Properties

Label 35.5.c.d
Level $35$
Weight $5$
Character orbit 35.c
Analytic conductor $3.618$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 35.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.61794870793\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-6}) \)
Defining polynomial: \(x^{2} + 6\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 5 q^{3} + 10 q^{4} + ( 5 - 10 \beta ) q^{5} + 5 \beta q^{6} + ( 35 + 14 \beta ) q^{7} + 26 \beta q^{8} -56 q^{9} +O(q^{10})\) \( q + \beta q^{2} + 5 q^{3} + 10 q^{4} + ( 5 - 10 \beta ) q^{5} + 5 \beta q^{6} + ( 35 + 14 \beta ) q^{7} + 26 \beta q^{8} -56 q^{9} + ( 60 + 5 \beta ) q^{10} + 89 q^{11} + 50 q^{12} -5 q^{13} + ( -84 + 35 \beta ) q^{14} + ( 25 - 50 \beta ) q^{15} + 4 q^{16} -485 q^{17} -56 \beta q^{18} -90 \beta q^{19} + ( 50 - 100 \beta ) q^{20} + ( 175 + 70 \beta ) q^{21} + 89 \beta q^{22} -286 \beta q^{23} + 130 \beta q^{24} + ( -575 - 100 \beta ) q^{25} -5 \beta q^{26} -685 q^{27} + ( 350 + 140 \beta ) q^{28} + 191 q^{29} + ( 300 + 25 \beta ) q^{30} + 430 \beta q^{31} + 420 \beta q^{32} + 445 q^{33} -485 \beta q^{34} + ( 1015 - 280 \beta ) q^{35} -560 q^{36} + 666 \beta q^{37} + 540 q^{38} -25 q^{39} + ( 1560 + 130 \beta ) q^{40} -1190 \beta q^{41} + ( -420 + 175 \beta ) q^{42} + 154 \beta q^{43} + 890 q^{44} + ( -280 + 560 \beta ) q^{45} + 1716 q^{46} -2195 q^{47} + 20 q^{48} + ( 49 + 980 \beta ) q^{49} + ( 600 - 575 \beta ) q^{50} -2425 q^{51} -50 q^{52} -648 \beta q^{53} -685 \beta q^{54} + ( 445 - 890 \beta ) q^{55} + ( -2184 + 910 \beta ) q^{56} -450 \beta q^{57} + 191 \beta q^{58} + 1480 \beta q^{59} + ( 250 - 500 \beta ) q^{60} -790 \beta q^{61} -2580 q^{62} + ( -1960 - 784 \beta ) q^{63} -2456 q^{64} + ( -25 + 50 \beta ) q^{65} + 445 \beta q^{66} + 836 \beta q^{67} -4850 q^{68} -1430 \beta q^{69} + ( 1680 + 1015 \beta ) q^{70} + 4454 q^{71} -1456 \beta q^{72} + 8650 q^{73} -3996 q^{74} + ( -2875 - 500 \beta ) q^{75} -900 \beta q^{76} + ( 3115 + 1246 \beta ) q^{77} -25 \beta q^{78} + 5561 q^{79} + ( 20 - 40 \beta ) q^{80} + 1111 q^{81} + 7140 q^{82} + 1990 q^{83} + ( 1750 + 700 \beta ) q^{84} + ( -2425 + 4850 \beta ) q^{85} -924 q^{86} + 955 q^{87} + 2314 \beta q^{88} + 330 \beta q^{89} + ( -3360 - 280 \beta ) q^{90} + ( -175 - 70 \beta ) q^{91} -2860 \beta q^{92} + 2150 \beta q^{93} -2195 \beta q^{94} + ( -5400 - 450 \beta ) q^{95} + 2100 \beta q^{96} + 9235 q^{97} + ( -5880 + 49 \beta ) q^{98} -4984 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 10q^{3} + 20q^{4} + 10q^{5} + 70q^{7} - 112q^{9} + O(q^{10}) \) \( 2q + 10q^{3} + 20q^{4} + 10q^{5} + 70q^{7} - 112q^{9} + 120q^{10} + 178q^{11} + 100q^{12} - 