Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(35))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 10 | 12 |
Cusp forms | 18 | 10 | 8 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(3\) | |
Minus space | \(-\) | \(7\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 7 | |||||||
35.6.a.a | $1$ | $5.613$ | \(\Q\) | None | \(-8\) | \(1\) | \(25\) | \(49\) | $-$ | $-$ | \(q-8q^{2}+q^{3}+2^{5}q^{4}+5^{2}q^{5}-8q^{6}+\cdots\) | |
35.6.a.b | $2$ | $5.613$ | \(\Q(\sqrt{65}) \) | None | \(1\) | \(3\) | \(-50\) | \(-98\) | $+$ | $+$ | \(q+\beta q^{2}+(3-3\beta )q^{3}+(-2^{4}+\beta )q^{4}+\cdots\) | |
35.6.a.c | $3$ | $5.613$ | 3.3.577880.1 | None | \(-6\) | \(26\) | \(-75\) | \(147\) | $+$ | $-$ | \(q+(-2+\beta _{1})q^{2}+(9+\beta _{2})q^{3}+(38+2\beta _{2})q^{4}+\cdots\) | |
35.6.a.d | $4$ | $5.613$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(7\) | \(14\) | \(100\) | \(-196\) | $-$ | $+$ | \(q+(2-\beta _{1})q^{2}+(4-\beta _{1}+\beta _{3})q^{3}+(15+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(35))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(35)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)