1.50035
\(688\) −6.79222e6 −0.547067
\(689\) 5.75889e6 0.462158
\(690\) 1.46040e6 0.116775
\(691\) −2.34799e7 −1.87068 −0.935342 0.353743i \(-0.884909\pi\)
−0.935342 + 0.353743i \(0.884909\pi\)
\(692\) 1.27346e7 1.01092
\(693\) 488128. 0.0386100
\(694\) −2.26224e7 −1.78295
\(695\) 8.17241e6 0.641783
\(696\) −5.83170e6 −0.456322
\(697\) −1.38810e7 −1.08228
\(698\) −1.17706e7 −0.914452
\(699\) −3.96173e6 −0.306685
\(700\) 1.45670e6 0.112363
\(701\) 1.97577e7 1.51859 0.759297 0.650744i \(-0.225543\pi\)
0.759297 + 0.650744i \(0.225543\pi\)
\(702\) −9.30429e6 −0.712591
\(703\) −3.10012e7 −2.36586
\(704\) 9.97837e6 0.758801
\(705\) −7.21064e6 −0.546388
\(706\) 1.50189e7 1.13403
\(707\) −6.59346e6 −0.496095
\(708\) 9.19238e6 0.689199
\(709\) −9.90890e6 −0.740304 −0.370152 0.928971i \(-0.620694\pi\)
−0.370152 + 0.928971i \(0.620694\pi\)
\(710\) 9.26958e6 0.690104
\(711\) −1.18454e6 −0.0878772
\(712\) −1.76402e7 −1.30408
\(713\) −2.27120e6 −0.167314
\(714\) −6.65390e6 −0.488462
\(715\) 1.20052e6 0.0878219
\(716\) −2.02574e7 −1.47673
\(717\) 1.21944e7 0.885854
\(718\) −1.48528e7 −1.07522
\(719\) 2.70713e6 0.195293 0.0976465 0.995221i \(-0.468869\pi\)
0.0976465 + 0.995221i \(0.468869\pi\)
\(720\) −376019. −0.0270320
\(721\) −6.17897e6 −0.442668
\(722\) 2.42305e7 1.72989
\(723\) 3.12067e6 0.222025
\(724\) −6.80503e6 −0.482485
\(725\) −1.90461e6 −0.134574
\(726\) −1.54621e7 −1.08875
\(727\) −4.71655e6 −0.330970 −0.165485 0.986212i \(-0.552919\pi\)
−0.165485 + 0.986212i \(0.552919\pi\)
\(728\) 1.73927e6 0.121630
\(729\) 1.59644e7 1.11259
\(730\) −651624. −0.0452574
\(731\) −2.64528e7 −1.83096
\(732\) −2.36754e6 −0.163313
\(733\) −5.40920e6 −0.371855 −0.185927 0.982563i \(-0.559529\pi\)
−0.185927 + 0.982563i \(0.559529\pi\)
\(734\) −1.09227e7 −0.748321
\(735\) −827315. −0.0564875
\(736\) 3.31313e6 0.225447
\(737\) 6.27421e6 0.425491
\(738\) −5.94503e6 −0.401803
\(739\) −2.17165e6 −0.146278 −0.0731390 0.997322i \(-0.523302\pi\)
−0.0731390 + 0.997322i \(0.523302\pi\)
\(740\) 1.61779e7 1.08603
\(741\) 8.02914e6 0.537185
\(742\) 9.84592e6 0.656518
\(743\) −1.51671e7 −1.00793 −0.503966 0.863723i \(-0.668126\pi\)
−0.503966 + 0.863723i \(0.668126\pi\)
\(744\) 9.14733e6 0.605846
\(745\) 1.04332e6 0.0688692
\(746\) 2.80660e7 1.84644
\(747\) −2.26103e6 −0.148253
\(748\) 9.86869e6 0.644919
\(749\) −9.54636e6 −0.621775
\(750\) −1.92097e6 −0.124701
\(751\) −1.02102e7 −0.660595 −0.330298 0.943877i \(-0.607149\pi\)
−0.330298 + 0.943877i \(0.607149\pi\)
\(752\) −5.93492e6 −0.382710