10q^{13} - 168q^{14} + 50q^{15} + 8q^{16} - 970q^{17} + 100q^{20} + 350q^{21} - 1150q^{25} - 1370q^{27} + 700q^{28} + 382q^{29} + 600q^{30} + 890q^{33} + 2030q^{35} - 1120q^{36} + 1080q^{38} - 50q^{39} + 3120q^{40} - 840q^{42} + 1780q^{44} - 560q^{45} + 3432q^{46} - 4390q^{47} + 40q^{48} + 98q^{49} + 1200q^{50} - 4850q^{51} - 100q^{52} + 890q^{55} - 4368q^{56} + 500q^{60} - 5160q^{62} - 3920q^{63} - 4912q^{64} - 50q^{65} - 9700q^{68} + 3360q^{70} + 8908q^{71} + 17300q^{73} - 7992q^{74} - 5750q^{75} + 6230q^{77} + 11122q^{79} + 40q^{80} + 2222q^{81} + 14280q^{82} + 3980q^{83} + 3500q^{84} - 4850q^{85} - 1848q^{86} + 1910q^{87} - 6720q^{90} - 350q^{91} - 10800q^{95} + 18470q^{97} - 11760q^{98} - 9968q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
34.1
2.44949i
2.44949i
2.44949i 5.00000 10.0000 5.00000 + 24.4949i 12.2474i 35.0000 34.2929i 63.6867i −56.0000 60.0000 12.2474i
34.2 2.44949i 5.00000 10.0000 5.00000 24.4949i 12.2474i 35.0000 + 34.2929i 63.6867i −56.0000 60.0000 + 12.2474i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.5.c.d yes 2
3.b odd 2 1 315.5.e.c 2
4.b odd 2 1 560.5.p.d 2
5.b even 2 1 35.5.c.c 2
5.c odd 4 2 175.5.d.e 4
7.b odd 2 1 35.5.c.c 2
15.d odd 2 1 315.5.e.d 2
20.d odd 2 1 560.5.p.e 2
21.c even 2 1 315.5.e.d 2
28.d even 2 1 560.5.p.e 2
35.c odd 2 1 inner 35.5.c.d yes 2
35.f even 4 2 175.5.d.e 4
105.g even 2 1 315.5.e.c 2
140.c even 2 1 560.5.p.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.5.c.c 2 5.b even 2 1
35.5.c.c 2 7.b odd 2 1
35.5.c.d yes 2 1.a even 1 1 trivial
35.5.c.d yes 2 35.c odd 2 1 inner
175.5.d.e 4 5.c odd 4 2
175.5.d.e 4 35.f even 4 2
315.5.e.c 2 3.b odd 2 1
315.5.e.c 2 105.g even 2 1
315.5.e.d 2 15.d odd 2 1
315.5.e.d 2 21.c even 2 1
560.5.p.d 2 4.b odd 2 1
560.5.p.d 2 140.c even 2 1
560.5.p.e 2 20.d odd 2 1
560.5.p.e 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(35, [\chi])\):

\( T_{2}^{2} + 6 \)
\( T_{3} - 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 6 + T^{2} \)
$3$ \( ( -5 + T )^{2} \)
$5$ \( 625 - 10 T + T^{2} \)
$7$ \( 2401 - 70 T + T^{2} \)
$11$ \( ( -89 + T )^{2} \)
$13$ \( ( 5 + T )^{2} \)
$17$ \( ( 485 + T )^{2} \)
$19$ \( 48600 + T^{2} \)
$23$ \( 490776 + T^{2} \)
$29$ \( ( -191 + T )^{2} \)
$31$ \( 1109400 + T^{2} \)
$37$ \( 2661336 + T^{2} \)
$41$ \( 8496600 + T^{2} \)
$43$ \( 142296 + T^{2} \)
$47$ \( ( 2195 + T )^{2} \)
$53$ \( 2519424 + T^{2} \)
$59$ \( 13142400 + T^{2} \)
$61$ \( 3744600 + T^{2} \)
$67$ \( 4193376 + T^{2} \)
$71$ \( ( -4454 + T )^{2} \)
$73$ \( ( -8650 + T )^{2} \)
$79$ \( ( -5561 + T )^{2} \)
$83$ \( ( -1990 + T )^{2} \)
$89$ \( 653400 + T^{2} \)
$97$ \( ( -9235 + T )^{2} \)
show more
show less