Properties

Label 35.6.a
Level $35$
Weight $6$
Character orbit 35.a
Rep. character $\chi_{35}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $4$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(35))\).

Total New Old
Modular forms 22 10 12
Cusp forms 18 10 8
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(4\)\(2\)\(2\)\(3\)\(2\)\(1\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(6\)\(3\)\(3\)\(5\)\(3\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(7\)\(4\)\(3\)\(6\)\(4\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(5\)\(1\)\(4\)\(4\)\(1\)\(3\)\(1\)\(0\)\(1\)
Plus space\(+\)\(9\)\(3\)\(6\)\(7\)\(3\)\(4\)\(2\)\(0\)\(2\)
Minus space\(-\)\(13\)\(7\)\(6\)\(11\)\(7\)\(4\)\(2\)\(0\)\(2\)

Trace form

\( 10 q - 6 q^{2} + 44 q^{3} + 162 q^{4} - 64 q^{6} - 98 q^{7} + 354 q^{8} + 832 q^{9} + 100 q^{10} - 478 q^{11} + 3684 q^{12} + 404 q^{13} - 1078 q^{14} - 350 q^{15} - 686 q^{16} + 3500 q^{17} - 5938 q^{18}+ \cdots - 343372 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
35.6.a.a 35.a 1.a $1$ $5.613$ \(\Q\) None 35.6.a.a \(-8\) \(1\) \(25\) \(49\) $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+q^{3}+2^{5}q^{4}+5^{2}q^{5}-8q^{6}+\cdots\)
35.6.a.b 35.a 1.a $2$ $5.613$ \(\Q(\sqrt{65}) \) None 35.6.a.b \(1\) \(3\) \(-50\) \(-98\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(3-3\beta )q^{3}+(-2^{4}+\beta )q^{4}+\cdots\)
35.6.a.c 35.a 1.a $3$ $5.613$ 3.3.577880.1 None 35.6.a.c \(-6\) \(26\) \(-75\) \(147\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{2}+(9+\beta _{2})q^{3}+(38+2\beta _{2})q^{4}+\cdots\)
35.6.a.d 35.a 1.a $4$ $5.613$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 35.6.a.d \(7\) \(14\) \(100\) \(-196\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{2}+(4-\beta _{1}+\beta _{3})q^{3}+(15+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(35))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(35)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)