\(753\) 2.11353e6 0.135838
\(754\) −6.94912e6 −0.445145
\(755\) −5.94870e6 −0.379800
\(756\) −9.50975e6 −0.605152
\(757\) 2.62320e7 1.66376 0.831881 0.554953i \(-0.187264\pi\)
0.831881 + 0.554953i \(0.187264\pi\)
\(758\) 2.90598e7 1.83705
\(759\) 1.23014e6 0.0775087
\(760\) −7.90970e6 −0.496737
\(761\) −1.38917e7 −0.869548 −0.434774 0.900540i \(-0.643172\pi\)
−0.434774 + 0.900540i \(0.643172\pi\)
\(762\) 2.74829e7 1.71465
\(763\) 1.04583e7 0.650355
\(764\) −2.14728e7 −1.33093
\(765\) −1.46443e6 −0.0904723
\(766\) 4.13213e7 2.54449
\(767\) 3.58457e6 0.220013
\(768\) −7.39395e6 −0.452349
\(769\) −2.21046e7 −1.34793 −0.673963 0.738765i \(-0.735409\pi\)
−0.673963 + 0.738765i \(0.735409\pi\)
\(770\) 2.05251e6 0.124755
\(771\) −1.35019e7 −0.818010
\(772\) 3.72741e7 2.25094
\(773\) −1.31186e7 −0.789658 −0.394829 0.918755i \(-0.629196\pi\)
−0.394829 + 0.918755i \(0.629196\pi\)
\(774\) −1.13294e7 −0.679756
\(775\) 2.98748e6 0.178670
\(776\) 1.84358e6 0.109902
\(777\) −9.18804e6 −0.545972
\(778\) 1.72368e7 1.02096
\(779\) 2.86372e7 1.69078
\(780\) −4.18999e6 −0.246591
\(781\) 7.80808e6 0.458054
\(782\) 4.68135e6 0.273750
\(783\) 1.24338e7 0.724771
\(784\) −680945. −0.0395660
\(785\) −9.40827e6 −0.544924
\(786\) −2.78288e7 −1.60671
\(787\) 1.18124e7 0.679830 0.339915 0.940456i \(-0.389602\pi\)
0.339915 + 0.940456i \(0.389602\pi\)
\(788\) 3.33584e7 1.91377
\(789\) −1.09821e7 −0.628050
\(790\) −4.98084e6 −0.283945
\(791\) 7.52742e6 0.427765
\(792\) 1.38315e6 0.0783529
\(793\) −923223. −0.0521343
\(794\) 2.31601e7 1.30373
\(795\) −7.76204e6 −0.435570
\(796\) 2.23401e7 1.24969
\(797\) 1.90871e7 1.06437 0.532187 0.846627i \(-0.321370\pi\)
0.532187 + 0.846627i \(0.321370\pi\)
\(798\) 1.37274e7 0.763097
\(799\) −2.31139e7 −1.28088
\(800\) −4.35801e6 −0.240749
\(801\) 6.73787e6 0.371057
\(802\) −6.27624e6 −0.344559
\(803\) −548884. −0.0300395
\(804\) −2.18980e7 −1.19471
\(805\) 582057. 0.0316575
\(806\) 1.09001e7 0.591005
\(807\) −67274.3 −0.00363635
\(808\) −1.86830e7 −1.00674
\(809\) −1.98887e7 −1.06840 −0.534201 0.845357i \(-0.679388\pi\)
−0.534201 + 0.845357i \(0.679388\pi\)
\(810\) 9.66685e6 0.517693
\(811\) 2.03939e7 1.08880 0.544400 0.838826i \(-0.316757\pi\)
0.544400 + 0.838826i \(0.316757\pi\)
\(812\) −7.10257e6 −0.378029
\(813\) 2.42726e7 1.28792
\(814\) 2.27949e7 1.20581
\(815\) 1.51196e7 0.797345
\(816\) 4.31755e6 0.226992
\(817\) 5.45735e7 2.86040
\(818\) −5.49796e7 −2.87288
\(819\) −664335. −0.0346081
\(820\) −1.49443e7 −0.776140
