Properties

Label 35.6.a.c.1.1
Level $35$
Weight $6$
Character 35.1
Self dual yes
Analytic conductor $5.613$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,6,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.61343369345\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.577880.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 98x - 232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.38673\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.3867 q^{2} +27.9421 q^{3} +75.8842 q^{4} -25.0000 q^{5} -290.227 q^{6} +49.0000 q^{7} -455.813 q^{8} +537.760 q^{9} +259.668 q^{10} -132.501 q^{11} +2120.36 q^{12} +802.665 q^{13} -508.950 q^{14} -698.552 q^{15} +2306.11 q^{16} +763.068 q^{17} -5585.57 q^{18} -61.2154 q^{19} -1897.10 q^{20} +1369.16 q^{21} +1376.25 q^{22} +3589.61 q^{23} -12736.4 q^{24} +625.000 q^{25} -8337.06 q^{26} +8236.22 q^{27} +3718.32 q^{28} -4593.21 q^{29} +7255.67 q^{30} -384.018 q^{31} -9366.97 q^{32} -3702.35 q^{33} -7925.78 q^{34} -1225.00 q^{35} +40807.5 q^{36} +5377.28 q^{37} +635.827 q^{38} +22428.1 q^{39} +11395.3 q^{40} -20530.3 q^{41} -14221.1 q^{42} -12175.3 q^{43} -10054.7 q^{44} -13444.0 q^{45} -37284.3 q^{46} -15232.4 q^{47} +64437.7 q^{48} +2401.00 q^{49} -6491.71 q^{50} +21321.7 q^{51} +60909.6 q^{52} +1369.77 q^{53} -85547.4 q^{54} +3312.52 q^{55} -22334.8 q^{56} -1710.48 q^{57} +47708.4 q^{58} +27738.1 q^{59} -53009.1 q^{60} -15708.6 q^{61} +3988.70 q^{62} +26350.3 q^{63} +23496.6 q^{64} -20066.6 q^{65} +38455.3 q^{66} -16813.0 q^{67} +57904.8 q^{68} +100301. q^{69} +12723.7 q^{70} +37925.9 q^{71} -245118. q^{72} -48894.9 q^{73} -55852.3 q^{74} +17463.8 q^{75} -4645.28 q^{76} -6492.54 q^{77} -232955. q^{78} -66582.2 q^{79} -57652.9 q^{80} +99461.4 q^{81} +213243. q^{82} -63358.0 q^{83} +103898. q^{84} -19076.7 q^{85} +126461. q^{86} -128344. q^{87} +60395.6 q^{88} -69175.3 q^{89} +139639. q^{90} +39330.6 q^{91} +272395. q^{92} -10730.3 q^{93} +158215. q^{94} +1530.38 q^{95} -261733. q^{96} -55697.0 q^{97} -24938.5 q^{98} -71253.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 26 q^{3} + 112 q^{4} - 75 q^{5} - 96 q^{6} + 147 q^{7} - 120 q^{8} + 489 q^{9} + 150 q^{10} - 194 q^{11} + 2956 q^{12} + 1892 q^{13} - 294 q^{14} - 650 q^{15} + 1496 q^{16} - 184 q^{17}+ \cdots - 60752 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −10.3867 −1.83613 −0.918066 0.396428i \(-0.870250\pi\)
−0.918066 + 0.396428i \(0.870250\pi\)
\(3\) 27.9421 1.79249 0.896243 0.443564i \(-0.146286\pi\)
0.896243 + 0.443564i \(0.146286\pi\)
\(4\) 75.8842 2.37138
\(5\) −25.0000 −0.447214
\(6\) −290.227 −3.29124
\(7\) 49.0000 0.377964
\(8\) −455.813 −2.51804
\(9\) 537.760 2.21301
\(10\) 259.668 0.821143
\(11\) −132.501 −0.330169 −0.165085 0.986279i \(-0.552790\pi\)
−0.165085 + 0.986279i \(0.552790\pi\)
\(12\) 2120.36 4.25067
\(13\) 802.665 1.31727 0.658637 0.752461i \(-0.271133\pi\)
0.658637 + 0.752461i \(0.271133\pi\)
\(14\) −508.950 −0.693993
\(15\) −698.552 −0.801624
\(16\) 2306.11 2.25207
\(17\) 763.068 0.640385 0.320192 0.947353i \(-0.396252\pi\)
0.320192 + 0.947353i \(0.396252\pi\)
\(18\) −5585.57 −4.06337
\(19\) −61.2154 −0.0389024 −0.0194512 0.999811i \(-0.506192\pi\)
−0.0194512 + 0.999811i \(0.506192\pi\)
\(20\) −1897.10 −1.06051
\(21\) 1369.16 0.677496
\(22\) 1376.25 0.606234
\(23\) 3589.61 1.41491 0.707454 0.706760i \(-0.249844\pi\)
0.707454 + 0.706760i \(0.249844\pi\)
\(24\) −12736.4 −4.51354
\(25\) 625.000 0.200000
\(26\) −8337.06 −2.41869
\(27\) 8236.22 2.17430
\(28\) 3718.32 0.896298
\(29\) −4593.21 −1.01419 −0.507097 0.861889i \(-0.669281\pi\)
−0.507097 + 0.861889i \(0.669281\pi\)
\(30\) 7255.67 1.47189
\(31\) −384.018 −0.0717708 −0.0358854 0.999356i \(-0.511425\pi\)
−0.0358854 + 0.999356i \(0.511425\pi\)
\(32\) −9366.97 −1.61705
\(33\) −3702.35 −0.591824
\(34\) −7925.78 −1.17583
\(35\) −1225.00 −0.169031
\(36\) 40807.5 5.24788
\(37\) 5377.28 0.645741 0.322870 0.946443i \(-0.395352\pi\)
0.322870 + 0.946443i \(0.395352\pi\)
\(38\) 635.827 0.0714299
\(39\) 22428.1 2.36119
\(40\) 11395.3 1.12610
\(41\) −20530.3 −1.90737 −0.953686 0.300804i \(-0.902745\pi\)
−0.953686 + 0.300804i \(0.902745\pi\)
\(42\) −14221.1 −1.24397
\(43\) −12175.3 −1.00417 −0.502086 0.864818i \(-0.667434\pi\)
−0.502086 + 0.864818i \(0.667434\pi\)
\(44\) −10054.7 −0.782957
\(45\) −13444.0 −0.989686
\(46\) −37284.3 −2.59796
\(47\) −15232.4 −1.00583 −0.502915 0.864336i \(-0.667739\pi\)
−0.502915 + 0.864336i \(0.667739\pi\)
\(48\) 64437.7 4.03680
\(49\) 2401.00 0.142857
\(50\) −6491.71 −0.367226
\(51\) 21321.7 1.14788
\(52\) 60909.6 3.12376
\(53\) 1369.77 0.0669821 0.0334911 0.999439i \(-0.489337\pi\)
0.0334911 + 0.999439i \(0.489337\pi\)
\(54\) −85547.4 −3.99229
\(55\) 3312.52 0.147656
\(56\) −22334.8 −0.951728
\(57\) −1710.48 −0.0697320
\(58\) 47708.4 1.86219
\(59\) 27738.1 1.03740 0.518700 0.854956i \(-0.326416\pi\)
0.518700 + 0.854956i \(0.326416\pi\)
\(60\) −53009.1 −1.90096
\(61\) −15708.6 −0.540523 −0.270261 0.962787i \(-0.587110\pi\)
−0.270261 + 0.962787i \(0.587110\pi\)
\(62\) 3988.70 0.131781
\(63\) 26350.3 0.836437
\(64\) 23496.6 0.717058
\(65\) −20066.6 −0.589103
\(66\) 38455.3 1.08667
\(67\) −16813.0 −0.457571 −0.228786 0.973477i \(-0.573475\pi\)
−0.228786 + 0.973477i \(0.573475\pi\)
\(68\) 57904.8 1.51860
\(69\) 100301. 2.53620
