Properties

Label 35.6.a.a
Level $35$
Weight $6$
Character orbit 35.a
Self dual yes
Analytic conductor $5.613$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,6,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.61343369345\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 8 q^{2} + q^{3} + 32 q^{4} + 25 q^{5} - 8 q^{6} + 49 q^{7} - 242 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{2} + q^{3} + 32 q^{4} + 25 q^{5} - 8 q^{6} + 49 q^{7} - 242 q^{9} - 200 q^{10} - 453 q^{11} + 32 q^{12} - 969 q^{13} - 392 q^{14} + 25 q^{15} - 1024 q^{16} + 1637 q^{17} + 1936 q^{18} - 1550 q^{19} + 800 q^{20} + 49 q^{21} + 3624 q^{22} - 1654 q^{23} + 625 q^{25} + 7752 q^{26} - 485 q^{27} + 1568 q^{28} - 4985 q^{29} - 200 q^{30} + 1192 q^{31} + 8192 q^{32} - 453 q^{33} - 13096 q^{34} + 1225 q^{35} - 7744 q^{36} - 11018 q^{37} + 12400 q^{38} - 969 q^{39} - 1728 q^{41} - 392 q^{42} - 10814 q^{43} - 14496 q^{44} - 6050 q^{45} + 13232 q^{46} + 26237 q^{47} - 1024 q^{48} + 2401 q^{49} - 5000 q^{50} + 1637 q^{51} - 31008 q^{52} + 25936 q^{53} + 3880 q^{54} - 11325 q^{55} - 1550 q^{57} + 39880 q^{58} - 4580 q^{59} + 800 q^{60} - 12488 q^{61} - 9536 q^{62} - 11858 q^{63} - 32768 q^{64} - 24225 q^{65} + 3624 q^{66} - 15848 q^{67} + 52384 q^{68} - 1654 q^{69} - 9800 q^{70} + 51792 q^{71} + 4846 q^{73} + 88144 q^{74} + 625 q^{75} - 49600 q^{76} - 22197 q^{77} + 7752 q^{78} + 62765 q^{79} - 25600 q^{80} + 58321 q^{81} + 13824 q^{82} - 23644 q^{83} + 1568 q^{84} + 40925 q^{85} + 86512 q^{86} - 4985 q^{87} - 147300 q^{89} + 48400 q^{90} - 47481 q^{91} - 52928 q^{92} + 1192 q^{93} - 209896 q^{94} - 38750 q^{95} + 8192 q^{96} - 8343 q^{97} - 19208 q^{98} + 109626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−8.00000 1.00000 32.0000 25.0000 −8.00000 49.0000 0 −242.000 −200.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.6.a.a 1
3.b odd 2 1 315.6.a.a 1
4.b odd 2 1 560.6.a.c 1
5.b even 2 1 175.6.a.a 1
5.c odd 4 2 175.6.b.b 2
7.b odd 2 1 245.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.6.a.a 1 1.a even 1 1 trivial
175.6.a.a 1 5.b even 2 1
175.6.b.b 2 5.c odd 4 2
245.6.a.a 1 7.b odd 2 1
315.6.a.a 1 3.b odd 2 1
560.6.a.c 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} + 8 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(35))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 8 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T + 453 \) Copy content Toggle raw display
$13$ \( T + 969 \) Copy content Toggle raw display
$17$ \( T - 1637 \) Copy content Toggle raw display
$19$ \( T + 1550 \) Copy content Toggle raw display
$23$ \( T + 1654 \) Copy content Toggle raw display
$29$ \( T + 4985 \) Copy content Toggle raw display
$31$ \( T - 1192 \) Copy content Toggle raw display
$37$ \( T + 11018 \) Copy content Toggle raw display
$41$ \( T + 1728 \) Copy content Toggle raw display
$43$ \( T + 10814 \) Copy content Toggle raw display
$47$ \( T - 26237 \) Copy content Toggle raw display
$53$ \( T - 25936 \) Copy content Toggle raw display
$59$ \( T + 4580 \) Copy content Toggle raw display
$61$ \( T + 12488 \) Copy content Toggle raw display
$67$ \( T + 15848 \) Copy content Toggle raw display
$71$ \( T - 51792 \) Copy content Toggle raw display
$73$ \( T - 4846 \) Copy content Toggle raw display
$79$ \( T - 62765 \) Copy content Toggle raw display
$83$ \( T + 23644 \) Copy content Toggle raw display
$89$ \( T + 147300 \) Copy content Toggle raw display
$97$ \( T + 8343 \) Copy content Toggle raw display
show more
show less