\(821\) 6.33190e6 0.327851 0.163925 0.986473i \(-0.447584\pi\)
0.163925 + 0.986473i \(0.447584\pi\)
\(822\) −7.18428e6 −0.370855
\(823\) −1.12411e6 −0.0578510 −0.0289255 0.999582i \(-0.509209\pi\)
−0.0289255 + 0.999582i \(0.509209\pi\)
\(824\) −1.75086e7 −0.898323
\(825\) −1.61810e6 −0.0827695
\(826\) 6.12851e6 0.312539
\(827\) −1.80423e7 −0.917334 −0.458667 0.888608i \(-0.651673\pi\)
−0.458667 + 0.888608i \(0.651673\pi\)
\(828\) 1.19860e6 0.0607572
\(829\) 9.66779e6 0.488586 0.244293 0.969701i \(-0.421444\pi\)
0.244293 + 0.969701i \(0.421444\pi\)
\(830\) −9.50733e6 −0.479031
\(831\) 899312. 0.0451760
\(832\) −1.35804e7 −0.680151
\(833\) −2.65198e6 −0.132421
\(834\) −4.01894e7 −2.00077
\(835\) 1.65472e6 0.0821315
\(836\) −2.03596e7 −1.00752
\(837\) −1.95031e7 −0.962257
\(838\) 3.24017e7 1.59389
\(839\) 1.65708e7 0.812713 0.406357 0.913715i \(-0.366799\pi\)
0.406357 + 0.913715i \(0.366799\pi\)
\(840\) −2.34426e6 −0.114632
\(841\) −1.12247e7 −0.547247
\(842\) −5.02280e7 −2.44155
\(843\) −1.78102e7 −0.863177
\(844\) −1.90512e6 −0.0920588
\(845\) 7.64844e6 0.368494
\(846\) −9.89939e6 −0.475535
\(847\) −6.16260e6 −0.295159
\(848\) −6.38877e6 −0.305090
\(849\) −9.40980e6 −0.448034
\(850\) −6.15774e6 −0.292331
\(851\) 6.46425e6 0.305981
\(852\) −2.72514e7 −1.28615
\(853\) 706241. 0.0332338 0.0166169 0.999862i \(-0.494710\pi\)
0.0166169 + 0.999862i \(0.494710\pi\)
\(854\) −1.57843e6 −0.0740594
\(855\) 3.02120e6 0.141340
\(856\) −2.70503e7 −1.26179
\(857\) −3.65006e7 −1.69765 −0.848824 0.528675i \(-0.822689\pi\)
−0.848824 + 0.528675i \(0.822689\pi\)
\(858\) −5.90377e6 −0.273786
\(859\) 1.47414e6 0.0681640 0.0340820 0.999419i \(-0.489149\pi\)
0.0340820 + 0.999419i \(0.489149\pi\)
\(860\) −2.84791e7 −1.31305
\(861\) 8.48742e6 0.390182
\(862\) −1.09047e7 −0.499859
\(863\) −106412. −0.00486365 −0.00243182 0.999997i \(-0.500774\pi\)
−0.00243182 + 0.999997i \(0.500774\pi\)
\(864\) 2.84504e7 1.29659
\(865\) −6.69315e6 −0.304152
\(866\) 5.25447e7 2.38086
\(867\) −2.75468e6 −0.124458
\(868\) 1.11408e7 0.501898
\(869\) −4.19553e6 −0.188468
\(870\) 9.36628e6 0.419536
\(871\) −8.53912e6 −0.381389
\(872\) 2.96344e7 1.31979
\(873\) −704176. −0.0312713
\(874\) −9.65789e6 −0.427665
\(875\) −765625. −0.0338062
\(876\) 1.91569e6 0.0843463
\(877\) −3.02178e7 −1.32667 −0.663336 0.748322i \(-0.730860\pi\)
−0.663336 + 0.748322i \(0.730860\pi\)
\(878\) 227.838 9.97449e−6 0
\(879\) 1.65089e7 0.720688
\(880\) −1.33182e6 −0.0579749
\(881\) −3.40925e7 −1.47985 −0.739927 0.672687i \(-0.765140\pi\)