\(70\) 12723.7 0.310363
\(71\) 37925.9 0.892873 0.446437 0.894815i \(-0.352693\pi\)
0.446437 + 0.894815i \(0.352693\pi\)
\(72\) −245118. −5.57243
\(73\) −48894.9 −1.07388 −0.536940 0.843620i \(-0.680420\pi\)
−0.536940 + 0.843620i \(0.680420\pi\)
\(74\) −55852.3 −1.18566
\(75\) 17463.8 0.358497
\(76\) −4645.28 −0.0922524
\(77\) −6492.54 −0.124792
\(78\) −232955. −4.33546
\(79\) −66582.2 −1.20030 −0.600151 0.799887i \(-0.704893\pi\)
−0.600151 + 0.799887i \(0.704893\pi\)
\(80\) −57652.9 −1.00715
\(81\) 99461.4 1.68439
\(82\) 213243. 3.50219
\(83\) −63358.0 −1.00950 −0.504750 0.863266i \(-0.668415\pi\)
−0.504750 + 0.863266i \(0.668415\pi\)
\(84\) 103898. 1.60660
\(85\) −19076.7 −0.286389
\(86\) 126461. 1.84379
\(87\) −128344. −1.81793
\(88\) 60395.6 0.831378
\(89\) −69175.3 −0.925712 −0.462856 0.886434i \(-0.653175\pi\)
−0.462856 + 0.886434i \(0.653175\pi\)
\(90\) 139639. 1.81719
\(91\) 39330.6 0.497883
\(92\) 272395. 3.35528
\(93\) −10730.3 −0.128648
\(94\) 158215. 1.84684
\(95\) 1530.38 0.0173977
\(96\) −261733. −2.89855
\(97\) −55697.0 −0.601039 −0.300519 0.953776i \(-0.597160\pi\)
−0.300519 + 0.953776i \(0.597160\pi\)
\(98\) −24938.5 −0.262305
\(99\) −71253.7 −0.730667
\(100\) 47427.6 0.474276
\(101\) 29027.0 0.283139 0.141569 0.989928i \(-0.454785\pi\)
0.141569 + 0.989928i \(0.454785\pi\)
\(102\) −221463. −2.10766
\(103\) 86612.7 0.804430 0.402215 0.915545i \(-0.368240\pi\)
0.402215 + 0.915545i \(0.368240\pi\)
\(104\) −365865. −3.31694
\(105\) −34229.1 −0.302985
\(106\) −14227.5 −0.122988
\(107\) −1392.82 −0.0117608 −0.00588039 0.999983i \(-0.501872\pi\)
−0.00588039 + 0.999983i \(0.501872\pi\)
\(108\) 624999. 5.15608
\(109\) 162159. 1.30730 0.653651 0.756796i \(-0.273237\pi\)
0.653651 + 0.756796i \(0.273237\pi\)
\(110\) −34406.2 −0.271116
\(111\) 150252. 1.15748
\(112\) 113000. 0.851201
\(113\) 41748.6 0.307571 0.153786 0.988104i \(-0.450853\pi\)
0.153786 + 0.988104i \(0.450853\pi\)
\(114\) 17766.3 0.128037
\(115\) −89740.3 −0.632766
\(116\) −348552. −2.40504
\(117\) 431641. 2.91513
\(118\) −288108. −1.90480
\(119\) 37390.3 0.242043
\(120\) 318409. 2.01852
\(121\) −143495. −0.890988
\(122\) 163161. 0.992471
\(123\) −573659. −3.41894
\(124\) −29140.9 −0.170196
\(125\) −15625.0 −0.0894427
\(126\) −273693. −1.53581
\(127\) −49413.8 −0.271856 −0.135928 0.990719i \(-0.543402\pi\)
−0.135928 + 0.990719i \(0.543402\pi\)
\(128\) 55690.8 0.300440
\(129\) −340203. −1.79996
\(130\) 208427. 1.08167
\(131\) 63290.9 0.322228 0.161114 0.986936i \(-0.448491\pi\)
0.161114 + 0.986936i \(0.448491\pi\)
\(132\) −280950. −1.40344
\(133\) −2999.55 −0.0147037
\(134\) 174632. 0.840161
\(135\) −205905. −0.972374
\(136\) −347817. −1.61251
\(137\) 368631. 1.67799 0.838997 0.544137i \(-0.183143\pi\)
0.838997 + 0.544137i \(0.183143\pi\)
\(138\) −1.04180e6 −4.65680
\(139\) 100506. 0.441220 0.220610 0.975362i \(-0.429195\pi\)
0.220610 + 0.975362i \(0.429195\pi\)
\(140\) −92958.1 −0.400836
\(141\) −425626. −1.80294
\(142\) −393926. −1.63943
\(143\) −106354. −0.434923
\(144\) 1.24014e6 4.98383
\(145\) 114830. 0.453561
\(146\) 507858. 1.97179
\(147\) 67089.0 0.256069
\(148\) 408050. 1.53130
\(149\) 289797. 1.06937 0.534685 0.845052i \(-0.320430\pi\)
0.534685 + 0.845052i \(0.320430\pi\)
\(150\) −181392. −0.658248
\(151\) −475852. −1.69836 −0.849180 0.528104i \(-0.822903\pi\)
−0.849180 + 0.528104i \(0.822903\pi\)
\(152\) 27902.8 0.0979576
\(153\) 410348. 1.41718
\(154\) 67436.2 0.229135
\(155\) 9600.46 0.0320969
\(156\) 1.70194e6 5.59929
\(157\) −37131.5 −0.120225 −0.0601123 0.998192i \(-0.519146\pi\)
−0.0601123 + 0.998192i \(0.519146\pi\)
\(158\) 691571. 2.20391
\(159\) 38274.3 0.120065
\(160\) 234174. 0.723168
\(161\) 175891. 0.534785
\(162\) −1.03308e6 −3.09276
\(163\) −453030. −1.33554 −0.667771 0.744367i \(-0.732751\pi\)
−0.667771 + 0.744367i \(0.732751\pi\)
\(164\) −1.55792e6 −4.52311
\(165\) 92558.7 0.264672
\(166\) 658082. 1.85357
\(167\) 223362. 0.619752 0.309876 0.950777i \(-0.399712\pi\)
0.309876 + 0.950777i \(0.399712\pi\)
\(168\) −624082. −1.70596
\(169\) 272978. 0.735209
\(170\) 198145. 0.525848
\(171\) −32919.2 −0.0860912
\(172\) −923911. −2.38127
\(173\) 482127. 1.22475 0.612374 0.790568i \(-0.290215\pi\)
0.612374 + 0.790568i \(0.290215\pi\)
\(174\) 1.33307e6 3.33796
\(175\) 30625.0 0.0755929
\(176\) −305562. −0.743563
\(177\) 775060. 1.85953
\(178\) 718505. 1.69973
\(179\) −653347. −1.52409 −0.762046 0.647523i \(-0.775805\pi\)
−0.762046 + 0.647523i \(0.775805\pi\)
\(180\) −1.02019e6 −2.34692
\(181\) −179855. −0.408061 −0.204030 0.978965i \(-0.565404\pi\)
−0.204030 + 0.978965i \(0.565404\pi\)
\(182\) −408516. −0.914178
\(183\) −438932. −0.968879
\(184\) −1.63619e6 −3.56279
\(185\) −134432. −0.288784
\(186\) 111452. 0.236215
\(187\) −101107. −0.211435
\(188\) −1.15590e6 −2.38521
\(189\) 403575. 0.821806
\(190\) −15895.7 −0.0319444
\(191\) 516528. 1.02450 0.512249 0.858837i \(-0.328813\pi\)
0.512249 + 0.858837i \(0.328813\pi\)
\(192\) 656543. 1.28532
\(193\) 341920. 0.660740 0.330370 0.943851i \(-0.392826\pi\)
0.330370 + 0.943851i \(0.392826\pi\)
\(194\) 578510. 1.10359
\(195\) −560703. −1.05596
\(196\) 182198. 0.338769
\(197\) −805869. −1.47944 −0.739722 0.672912i \(-0.765043\pi\)
−0.739722 + 0.672912i \(0.765043\pi\)
\(198\) 740093. 1.34160
