Properties

Label 35.6.a.a
Level $35$
Weight $6$
Character orbit 35.a
Self dual yes
Analytic conductor $5.613$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,6,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.61343369345\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 8 q^{2} + q^{3} + 32 q^{4} + 25 q^{5} - 8 q^{6} + 49 q^{7} - 242 q^{9} - 200 q^{10} - 453 q^{11} + 32 q^{12} - 969 q^{13} - 392 q^{14} + 25 q^{15} - 1024 q^{16} + 1637 q^{17} + 1936 q^{18} - 1550 q^{19}+ \cdots + 109626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−8.00000 1.00000 32.0000 25.0000 −8.00000 49.0000 0 −242.000 −200.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.6.a.a 1
3.b odd 2 1 315.6.a.a 1
4.b odd 2 1 560.6.a.c 1
5.b even 2 1 175.6.a.a 1
5.c odd 4 2 175.6.b.b 2
7.b odd 2 1 245.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.6.a.a 1 1.a even 1 1 trivial
175.6.a.a 1 5.b even 2 1
175.6.b.b 2 5.c odd 4 2
245.6.a.a 1 7.b odd 2 1
315.6.a.a 1 3.b odd 2 1
560.6.a.c 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 8 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(35))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 8 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T + 453 \) Copy content Toggle raw display
$13$ \( T + 969 \) Copy content Toggle raw display
$17$ \( T - 1637 \) Copy content Toggle raw display
$19$ \( T + 1550 \) Copy content Toggle raw display
$23$ \( T + 1654 \) Copy content Toggle raw display
$29$ \( T + 4985 \) Copy content Toggle raw display
$31$ \( T - 1192 \) Copy content Toggle raw display
$37$ \( T + 11018 \) Copy content Toggle raw display
$41$ \( T + 1728 \) Copy content Toggle raw display
$43$ \( T + 10814 \) Copy content Toggle raw display
$47$ \( T - 26237 \) Copy content Toggle raw display
$53$ \( T - 25936 \) Copy content Toggle raw display
$59$ \( T + 4580 \) Copy content Toggle raw display
$61$ \( T + 12488 \) Copy content Toggle raw display
$67$ \( T + 15848 \) Copy content Toggle raw display
$71$ \( T - 51792 \) Copy content Toggle raw display
$73$ \( T - 4846 \) Copy content Toggle raw display
$79$ \( T - 62765 \) Copy content Toggle raw display
$83$ \( T + 23644 \) Copy content Toggle raw display
$89$ \( T + 147300 \) Copy content Toggle raw display
$97$ \( T + 8343 \) Copy content Toggle raw display
show more
show less