−0.739927 + 0.672687i \(0.765140\pi\)
\(882\) −1.13581e6 −0.0491625
\(883\) −5.70380e6 −0.246186 −0.123093 0.992395i \(-0.539281\pi\)
−0.123093 + 0.992395i \(0.539281\pi\)
\(884\) −1.34312e7 −0.578073
\(885\) −4.83142e6 −0.207356
\(886\) 4.02674e7 1.72333
\(887\) 1.48033e7 0.631755 0.315877 0.948800i \(-0.397701\pi\)
0.315877 + 0.948800i \(0.397701\pi\)
\(888\) −2.60350e7 −1.10796
\(889\) 1.09536e7 0.464839
\(890\) 2.83318e7 1.19895
\(891\) 8.14271e6 0.343617
\(892\) −1.84556e7 −0.776633
\(893\) 4.76853e7 2.00104
\(894\) −5.13071e6 −0.214701
\(895\) 1.06471e7 0.444296
\(896\) −1.22850e7 −0.511216
\(897\) −1.67421e6 −0.0694749
\(898\) 2.79313e7 1.15585
\(899\) −1.45664e7 −0.601107
\(900\) −1.57661e6 −0.0648810
\(901\) −2.48815e7 −1.02109
\(902\) −2.10567e7 −0.861736
\(903\) 1.61744e7 0.660097
\(904\) 2.13295e7 0.868080
\(905\) 3.57665e6 0.145163
\(906\) 2.92539e7 1.18403
\(907\) −9.02396e6 −0.364233 −0.182116 0.983277i \(-0.558295\pi\)
−0.182116 + 0.983277i \(0.558295\pi\)
\(908\) 3.56330e7 1.43429
\(909\) 7.13621e6 0.286456
\(910\) −2.79344e6 −0.111824
\(911\) −2.63736e7 −1.05287 −0.526433 0.850217i \(-0.676471\pi\)
−0.526433 + 0.850217i \(0.676471\pi\)
\(912\) −8.90733e6 −0.354618
\(913\) −8.00834e6 −0.317955
\(914\) 8.26124e6 0.327100
\(915\) 1.24436e6 0.0491351
\(916\) 6.40528e7 2.52232
\(917\) −1.10915e7 −0.435578
\(918\) 4.01995e7 1.57440
\(919\) 1.48682e7 0.580723 0.290362 0.956917i \(-0.406224\pi\)
0.290362 + 0.956917i \(0.406224\pi\)
\(920\) 1.64930e6 0.0642437
\(921\) 2.41107e7 0.936614
\(922\) 1.59377e7 0.617444
\(923\) −1.06267e7 −0.410576
\(924\) −6.03414e6 −0.232507
\(925\) −8.50293e6 −0.326749
\(926\) −3.86580e7 −1.48153
\(927\) 6.68760e6 0.255606
\(928\) 2.12488e7 0.809962
\(929\) −7.00674e6 −0.266365 −0.133182 0.991092i \(-0.542520\pi\)
−0.133182 + 0.991092i \(0.542520\pi\)
\(930\) −1.46915e7 −0.557005
\(931\) 5.47119e6 0.206875
\(932\) −1.36722e7 −0.515585
\(933\) −3.88381e6 −0.146068
\(934\) 7.17356e7 2.69071
\(935\) −5.18687e6 −0.194033
\(936\) −1.88244e6 −0.0702316
\(937\) 3.25355e7 1.21062 0.605311 0.795989i \(-0.293049\pi\)
0.605311 + 0.795989i \(0.293049\pi\)
\(938\) −1.45993e7 −0.541781
\(939\) −1.58178e7 −0.585440
\(940\) −2.48845e7 −0.918564
\(941\) −3.72310e7 −1.37066 −0.685332 0.728231i \(-0.740343\pi\)
−0.685332 + 0.728231i \(0.740343\pi\)
\(942\) 4.62670e7 1.69881
\(943\) −5.97132e6 −0.218671
\(944\) −3.97663e6 −0.145240
\(945\) 4.99822e6 0.182069
\(946\) −4.01275e7 −1.45785
\(947\) 1.34378e7 0.486913 0.243457 0.969912i \(-0.421719\pi\)