\(199\) 878271. 1.57216 0.786078 0.618127i \(-0.212108\pi\)
0.786078 + 0.618127i \(0.212108\pi\)
\(200\) −284883. −0.503607
\(201\) −469791. −0.820190
\(202\) −301496. −0.519880
\(203\) −225067. −0.383329
\(204\) 1.61798e6 2.72206
\(205\) 513257. 0.853003
\(206\) −899623. −1.47704
\(207\) 1.93035e6 3.13120
\(208\) 1.85104e6 2.96659
\(209\) 8111.08 0.0128444
\(210\) 355528. 0.556321
\(211\) −848810. −1.31251 −0.656257 0.754537i \(-0.727861\pi\)
−0.656257 + 0.754537i \(0.727861\pi\)
\(212\) 103944. 0.158840
\(213\) 1.05973e6 1.60046
\(214\) 14466.9 0.0215943
\(215\) 304382. 0.449079
\(216\) −3.75418e6 −5.47495
\(217\) −18816.9 −0.0271268
\(218\) −1.68431e6 −2.40038
\(219\) −1.36622e6 −1.92492
\(220\) 251368. 0.350149
\(221\) 612488. 0.843562
\(222\) −1.56063e6 −2.12529
\(223\) 700322. 0.943052 0.471526 0.881852i \(-0.343703\pi\)
0.471526 + 0.881852i \(0.343703\pi\)
\(224\) −458982. −0.611189
\(225\) 336100. 0.442601
\(226\) −433631. −0.564741
\(227\) 795250. 1.02433 0.512164 0.858888i \(-0.328844\pi\)
0.512164 + 0.858888i \(0.328844\pi\)
\(228\) −129799. −0.165361
\(229\) −1.18132e6 −1.48860 −0.744301 0.667844i \(-0.767217\pi\)
−0.744301 + 0.667844i \(0.767217\pi\)
\(230\) 932108. 1.16184
\(231\) −181415. −0.223688
\(232\) 2.09364e6 2.55378
\(233\) 89303.7 0.107765 0.0538827 0.998547i \(-0.482840\pi\)
0.0538827 + 0.998547i \(0.482840\pi\)
\(234\) −4.48334e6 −5.35257
\(235\) 380811. 0.449821
\(236\) 2.10488e6 2.46007
\(237\) −1.86045e6 −2.15152
\(238\) −388363. −0.444422
\(239\) 1.28432e6 1.45438 0.727191 0.686436i \(-0.240826\pi\)
0.727191 + 0.686436i \(0.240826\pi\)
\(240\) −1.61094e6 −1.80531
\(241\) 882390. 0.978629 0.489314 0.872107i \(-0.337247\pi\)
0.489314 + 0.872107i \(0.337247\pi\)
\(242\) 1.49044e6 1.63597
\(243\) 777759. 0.844946
\(244\) −1.19204e6 −1.28179
\(245\) −60025.0 −0.0638877
\(246\) 5.95844e6 6.27762
\(247\) −49135.4 −0.0512451
\(248\) 175041. 0.180721
\(249\) −1.77035e6 −1.80951
\(250\) 162293. 0.164229
\(251\) −489271. −0.490191 −0.245095 0.969499i \(-0.578819\pi\)
−0.245095 + 0.969499i \(0.578819\pi\)
\(252\) 1.99957e6 1.98351
\(253\) −475626. −0.467159
\(254\) 513248. 0.499163
\(255\) −533043. −0.513348
\(256\) −1.33033e6 −1.26871
\(257\) −968316. −0.914502 −0.457251 0.889338i \(-0.651166\pi\)
−0.457251 + 0.889338i \(0.651166\pi\)
\(258\) 3.53360e6 3.30497
\(259\) 263487. 0.244067
\(260\) −1.52274e6 −1.39699
\(261\) −2.47004e6 −2.24442
\(262\) −657386. −0.591653
\(263\) −2.06170e6 −1.83796 −0.918980 0.394303i \(-0.870986\pi\)
−0.918980 + 0.394303i \(0.870986\pi\)
\(264\) 1.68758e6 1.49023
\(265\) −34244.3 −0.0299553
\(266\) 31155.5 0.0269980
\(267\) −1.93290e6 −1.65933
\(268\) −1.27584e6 −1.08508
\(269\) 1.91422e6 1.61292 0.806458 0.591291i \(-0.201382\pi\)
0.806458 + 0.591291i \(0.201382\pi\)
\(270\) 2.13868e6 1.78541
\(271\) 648945. 0.536765 0.268383 0.963312i \(-0.413511\pi\)
0.268383 + 0.963312i \(0.413511\pi\)
\(272\) 1.75972e6 1.44219
\(273\) 1.09898e6 0.892447
\(274\) −3.82887e6 −3.08102
\(275\) −82813.0 −0.0660339
\(276\) 7.61128e6 6.01430
\(277\) 609318. 0.477139 0.238569 0.971125i \(-0.423322\pi\)
0.238569 + 0.971125i \(0.423322\pi\)
\(278\) −1.04393e6 −0.810138
\(279\) −206510. −0.158829
\(280\) 558371. 0.425626
\(281\) −1.99061e6 −1.50390 −0.751952 0.659217i \(-0.770888\pi\)
−0.751952 + 0.659217i \(0.770888\pi\)
\(282\) 4.42086e6 3.31043
\(283\) 127141. 0.0943666 0.0471833 0.998886i \(-0.484976\pi\)
0.0471833 + 0.998886i \(0.484976\pi\)
\(284\) 2.87797e6 2.11734
\(285\) 42762.1 0.0311851
\(286\) 1.10467e6 0.798576
\(287\) −1.00598e6 −0.720919
\(288\) −5.03719e6 −3.57855
\(289\) −837584. −0.589907
\(290\) −1.19271e6 −0.832799
\(291\) −1.55629e6 −1.07735
\(292\) −3.71035e6 −2.54658
\(293\) −20479.1 −0.0139361 −0.00696805 0.999976i \(-0.502218\pi\)
−0.00696805 + 0.999976i \(0.502218\pi\)
\(294\) −696835. −0.470177
\(295\) −693452. −0.463940
\(296\) −2.45103e6 −1.62600
\(297\) −1.09131e6 −0.717886
\(298\) −3.01004e6 −1.96350
\(299\) 2.88126e6 1.86382
\(300\) 1.32523e6 0.850133
\(301\) −596589. −0.379541
\(302\) 4.94255e6 3.11841
\(303\) 811076. 0.507522
\(304\) −141170. −0.0876107
\(305\) 392716. 0.241729
\(306\) −4.26217e6 −2.60212
\(307\) −1.08442e6 −0.656676 −0.328338 0.944560i \(-0.606489\pi\)
−0.328338 + 0.944560i \(0.606489\pi\)
\(308\) −492681. −0.295930
\(309\) 2.42014e6 1.44193
\(310\) −99717.4 −0.0589341
\(311\) −2.13660e6 −1.25263 −0.626314 0.779571i \(-0.715437\pi\)
−0.626314 + 0.779571i \(0.715437\pi\)
\(312\) −1.02230e7 −5.94557
\(313\) 1.79419e6 1.03516 0.517580 0.855635i \(-0.326833\pi\)
0.517580 + 0.855635i \(0.326833\pi\)
\(314\) 385675. 0.220748
\(315\) −658756. −0.374066
\(316\) −5.05254e6 −2.84637
\(317\) 607762. 0.339692 0.169846 0.985471i \(-0.445673\pi\)
0.169846 + 0.985471i \(0.445673\pi\)
\(318\) −397545. −0.220454
\(319\) 608604. 0.334856
\(320\) −587414. −0.320678
\(321\) −38918.3 −0.0210810
\(322\) −1.82693e6 −0.981935
\(323\) −46711.5 −0.0249125
\(324\) 7.54755e6 3.99432
\(325\) 501666. 0.263455
\(326\) 4.70550e6 2.45223
\(327\) 4.53107e6 2.34332
\(328\) 9.35798e6 4.80283
\(329\) −746390. −0.380168
\(330\) −961382. −0.485972
\(331\) −538396. −0.270104 −0.135052 0.990838i \(-0.543120\pi\)
−0.135052 + 0.990838i \(0.543120\pi\)
\(332\) −4.80787e6 −2.39391
\(333\) 2.89169e6 1.42903
\(334\) −2.32000e6 −1.13795
\(335\) 420326. 0.204632
\(336\) 3.15745e6 1.52577
\(337\) 1.72106e6 0.825510 0.412755 0.910842i \(-0.364567\pi\)
0.412755 + 0.910842i \(0.364567\pi\)
\(338\) −2.83535e6 −1.34994
\(339\) 1.16654e6 0.551317
\(340\) −1.44762e6 −0.679137
\(341\) 50882.7 0.0236965
\(342\) 341923. 0.158075
\(343\) 117649. 0.0539949
\(344\) 5.54965e6 2.52854
\(345\) −2.50753e6 −1.13422
\(346\) −5.00773e6 −2.24880
\(347\) 2.74378e6 1.22328 0.611640 0.791136i \(-0.290510\pi\)
0.611640 + 0.791136i \(0.290510\pi\)
\(348\) −9.73927e6 −4.31100
\(349\) 3.32781e6 1.46250 0.731249 0.682110i \(-0.238938\pi\)
0.731249 + 0.682110i \(0.238938\pi\)
\(350\) −318094. −0.138799
\(351\) 6.61092e6 2.86414
\(352\) 1.24113e6 0.533901
\(353\) 2.21885e6 0.947745 0.473872 0.880594i \(-0.342856\pi\)
0.473872 + 0.880594i \(0.342856\pi\)
\(354\) −8.05034e6 −3.41434
\(355\) −948147. −0.399305
\(356\) −5.24931e6 −2.19521
\(357\) 1.04476e6 0.433858
\(358\) 6.78614e6 2.79843
\(359\) −2.19557e6 −0.899109 −0.449554 0.893253i \(-0.648417\pi\)
−0.449554 + 0.893253i \(0.648417\pi\)
\(360\) 6.12796e6 2.49207
\(361\) −2.47235e6 −0.998487
\(362\) 1.86810e6 0.749254
\(363\) −4.00954e6 −1.59708
\(364\) 2.98457e6 1.18067
\(365\) 1.22237e6 0.480254
\(366\) 4.55907e6 1.77899
\(367\) 98918.7 0.0383366 0.0191683 0.999816i \(-0.493898\pi\)
0.0191683 + 0.999816i \(0.493898\pi\)
\(368\) 8.27806e6 3.18646
\(369\) −1.10404e7 −4.22102
\(370\) 1.39631e6 0.530245
\(371\) 67118.9 0.0253169
\(372\) −814258. −0.305074
\(373\) 2.39481e6 0.891251 0.445625 0.895220i \(-0.352981\pi\)
0.445625 + 0.895220i \(0.352981\pi\)
\(374\) 1.05017e6 0.388223
\(375\) −436595. −0.160325
\(376\) 6.94315e6 2.53272
\(377\) −3.68681e6 −1.33597
\(378\) −4.19182e6 −1.50894
\(379\) 2.74448e6 0.981436 0.490718 0.871318i \(-0.336734\pi\)
0.490718 + 0.871318i \(0.336734\pi\)
\(380\) 116132. 0.0412565
\(381\) −1.38072e6 −0.487298
\(382\) −5.36504e6 −1.88111
\(383\) −2.06158e6 −0.718130 −0.359065 0.933313i \(-0.616904\pi\)
−0.359065 + 0.933313i \(0.616904\pi\)
\(384\) 1.55612e6 0.538535
\(385\) 162313. 0.0558088
\(386\) −3.55143e6 −1.21321
\(387\) −6.54739e6 −2.22224
\(388\) −4.22652e6 −1.42529
\(389\) 2.64856e6 0.887433 0.443717 0.896167i \(-0.353660\pi\)
0.443717 + 0.896167i \(0.353660\pi\)
\(390\) 5.82388e6 1.93888
\(391\) 2.73912e6 0.906085
\(392\) −1.09441e6 −0.359719
\(393\) 1.76848e6 0.577589
\(394\) 8.37034e6 2.71645
\(395\) 1.66456e6 0.536791
\(396\) −5.40703e6 −1.73269
\(397\) −2.06588e6 −0.657853 −0.328926 0.944356i \(-0.606687\pi\)
−0.328926 + 0.944356i \(0.606687\pi\)
\(398\) −9.12237e6 −2.88669
\(399\) −83813.8 −0.0263562
\(400\) 1.44132e6 0.450413
\(401\) −1.84739e6 −0.573718 −0.286859 0.957973i \(-0.592611\pi\)
−0.286859 + 0.957973i \(0.592611\pi\)
\(402\) 4.87959e6 1.50598
\(403\) −308238. −0.0945418
\(404\) 2.20269e6 0.671430
\(405\) −2.48654e6 −0.753281
\(406\) 2.33771e6 0.703843
\(407\) −712493. −0.213204
\(408\) −9.71872e6 −2.89040
\(409\) 6.52308e6 1.92817 0.964084 0.265598i \(-0.0855695\pi\)
0.964084 + 0.265598i \(0.0855695\pi\)
\(410\) −5.33106e6 −1.56623
\(411\) 1.03003e7 3.00778
\(412\) 6.57253e6 1.90761
\(413\) 1.35917e6 0.392101
\(414\) −2.00500e7 −5.74929
\(415\) 1.58395e6 0.451462
\(416\) −7.51854e6 −2.13010
\(417\) 2.80835e6 0.790880
\(418\) −84247.6 −0.0235840
\(419\) −5.44720e6 −1.51579 −0.757894 0.652378i \(-0.773772\pi\)
−0.757894 + 0.652378i \(0.773772\pi\)
\(420\) −2.59744e6 −0.718494
\(421\) 1.64211e6 0.451541 0.225771 0.974180i \(-0.427510\pi\)
0.225771 + 0.974180i \(0.427510\pi\)
\(422\) 8.81636e6 2.40995
\(423\) −8.19140e6 −2.22591
\(424\) −624361. −0.168663
\(425\) 476918. 0.128077
\(426\) −1.10071e7 −2.93866
\(427\) −769723. −0.204298
\(428\) −105693. −0.0278893
\(429\) −2.97175e6 −0.779594
\(430\) −3.16154e6 −0.824569
\(431\) 421002. 0.109167 0.0545835 0.998509i \(-0.482617\pi\)
0.0545835 + 0.998509i \(0.482617\pi\)
\(432\) 1.89937e7 4.89665
\(433\) −265058. −0.0679393 −0.0339697 0.999423i \(-0.510815\pi\)
−0.0339697 + 0.999423i \(0.510815\pi\)
\(434\) 195446. 0.0498084
\(435\) 3.20860e6 0.813002
\(436\) 1.23053e7 3.10011
\(437\) −219739. −0.0550433
\(438\) 1.41906e7 3.53440
\(439\) −3.01126e6 −0.745738 −0.372869 0.927884i \(-0.621626\pi\)
−0.372869 + 0.927884i \(0.621626\pi\)
\(440\) −1.50989e6 −0.371804
\(441\) 1.29116e6 0.316144
\(442\) −6.36175e6 −1.54889
\(443\) −3.68381e6 −0.891841 −0.445921 0.895072i \(-0.647124\pi\)
−0.445921 + 0.895072i \(0.647124\pi\)
\(444\) 1.14018e7 2.74483
\(445\) 1.72938e6 0.413991
\(446\) −7.27405e6 −1.73157
\(447\) 8.09752e6 1.91683
\(448\) 1.15133e6 0.271022
\(449\) −5.63615e6 −1.31937 −0.659685 0.751542i \(-0.729310\pi\)
−0.659685 + 0.751542i \(0.729310\pi\)
\(450\) −3.49098e6 −0.812674
\(451\) 2.72028e6 0.629756
\(452\) 3.16806e6 0.729368
\(453\) −1.32963e7 −3.04428
\(454\) −8.26004e6 −1.88080
\(455\) −983265. −0.222660
\(456\) 779661. 0.175588
\(457\) 5.45504e6 1.22182 0.610910 0.791700i \(-0.290804\pi\)
0.610910 + 0.791700i \(0.290804\pi\)
\(458\) 1.22700e7 2.73327
\(459\) 6.28480e6 1.39239
\(460\) −6.80987e6 −1.50053
\(461\) 361201. 0.0791583 0.0395792 0.999216i \(-0.487398\pi\)
0.0395792 + 0.999216i \(0.487398\pi\)
\(462\) 1.88431e6 0.410721
\(463\) −4.05569e6 −0.879251 −0.439625 0.898181i \(-0.644889\pi\)
−0.439625 + 0.898181i \(0.644889\pi\)
\(464\) −1.05925e7 −2.28403