0.243457 + 0.969912i \(0.421719\pi\)
\(948\) 1.46431e7 0.529189
\(949\) 747025. 0.0269258
\(950\) 1.27038e7 0.456692
\(951\) −3.88703e7 −1.39369
\(952\) −7.51459e6 −0.268728
\(953\) 4.30996e7 1.53724 0.768618 0.639708i \(-0.220945\pi\)
0.768618 + 0.639708i \(0.220945\pi\)
\(954\) −1.06564e7 −0.379088
\(955\) 1.12859e7 0.400431
\(956\) 4.20838e7 1.48926
\(957\) 7.88953e6 0.278465
\(958\) −5.13188e7 −1.80660
\(959\) −2.86337e6 −0.100538
\(960\) 1.83042e7 0.641022
\(961\) −5.78103e6 −0.201928
\(962\) −3.10236e7 −1.08082
\(963\) 1.03322e7 0.359027
\(964\) 1.07697e7 0.373259
\(965\) −1.95909e7 −0.677228
\(966\) −2.86238e6 −0.0986925
\(967\) −1.12466e7 −0.386772 −0.193386 0.981123i \(-0.561947\pi\)
−0.193386 + 0.981123i \(0.561947\pi\)
\(968\) −1.74622e7 −0.598977
\(969\) −3.46902e7 −1.18685
\(970\) −2.96097e6 −0.101043
\(971\) −4.43035e7 −1.50796 −0.753981 0.656897i \(-0.771869\pi\)
−0.753981 + 0.656897i \(0.771869\pi\)
\(972\) 1.87412e7 0.636257
\(973\) −1.60179e7 −0.542405
\(974\) −9.45084e6 −0.319207
\(975\) 2.20221e6 0.0741904
\(976\) 1.02420e6 0.0344160
\(977\) −2.11370e7 −0.708446 −0.354223 0.935161i \(-0.615255\pi\)
−0.354223 + 0.935161i \(0.615255\pi\)
\(978\) −7.43536e7 −2.48573
\(979\) 2.38649e7 0.795797
\(980\) −2.85513e6 −0.0949643
\(981\) −1.13192e7 −0.375529
\(982\) 2.33122e7 0.771446
\(983\) 4.40635e7 1.45444 0.727218 0.686406i \(-0.240813\pi\)
0.727218 + 0.686406i \(0.240813\pi\)
\(984\) 2.40497e7 0.791812
\(985\) −1.75328e7 −0.575786
\(986\) 3.00239e7 0.983502
\(987\) 1.41329e7 0.461782
\(988\) 2.77092e7 0.903092
\(989\) −1.13795e7 −0.369940
\(990\) −2.22147e6 −0.0720364
\(991\) −3.09729e7 −1.00184 −0.500920 0.865494i \(-0.667005\pi\)
−0.500920 + 0.865494i \(0.667005\pi\)
\(992\) −3.33299e7 −1.07536
\(993\) 8.32002e6 0.267764
\(994\) −1.81684e7 −0.583244
\(995\) −1.17417e7 −0.375987
\(996\) 2.79504e7 0.892770
\(997\) 5.65992e7 1.80332 0.901659 0.432448i \(-0.142350\pi\)
0.901659 + 0.432448i \(0.142350\pi\)
\(998\) −7.10678e7 −2.25864
\(999\) 5.55096e7 1.75976
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.6.a.c.1.3 3
3.2 odd 2 315.6.a.i.1.1 3
4.3 odd 2 560.6.a.q.1.2 3
5.2 odd 4 175.6.b.e.99.5 6
5.3 odd 4 175.6.b.e.99.2 6
5.4 even 2 175.6.a.e.1.1 3
7.6 odd 2 245.6.a.d.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.6.a.c.1.3 3 1.1 even 1 trivial
175.6.a.e.1.1 3 5.4 even 2
175.6.b.e.99.2 6 5.3 odd 4
175.6.b.e.99.5 6 5.2 odd 4
245.6.a.d.1.3 3 7.6 odd 2
315.6.a.i.1.1 3 3.2 odd 2
560.6.a.q.1.2 3 4.3 odd 2