\(465\) 268257. 0.0575332
\(466\) −927574. −0.197872
\(467\) −1.12204e6 −0.238077 −0.119038 0.992890i \(-0.537981\pi\)
−0.119038 + 0.992890i \(0.537981\pi\)
\(468\) 3.27548e7 6.91289
\(469\) −823838. −0.172946
\(470\) −3.95538e6 −0.825931
\(471\) −1.03753e6 −0.215501
\(472\) −1.26434e7 −2.61221
\(473\) 1.61323e6 0.331547
\(474\) 1.93240e7 3.95048
\(475\) −38259.6 −0.00778048
\(476\) 2.83734e6 0.573975
\(477\) 736610. 0.148232
\(478\) −1.33399e7 −2.67044
\(479\) −4.14410e6 −0.825262 −0.412631 0.910898i \(-0.635390\pi\)
−0.412631 + 0.910898i \(0.635390\pi\)
\(480\) 6.54332e6 1.29627
\(481\) 4.31615e6 0.850617
\(482\) −9.16515e6 −1.79689
\(483\) 4.91476e6 0.958594
\(484\) −1.08890e7 −2.11287
\(485\) 1.39242e6 0.268793
\(486\) −8.07837e6 −1.55143
\(487\) −6.17446e6 −1.17971 −0.589857 0.807508i \(-0.700816\pi\)
−0.589857 + 0.807508i \(0.700816\pi\)
\(488\) 7.16020e6 1.36106
\(489\) −1.26586e7 −2.39394
\(490\) 623464. 0.117306
\(491\) −1.11624e6 −0.208956 −0.104478 0.994527i \(-0.533317\pi\)
−0.104478 + 0.994527i \(0.533317\pi\)
\(492\) −4.35317e7 −8.10760
\(493\) −3.50493e6 −0.649475
\(494\) 510356. 0.0940927
\(495\) 1.78134e6 0.326764
\(496\) −885590. −0.161633
\(497\) 1.85837e6 0.337474
\(498\) 1.83882e7 3.32251
\(499\) 9.53803e6 1.71478 0.857388 0.514671i \(-0.172086\pi\)
0.857388 + 0.514671i \(0.172086\pi\)
\(500\) −1.18569e6 −0.212103
\(501\) 6.24120e6 1.11090
\(502\) 5.08193e6 0.900055
\(503\) 3.62037e6 0.638018 0.319009 0.947752i \(-0.396650\pi\)
0.319009 + 0.947752i \(0.396650\pi\)
\(504\) −1.20108e7 −2.10618
\(505\) −725676. −0.126623
\(506\) 4.94020e6 0.857765
\(507\) 7.62758e6 1.31785
\(508\) −3.74973e6 −0.644674
\(509\) 2.36607e6 0.404792 0.202396 0.979304i \(-0.435127\pi\)
0.202396 + 0.979304i \(0.435127\pi\)
\(510\) 5.53657e6 0.942575
\(511\) −2.39585e6 −0.405889
\(512\) 1.20357e7 2.02907
\(513\) −504183. −0.0845853
\(514\) 1.00576e7 1.67915
\(515\) −2.16532e6 −0.359752
\(516\) −2.58160e7 −4.26840
\(517\) 2.01831e6 0.332094
\(518\) −2.73676e6 −0.448139
\(519\) 1.34716e7 2.19534
\(520\) 9.14663e6 1.48338
\(521\) −120692. −0.0194798 −0.00973992 0.999953i \(-0.503100\pi\)
−0.00973992 + 0.999953i \(0.503100\pi\)
\(522\) 2.56557e7 4.12105
\(523\) 1.08230e7 1.73018 0.865091 0.501615i \(-0.167261\pi\)
0.865091 + 0.501615i \(0.167261\pi\)
\(524\) 4.80278e6 0.764125
\(525\) 855726. 0.135499
\(526\) 2.14143e7 3.37474
\(527\) −293032. −0.0459609
\(528\) −8.53804e6 −1.33283
\(529\) 6.44897e6 1.00196
\(530\) 355687. 0.0550019
\(531\) 1.49164e7 2.29577
\(532\) −227619. −0.0348681
\(533\) −1.64789e7 −2.51253
\(534\) 2.00765e7 3.04674
\(535\) 34820.5 0.00525958
\(536\) 7.66360e6 1.15218
\(537\) −1.82559e7 −2.73191
\(538\) −1.98825e7 −2.96153
\(539\) −318134. −0.0471670
\(540\) −1.56250e7 −2.30587
\(541\) −2.08816e6 −0.306740 −0.153370 0.988169i \(-0.549013\pi\)
−0.153370 + 0.988169i \(0.549013\pi\)
\(542\) −6.74041e6 −0.985572
\(543\) −5.02551e6 −0.731443
\(544\) −7.14764e6 −1.03554
\(545\) −4.05398e6 −0.584643
\(546\) −1.14148e7 −1.63865
\(547\) −4.45529e6 −0.636660 −0.318330 0.947980i \(-0.603122\pi\)
−0.318330 + 0.947980i \(0.603122\pi\)
\(548\) 2.79732e7 3.97916
\(549\) −8.44748e6 −1.19618
\(550\) 860156. 0.121247
\(551\) 281175. 0.0394546
\(552\) −4.57186e7 −6.38624
\(553\) −3.26253e6 −0.453671
\(554\) −6.32882e6 −0.876090
\(555\) −3.75631e6 −0.517641
\(556\) 7.62682e6 1.04630
\(557\) −1.36327e7 −1.86185 −0.930924 0.365214i \(-0.880996\pi\)
−0.930924 + 0.365214i \(0.880996\pi\)
\(558\) 2.14496e6 0.291631
\(559\) −9.77267e6 −1.32277
\(560\) −2.82499e6 −0.380669
\(561\) −2.82514e6 −0.378995
\(562\) 2.06759e7 2.76137
\(563\) 6.74502e6 0.896835 0.448417 0.893824i \(-0.351988\pi\)
0.448417 + 0.893824i \(0.351988\pi\)
\(564\) −3.22983e7 −4.27545
\(565\) −1.04371e6 −0.137550
\(566\) −1.32058e6 −0.173269
\(567\) 4.87361e6 0.636639
\(568\) −1.72871e7 −2.24829
\(569\) −1.02524e7 −1.32753 −0.663763 0.747943i \(-0.731042\pi\)
−0.663763 + 0.747943i \(0.731042\pi\)
\(570\) −444159. −0.0572599
\(571\) −1.29295e7 −1.65955 −0.829775 0.558098i \(-0.811531\pi\)
−0.829775 + 0.558098i \(0.811531\pi\)
\(572\) −8.07057e6 −1.03137
\(573\) 1.44329e7 1.83640
\(574\) 1.04489e7 1.32370
\(575\) 2.24351e6 0.282981
\(576\) 1.26355e7 1.58685
\(577\) 5.52053e6 0.690305 0.345153 0.938547i \(-0.387827\pi\)
0.345153 + 0.938547i \(0.387827\pi\)
\(578\) 8.69976e6 1.08315
\(579\) 9.55395e6 1.18437
\(580\) 8.71379e6 1.07557
\(581\) −3.10454e6 −0.381555
\(582\) 1.61648e7 1.97816
\(583\) −181496. −0.0221154
\(584\) 2.22869e7 2.70407
\(585\) −1.07910e7 −1.30369
\(586\) 212711. 0.0255885
\(587\) 5.89116e6 0.705677 0.352838 0.935684i \(-0.385217\pi\)
0.352838 + 0.935684i \(0.385217\pi\)
\(588\) 5.09099e6 0.607238
\(589\) 23507.8 0.00279206
\(590\) 7.20270e6 0.851855
\(591\) −2.25176e7 −2.65188
\(592\) 1.24006e7 1.45425
\(593\) 1.25597e7 1.46671 0.733354 0.679847i \(-0.237954\pi\)
0.733354 + 0.679847i \(0.237954\pi\)
\(594\) 1.13351e7 1.31813
\(595\) −934759. −0.108245
\(596\) 2.19910e7 2.53588
\(597\) 2.45407e7 2.81807
\(598\) −2.99268e7 −3.42222
\(599\) −9.59347e6 −1.09247 −0.546234 0.837633i \(-0.683939\pi\)
−0.546234 + 0.837633i \(0.683939\pi\)
\(600\) −7.96023e6 −0.902709
\(601\) −495264. −0.0559307 −0.0279654 0.999609i \(-0.508903\pi\)
−0.0279654 + 0.999609i \(0.508903\pi\)
\(602\) 6.19661e6 0.696888
\(603\) −9.04138e6 −1.01261
\(604\) −3.61096e7 −4.02746
\(605\) 3.58736e6 0.398462
\(606\) −8.42443e6 −0.931877
\(607\) −1.45272e7 −1.60033 −0.800165 0.599780i \(-0.795255\pi\)
−0.800165 + 0.599780i \(0.795255\pi\)
\(608\) 573403. 0.0629072
\(609\) −6.28885e6 −0.687112
\(610\) −4.07904e6 −0.443847
\(611\) −1.22265e7 −1.32495
\(612\) 3.11389e7 3.36066
\(613\) 1.11108e7 1.19425 0.597126 0.802148i \(-0.296309\pi\)
0.597126 + 0.802148i \(0.296309\pi\)
\(614\) 1.12636e7 1.20574
\(615\) 1.43415e7 1.52900
\(616\) 2.95938e6 0.314231
\(617\) −325507. −0.0344229 −0.0172115 0.999852i \(-0.505479\pi\)
−0.0172115 + 0.999852i \(0.505479\pi\)
\(618\) −2.51373e7 −2.64757
\(619\) 1.92017e6 0.201425 0.100713 0.994916i \(-0.467888\pi\)
0.100713 + 0.994916i \(0.467888\pi\)
\(620\) 728523. 0.0761139
\(621\) 2.95648e7 3.07643
\(622\) 2.21923e7 2.29999
\(623\) −3.38959e6 −0.349886
\(624\) 5.17219e7 5.31756
\(625\) 390625. 0.0400000
\(626\) −1.86358e7 −1.90069
\(627\) 226641. 0.0230234
\(628\) −2.81769e6 −0.285098
\(629\) 4.10323e6 0.413523
\(630\) 6.84233e6 0.686835
\(631\) −7.23818e6 −0.723696 −0.361848 0.932237i \(-0.617854\pi\)
−0.361848 + 0.932237i \(0.617854\pi\)
\(632\) 3.03490e7 3.02240
\(633\) −2.37175e7 −2.35266
\(634\) −6.31266e6 −0.623720
\(635\) 1.23534e6 0.121578
\(636\) 2.90442e6 0.284719
\(637\) 1.92720e6 0.188182
\(638\) −6.32140e6 −0.614839
\(639\) 2.03950e7 1.97593
\(640\) −1.39227e6 −0.134361
\(641\) 7.66338e6 0.736674 0.368337 0.929692i \(-0.379927\pi\)
0.368337 + 0.929692i \(0.379927\pi\)
\(642\) 404234. 0.0387076
\(643\) 3.42013e6 0.326223 0.163112 0.986608i \(-0.447847\pi\)
0.163112 + 0.986608i \(0.447847\pi\)
\(644\) 1.33473e7 1.26818
\(645\) 8.50507e6 0.804968
\(646\) 485180. 0.0457426
\(647\) −2.21315e6 −0.207850 −0.103925 0.994585i \(-0.533140\pi\)
−0.103925 + 0.994585i \(0.533140\pi\)
\(648\) −4.53358e7 −4.24135
\(649\) −3.67532e6 −0.342518
\(650\) −5.21067e6 −0.483738
\(651\) −525784. −0.0486244
\(652\) −3.43778e7 −3.16708
\(653\) 1.68516e7 1.54653 0.773264 0.634084i \(-0.218623\pi\)
0.773264 + 0.634084i \(0.218623\pi\)
\(654\) −4.70630e7 −4.30264
\(655\) −1.58227e6 −0.144105
\(656\) −4.73452e7 −4.29553
\(657\) −2.62937e7 −2.37650
\(658\) 7.75255e6 0.698039
\(659\) −4.37802e6 −0.392703 −0.196351 0.980534i \(-0.562909\pi\)
−0.196351 + 0.980534i \(0.562909\pi\)
\(660\) 7.02374e6 0.627637
\(661\) 1.91655e7 1.70614 0.853072 0.521793i \(-0.174737\pi\)
0.853072 + 0.521793i \(0.174737\pi\)
\(662\) 5.59217e6 0.495947
\(663\) 1.71142e7 1.51207
\(664\) 2.88794e7 2.54196
\(665\) 74988.8 0.00657570
\(666\) −3.00352e7 −2.62388
\(667\) −1.64878e7 −1.43499
\(668\) 1.69496e7 1.46967
\(669\) 1.95685e7 1.69041
\(670\) −4.36581e6 −0.375732
\(671\) 2.08141e6 0.178464
\(672\) −1.28249e7 −1.09555
\(673\) 1.32590e7 1.12842 0.564212 0.825630i \(-0.309180\pi\)
0.564212 + 0.825630i \(0.309180\pi\)
\(674\) −1.78762e7 −1.51575
\(675\) 5.14764e6 0.434859
\(676\) 2.07147e7 1.74346
\(677\) 2.12311e6 0.178033 0.0890166 0.996030i \(-0.471628\pi\)
0.0890166 + 0.996030i \(0.471628\pi\)
\(678\) −1.21166e7 −1.01229
\(679\) −2.72915e6 −0.227171
\(680\) 8.69541e6 0.721137
\(681\) 2.22209e7 1.83609
\(682\) −528505. −0.0435099
\(683\) −3.82921e6 −0.314092 −0.157046 0.987591i \(-0.550197\pi\)
−0.157046 + 0.987591i \(0.550197\pi\)
\(684\) −2.49805e6 −0.204155
\(685\) −9.21577e6 −0.750421
\(686\) −1.22199e6 −0.0991418
\(687\) −3.30085e7 −2.66830
\(688\) −2.80776e7 −2.26146
\(689\) 1.09947e6 0.0882338
\(690\) 2.60451e7 2.08258
\(691\) −7.49135e6 −0.596850 −0.298425 0.954433i \(-0.596461\pi\)
−0.298425 + 0.954433i \(0.596461\pi\)
\(692\) 3.65858e7 2.90434
\(693\) −3.49143e6 −0.276166
\(694\) −2.84989e7 −2.24611
\(695\) −2.51265e6 −0.197320
\(696\) 5.85008e7 4.57761
\(697\) −1.56660e7 −1.22145
\(698\) −3.45651e7 −2.68534
\(699\) 2.49533e6 0.193168
\(700\) 2.32395e6 0.179260
\(701\) 1.94223e7 1.49281 0.746405 0.665492i \(-0.231778\pi\)
0.746405 + 0.665492i \(0.231778\pi\)
\(702\) −6.86659e7 −5.25894
\(703\) −329172. −0.0251209
\(704\) −3.11331e6 −0.236751
\(705\) 1.06407e7 0.806298
\(706\) −2.30466e7 −1.74018
\(707\) 1.42232e6 0.107016
\(708\) 5.88148e7 4.40964
\(709\) −8.21902e6 −0.614051 −0.307025 0.951701i \(-0.599334\pi\)
−0.307025 + 0.951701i \(0.599334\pi\)
\(710\) 9.84815e6 0.733177
\(711\) −3.58053e7 −2.65627
\(712\) 3.15310e7 2.33097
\(713\) −1.37848e6 −0.101549
\(714\) −1.08517e7 −0.796621
\(715\) 2.65884e6 0.194504
\(716\) −4.95787e7 −3.61420
\(717\) 3.58866e7 2.60696
\(718\) 2.28048e7 1.65088
\(719\) −7.59175e6 −0.547671 −0.273835 0.961777i \(-0.588292\pi\)
−0.273835 + 0.961777i \(0.588292\pi\)
\(720\) −3.10034e7 −2.22884
\(721\) 4.24402e6 0.304046
\(722\) 2.56797e7 1.83335
\(723\) 2.46558e7 1.75418
\(724\) −1.36481e7 −0.967668
\(725\) −2.87075e6 −0.202839
\(726\) 4.16460e7 2.93246
\(727\) 1.31356e7 0.921748 0.460874 0.887465i \(-0.347536\pi\)
0.460874 + 0.887465i \(0.347536\pi\)
\(728\) −1.79274e7 −1.25369
\(729\) −2.43693e6 −0.169834
\(730\) −1.26964e7 −0.881810
\(731\) −9.29057e6 −0.643056
\(732\) −3.33080e7 −2.29758
\(733\) 6.89469e6 0.473974 0.236987 0.971513i \(-0.423840\pi\)
0.236987 + 0.971513i \(0.423840\pi\)
\(734\) −1.02744e6 −0.0703910
\(735\) −1.67722e6 −0.114518
\(736\) −3.36238e7 −2.28798
\(737\) 2.22774e6 0.151076
\(738\) 1.14673e8 7.75036
\(739\) 2.67404e7 1.80118 0.900590 0.434670i \(-0.143135\pi\)
0.900590 + 0.434670i \(0.143135\pi\)
\(740\) −1.02013e7 −0.684817
\(741\) −1.37295e6 −0.0918561
\(742\) −697146. −0.0464851
\(743\) −5.90356e6 −0.392321 −0.196161 0.980572i \(-0.562847\pi\)
−0.196161 + 0.980572i \(0.562847\pi\)
\(744\) 4.89100e6 0.323941
\(745\) −7.24492e6 −0.478236
\(746\) −2.48743e7 −1.63645
\(747\) −3.40714e7 −2.23403
\(748\) −7.67243e6 −0.501394
\(749\) −68248.3 −0.00444516
\(750\) 4.53480e6 0.294378
\(751\) 1.95022e7 1.26178 0.630892 0.775871i \(-0.282689\pi\)
0.630892 + 0.775871i \(0.282689\pi\)
\(752\) −3.51278e7 −2.26520
\(753\) −1.36713e7 −0.878660
\(754\) 3.82939e7 2.45302
\(755\) 1.18963e7 0.759529
\(756\) 3.06249e7 1.94882
\(757\) −8.03409e6 −0.509562 −0.254781 0.966999i \(-0.582003\pi\)
−0.254781 + 0.966999i \(0.582003\pi\)
\(758\) −2.85062e7 −1.80205
\(759\) −1.32900e7 −0.837376
\(760\) −697569. −0.0438080
\(761\) −3.55632e6 −0.222607 −0.111304 0.993786i \(-0.535503\pi\)
−0.111304 + 0.993786i \(0.535503\pi\)
\(762\) 1.43412e7 0.894743
\(763\) 7.94581e6 0.494113
\(764\) 3.91963e7 2.42947
\(765\) −1.02587e7 −0.633780
\(766\) 2.14131e7 1.31858
\(767\) 2.22644e7 1.36654
\(768\) −3.71723e7 −2.27414
\(769\) 2.65789e7 1.62077 0.810384 0.585899i \(-0.199258\pi\)
0.810384 + 0.585899i \(0.199258\pi\)
\(770\) −1.68591e6 −0.102472
\(771\) −2.70568e7 −1.63923
\(772\) 2.59463e7 1.56687
\(773\) 3.14386e7 1.89241 0.946204 0.323571i \(-0.104883\pi\)
0.946204 + 0.323571i \(0.104883\pi\)
\(774\) 6.80059e7 4.08032
\(775\) −240011. −0.0143542
\(776\) 2.53874e7 1.51344
\(777\) 7.36237e6 0.437487
\(778\) −2.75099e7 −1.62944
\(779\) 1.25677e6 0.0742013
\(780\) −4.25485e7 −2.50408
\(781\) −5.02521e6 −0.294799
\(782\) −2.84505e7 −1.66369
\(783\) −3.78307e7 −2.20516
\(784\) 5.53698e6 0.321724
\(785\) 928287. 0.0537660
\(786\) −1.83687e7 −1.06053
\(787\) −1.42418e7 −0.819647 −0.409823 0.912165i \(-0.634410\pi\)
−0.409823 + 0.912165i \(0.634410\pi\)
\(788\) −6.11527e7 −3.50833
\(789\) −5.76082e7 −3.29452
\(790\) −1.72893e7 −0.985620
\(791\) 2.04568e6 0.116251
\(792\) 3.24784e7 1.83984
\(793\) −1.26088e7 −0.712016
\(794\) 2.14577e7 1.20790
\(795\) −956858. −0.0536945
\(796\) 6.66469e7 3.72818
\(797\) 3.25117e7 1.81298 0.906492 0.422223i \(-0.138750\pi\)
0.906492 + 0.422223i \(0.138750\pi\)
\(798\) 870551. 0.0483935
\(799\) −1.16234e7 −0.644119
\(800\) −5.85436e6 −0.323411
\(801\) −3.71997e7 −2.04861
\(802\) 1.91884e7 1.05342
\(803\) 6.47861e6 0.354562
\(804\) −3.56497e7 −1.94498
\(805\) −4.39727e6 −0.239163
\(806\) 3.20159e6 0.173591
\(807\) 5.34874e7 2.89113
\(808\) −1.32309e7 −0.712953
\(809\) 8.75841e6 0.470494 0.235247 0.971936i \(-0.424410\pi\)
0.235247 + 0.971936i \(0.424410\pi\)
\(810\) 2.58270e7 1.38312
\(811\) −2.52537e7 −1.34826 −0.674130 0.738613i \(-0.735481\pi\)
−0.674130 + 0.738613i \(0.735481\pi\)
\(812\) −1.70790e7 −0.909020
\(813\) 1.81329e7 0.962144
\(814\) 7.40048e6 0.391470
\(815\) 1.13257e7 0.597273
\(816\) 4.91703e7 2.58510
\(817\) 745314. 0.0390647
\(818\) −6.77535e7 −3.54037
\(819\) 2.11504e7 1.10182
\(820\) 3.89481e7 2.02279
\(821\) −2.60982e7 −1.35130 −0.675651 0.737221i \(-0.736138\pi\)
−0.675651 + 0.737221i \(0.736138\pi\)
\(822\) −1.06987e8 −5.52268
\(823\) 1.43570e7 0.738863 0.369432 0.929258i \(-0.379552\pi\)
0.369432 + 0.929258i \(0.379552\pi\)
\(824\) −3.94792e7 −2.02558
\(825\) −2.31397e6 −0.118365
\(826\) −1.41173e7 −0.719949
\(827\) −1.34784e7 −0.685290 −0.342645 0.939465i \(-0.611323\pi\)
−0.342645 + 0.939465i \(0.611323\pi\)
\(828\) 1.46483e8 7.42526
\(829\) −1.14245e7 −0.577364 −0.288682 0.957425i \(-0.593217\pi\)
−0.288682 + 0.957425i \(0.593217\pi\)
\(830\) −1.64521e7 −0.828944
\(831\) 1.70256e7 0.855264
\(832\) 1.88599e7 0.944561
\(833\) 1.83213e6 0.0914836
\(834\) −2.91696e7 −1.45216
\(835\) −5.58405e6 −0.277162
\(836\) 615503. 0.0304589
\(837\) −3.16286e6 −0.156051
\(838\) 5.65786e7 2.78319
\(839\) −1.51205e7 −0.741585 −0.370793 0.928716i \(-0.620914\pi\)
−0.370793 + 0.928716i \(0.620914\pi\)
\(840\) 1.56021e7 0.762928
\(841\) 586407. 0.0285897
\(842\) −1.70562e7 −0.829089
\(843\) −5.56218e7 −2.69573
\(844\) −6.44112e7 −3.11247
\(845\) −6.82445e6 −0.328796
\(846\) 8.50819e7 4.08706
\(847\) −7.03123e6 −0.336762
\(848\) 3.15885e6 0.150848
\(849\) 3.55257e6 0.169151
\(850\) −4.95362e6 −0.235166
\(851\) 1.93023e7 0.913663
\(852\) 8.04166e7 3.79531
\(853\) 2.37769e7 1.11888 0.559438 0.828872i \(-0.311017\pi\)
0.559438 + 0.828872i \(0.311017\pi\)
\(854\) 7.99491e6 0.375119
\(855\) 822980. 0.0385012
\(856\) 634866. 0.0296141
\(857\) 5.58994e6 0.259989 0.129995 0.991515i \(-0.458504\pi\)
0.129995 + 0.991515i \(0.458504\pi\)
\(858\) 3.08667e7 1.43144
\(859\) −6.57947e6 −0.304234 −0.152117 0.988362i \(-0.548609\pi\)
−0.152117 + 0.988362i \(0.548609\pi\)
\(860\) 2.30978e7 1.06494
\(861\) −2.81093e7 −1.29224
\(862\) −4.37284e6 −0.200445
\(863\) 221099. 0.0101055 0.00505277 0.999987i \(-0.498392\pi\)
0.00505277 + 0.999987i \(0.498392\pi\)
\(864\) −7.71484e7 −3.51595
\(865\) −1.20532e7 −0.547724
\(866\) 2.75309e6 0.124746
\(867\) −2.34038e7 −1.05740
\(868\) −1.42791e6 −0.0643280
\(869\) 8.82219e6 0.396303
\(870\) −3.33268e7 −1.49278
\(871\) −1.34952e7 −0.602746
\(872\) −7.39144e7 −3.29183
\(873\) −2.99516e7 −1.33010
\(874\) 2.28237e6 0.101067
\(875\) −765625. −0.0338062
\(876\) −1.03675e8 −4.56471
\(877\) −4.40848e6 −0.193548 −0.0967742 0.995306i \(-0.530852\pi\)
−0.0967742 + 0.995306i \(0.530852\pi\)
\(878\) 3.12771e7 1.36927
\(879\) −572228. −0.0249803
\(880\) 7.63905e6 0.332531
\(881\) 3.12332e6 0.135574 0.0677871 0.997700i \(-0.478406\pi\)
0.0677871 + 0.997700i \(0.478406\pi\)
\(882\) −1.34110e7 −0.580481
\(883\) −5.91201e6 −0.255172 −0.127586 0.991827i \(-0.540723\pi\)
−0.127586 + 0.991827i \(0.540723\pi\)
\(884\) 4.64782e7 2.00041
\(885\) −1.93765e7 −0.831605
\(886\) 3.82627e7 1.63754
\(887\) 2.99048e7 1.27624 0.638118 0.769938i \(-0.279713\pi\)
0.638118 + 0.769938i \(0.279713\pi\)
\(888\) −6.84870e7 −2.91458
\(889\) −2.42128e6 −0.102752
\(890\) −1.79626e7 −0.760142
\(891\) −1.31787e7 −0.556133
\(892\) 5.31433e7 2.23633
\(893\) 932459. 0.0391292
\(894\) −8.41068e7 −3.51955
\(895\) 1.63337e7 0.681595
\(896\) 2.72885e6 0.113556
\(897\) 8.05083e7 3.34087
\(898\) 5.85412e7 2.42254
\(899\) 1.76388e6 0.0727895
\(900\) 2.55047e7 1.04958
\(901\) 1.04523e6 0.0428943
\(902\) −2.82548e7 −1.15631
\(903\) −1.66699e7 −0.680322
\(904\) −1.90296e7 −0.774475
\(905\) 4.49636e6 0.182490
\(906\) 1.38105e8 5.58971
\(907\) 1.14372e7 0.461637 0.230819 0.972997i \(-0.425860\pi\)
0.230819 + 0.972997i \(0.425860\pi\)
\(908\) 6.03469e7 2.42907
\(909\) 1.56096e7 0.626587
\(910\) 1.02129e7 0.408833
\(911\) 3.69307e7 1.47432 0.737160 0.675719i \(-0.236167\pi\)
0.737160 + 0.675719i \(0.236167\pi\)
\(912\) −3.94457e6 −0.157041
\(913\) 8.39498e6 0.333306
\(914\) −5.66600e7 −2.24342
\(915\) 1.09733e7 0.433296
\(916\) −8.96435e7 −3.53004
\(917\) 3.10125e6 0.121791
\(918\) −6.52785e7 −2.55660
\(919\) −4.03035e6 −0.157418 −0.0787089 0.996898i \(-0.525080\pi\)
−0.0787089 + 0.996898i \(0.525080\pi\)
\(920\) 4.09048e7 1.59333
\(921\) −3.03010e7 −1.17708
\(922\) −3.75170e6 −0.145345
\(923\) 3.04418e7 1.17616
\(924\) −1.37665e7 −0.530450
\(925\) 3.36080e6 0.129148
\(926\) 4.21254e7 1.61442
\(927\) 4.65769e7 1.78021
\(928\) 4.30245e7 1.64001
\(929\) −1.33708e7 −0.508297 −0.254148 0.967165i \(-0.581795\pi\)
−0.254148 + 0.967165i \(0.581795\pi\)
\(930\) −2.78631e6 −0.105639
\(931\) −146978. −0.00555748
\(932\) 6.77674e6 0.255553
\(933\) −5.97010e7 −2.24532
\(934\) 1.16543e7 0.437140
\(935\) 2.52768e6 0.0945568
\(936\) −1.96748e8 −7.34041
\(937\) −3.65899e7 −1.36148 −0.680741 0.732524i \(-0.738342\pi\)
−0.680741 + 0.732524i \(0.738342\pi\)
\(938\) 8.55698e6 0.317551
\(939\) 5.01334e7 1.85551
\(940\) 2.88975e7 1.06670
\(941\) 1.02348e7 0.376795 0.188398 0.982093i \(-0.439671\pi\)
0.188398 + 0.982093i \(0.439671\pi\)
\(942\) 1.07766e7 0.395688
\(943\) −7.36958e7 −2.69875
\(944\) 6.39672e7 2.33629
\(945\) −1.00894e7 −0.367523
\(946\) −1.67562e7 −0.608763
\(947\) 1.01364e7 0.367291 0.183645 0.982993i \(-0.441210\pi\)
0.183645 + 0.982993i \(0.441210\pi\)
\(948\) −1.41178e8 −5.10208
\(949\) −3.92462e7 −1.41459
\(950\) 397392. 0.0142860
\(951\) 1.69821e7 0.608893
\(952\) −1.70430e7 −0.609472
\(953\) 2.70615e6 0.0965206 0.0482603 0.998835i \(-0.484632\pi\)
0.0482603 + 0.998835i \(0.484632\pi\)
\(954\) −7.65097e6 −0.272173
\(955\) −1.29132e7 −0.458169
\(956\) 9.74595e7 3.44889
\(957\) 1.70057e7 0.600224
\(958\) 4.30437e7 1.51529
\(959\) 1.80629e7 0.634222
\(960\) −1.64136e7 −0.574811
\(961\) −2.84817e7 −0.994849
\(962\) −4.48307e7 −1.56184
\(963\) −749004. −0.0260267
\(964\) 6.69594e7 2.32070
\(965\) −8.54799e6 −0.295492
\(966\) −5.10483e7 −1.76010
\(967\) −8.48268e6 −0.291720 −0.145860 0.989305i \(-0.546595\pi\)
−0.145860 + 0.989305i \(0.546595\pi\)
\(968\) 6.54067e7 2.24354
\(969\) −1.30522e6 −0.0446553
\(970\) −1.44627e7 −0.493539
\(971\) −5.21222e6 −0.177409 −0.0887043 0.996058i \(-0.528273\pi\)
−0.0887043 + 0.996058i \(0.528273\pi\)
\(972\) 5.90196e7 2.00369
\(973\) 4.92480e6 0.166765
\(974\) 6.41325e7 2.16611
\(975\) 1.40176e7 0.472239
\(976\) −3.62259e7 −1.21729
\(977\) 1.79936e7 0.603090 0.301545 0.953452i \(-0.402498\pi\)
0.301545 + 0.953452i \(0.402498\pi\)
\(978\) 1.31481e8 4.39559
\(979\) 9.16577e6 0.305642
\(980\) −4.55495e6 −0.151502
\(981\) 8.72029e7 2.89307
\(982\) 1.15941e7 0.383671
\(983\) 2.60735e7 0.860628 0.430314 0.902679i \(-0.358403\pi\)
0.430314 + 0.902679i \(0.358403\pi\)
\(984\) 2.61481e8 8.60901
\(985\) 2.01467e7 0.661628
\(986\) 3.64048e7 1.19252
\(987\) −2.08557e7 −0.681446
\(988\) −3.72860e6 −0.121522
\(989\) −4.37045e7 −1.42081
\(990\) −1.85023e7 −0.599982
\(991\) −8.44686e6 −0.273219 −0.136610 0.990625i \(-0.543621\pi\)
−0.136610 + 0.990625i \(0.543621\pi\)
\(992\) 3.59709e6 0.116057
\(993\) −1.50439e7 −0.484158
\(994\) −1.93024e7 −0.619647
\(995\) −2.19568e7 −0.703090
\(996\) −1.34342e8 −4.29105
\(997\) −4.53151e7 −1.44379 −0.721896 0.692001i \(-0.756729\pi\)
−0.721896 + 0.692001i \(0.756729\pi\)
\(998\) −9.90689e7 −3.14855
\(999\) 4.42884e7 1.40403
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.6.a.c.1.1 3
3.2 odd 2 315.6.a.i.1.3 3
4.3 odd 2 560.6.a.q.1.1 3
5.2 odd 4 175.6.b.e.99.1 6
5.3 odd 4 175.6.b.e.99.6 6
5.4 even 2 175.6.a.e.1.3 3
7.6 odd 2 245.6.a.d.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.6.a.c.1.1 3 1.1 even 1 trivial
175.6.a.e.1.3 3 5.4 even 2
175.6.b.e.99.1 6 5.2 odd 4
175.6.b.e.99.6 6 5.3 odd 4
245.6.a.d.1.1 3 7.6 odd 2
315.6.a.i.1.3 3 3.2 odd 2
560.6.a.q.1.1 3 4.3 odd 2