Properties

Label 35.4.e.a.16.1
Level $35$
Weight $4$
Character 35.16
Analytic conductor $2.065$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,4,Mod(11,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.11");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.06506685020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 16.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 35.16
Dual form 35.4.e.a.11.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{2} +(1.00000 + 1.73205i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.50000 + 4.33013i) q^{5} -6.00000 q^{6} +(-14.0000 + 12.1244i) q^{7} -21.0000 q^{8} +(11.5000 - 19.9186i) q^{9} +O(q^{10})\) \(q+(-1.50000 + 2.59808i) q^{2} +(1.00000 + 1.73205i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.50000 + 4.33013i) q^{5} -6.00000 q^{6} +(-14.0000 + 12.1244i) q^{7} -21.0000 q^{8} +(11.5000 - 19.9186i) q^{9} +(-7.50000 - 12.9904i) q^{10} +(22.5000 + 38.9711i) q^{11} +(1.00000 - 1.73205i) q^{12} +59.0000 q^{13} +(-10.5000 - 54.5596i) q^{14} -10.0000 q^{15} +(35.5000 - 61.4878i) q^{16} +(27.0000 + 46.7654i) q^{17} +(34.5000 + 59.7558i) q^{18} +(60.5000 - 104.789i) q^{19} +5.00000 q^{20} +(-35.0000 - 12.1244i) q^{21} -135.000 q^{22} +(-34.5000 + 59.7558i) q^{23} +(-21.0000 - 36.3731i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(-88.5000 + 153.286i) q^{26} +100.000 q^{27} +(17.5000 + 6.06218i) q^{28} -162.000 q^{29} +(15.0000 - 25.9808i) q^{30} +(44.0000 + 76.2102i) q^{31} +(22.5000 + 38.9711i) q^{32} +(-45.0000 + 77.9423i) q^{33} -162.000 q^{34} +(-17.5000 - 90.9327i) q^{35} -23.0000 q^{36} +(129.500 - 224.301i) q^{37} +(181.500 + 314.367i) q^{38} +(59.0000 + 102.191i) q^{39} +(52.5000 - 90.9327i) q^{40} +195.000 q^{41} +(84.0000 - 72.7461i) q^{42} -286.000 q^{43} +(22.5000 - 38.9711i) q^{44} +(57.5000 + 99.5929i) q^{45} +(-103.500 - 179.267i) q^{46} +(-22.5000 + 38.9711i) q^{47} +142.000 q^{48} +(49.0000 - 339.482i) q^{49} +75.0000 q^{50} +(-54.0000 + 93.5307i) q^{51} +(-29.5000 - 51.0955i) q^{52} +(-298.500 - 517.017i) q^{53} +(-150.000 + 259.808i) q^{54} -225.000 q^{55} +(294.000 - 254.611i) q^{56} +242.000 q^{57} +(243.000 - 420.888i) q^{58} +(180.000 + 311.769i) q^{59} +(5.00000 + 8.66025i) q^{60} +(-196.000 + 339.482i) q^{61} -264.000 q^{62} +(80.5000 + 418.290i) q^{63} +433.000 q^{64} +(-147.500 + 255.477i) q^{65} +(-135.000 - 233.827i) q^{66} +(140.000 + 242.487i) q^{67} +(27.0000 - 46.7654i) q^{68} -138.000 q^{69} +(262.500 + 90.9327i) q^{70} +48.0000 q^{71} +(-241.500 + 418.290i) q^{72} +(-334.000 - 578.505i) q^{73} +(388.500 + 672.902i) q^{74} +(25.0000 - 43.3013i) q^{75} -121.000 q^{76} +(-787.500 - 272.798i) q^{77} -354.000 q^{78} +(-391.000 + 677.232i) q^{79} +(177.500 + 307.439i) q^{80} +(-210.500 - 364.597i) q^{81} +(-292.500 + 506.625i) q^{82} +768.000 q^{83} +(7.00000 + 36.3731i) q^{84} -270.000 q^{85} +(429.000 - 743.050i) q^{86} +(-162.000 - 280.592i) q^{87} +(-472.500 - 818.394i) q^{88} +(597.000 - 1034.03i) q^{89} -345.000 q^{90} +(-826.000 + 715.337i) q^{91} +69.0000 q^{92} +(-88.0000 + 152.420i) q^{93} +(-67.5000 - 116.913i) q^{94} +(302.500 + 523.945i) q^{95} +(-45.0000 + 77.9423i) q^{96} +902.000 q^{97} +(808.500 + 636.529i) q^{98} +1035.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 2 q^{3} - q^{4} - 5 q^{5} - 12 q^{6} - 28 q^{7} - 42 q^{8} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} + 2 q^{3} - q^{4} - 5 q^{5} - 12 q^{6} - 28 q^{7} - 42 q^{8} + 23 q^{9} - 15 q^{10} + 45 q^{11} + 2 q^{12} + 118 q^{13} - 21 q^{14} - 20 q^{15} + 71 q^{16} + 54 q^{17} + 69 q^{18} + 121 q^{19} + 10 q^{20} - 70 q^{21} - 270 q^{22} - 69 q^{23} - 42 q^{24} - 25 q^{25} - 177 q^{26} + 200 q^{27} + 35 q^{28} - 324 q^{29} + 30 q^{30} + 88 q^{31} + 45 q^{32} - 90 q^{33} - 324 q^{34} - 35 q^{35} - 46 q^{36} + 259 q^{37} + 363 q^{38} + 118 q^{39} + 105 q^{40} + 390 q^{41} + 168 q^{42} - 572 q^{43} + 45 q^{44} + 115 q^{45} - 207 q^{46} - 45 q^{47} + 284 q^{48} + 98 q^{49} + 150 q^{50} - 108 q^{51} - 59 q^{52} - 597 q^{53} - 300 q^{54} - 450 q^{55} + 588 q^{56} + 484 q^{57} + 486 q^{58} + 360 q^{59} + 10 q^{60} - 392 q^{61} - 528 q^{62} + 161 q^{63} + 866 q^{64} - 295 q^{65} - 270 q^{66} + 280 q^{67} + 54 q^{68} - 276 q^{69} + 525 q^{70} + 96 q^{71} - 483 q^{72} - 668 q^{73} + 777 q^{74} + 50 q^{75} - 242 q^{76} - 1575 q^{77} - 708 q^{78} - 782 q^{79} + 355 q^{80} - 421 q^{81} - 585 q^{82} + 1536 q^{83} + 14 q^{84} - 540 q^{85} + 858 q^{86} - 324 q^{87} - 945 q^{88} + 1194 q^{89} - 690 q^{90} - 1652 q^{91} + 138 q^{92} - 176 q^{93} - 135 q^{94} + 605 q^{95} - 90 q^{96} + 1804 q^{97} + 1617 q^{98} + 2070 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50000 + 2.59808i −0.530330 + 0.918559i 0.469044 + 0.883175i \(0.344599\pi\)
−0.999374 + 0.0353837i \(0.988735\pi\)
\(3\) 1.00000 + 1.73205i 0.192450 + 0.333333i 0.946062 0.323987i \(-0.105023\pi\)
−0.753612 + 0.657320i \(0.771690\pi\)
\(4\) −0.500000 0.866025i −0.0625000 0.108253i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) −6.00000 −0.408248
\(7\) −14.0000 + 12.1244i −0.755929 + 0.654654i
\(8\) −21.0000 −0.928078
\(9\) 11.5000 19.9186i 0.425926 0.737725i
\(10\) −7.50000 12.9904i −0.237171 0.410792i
\(11\) 22.5000 + 38.9711i 0.616728 + 1.06820i 0.990079 + 0.140514i \(0.0448754\pi\)
−0.373351 + 0.927690i \(0.621791\pi\)
\(12\) 1.00000 1.73205i 0.0240563 0.0416667i
\(13\) 59.0000 1.25874 0.629371 0.777105i \(-0.283312\pi\)
0.629371 + 0.777105i \(0.283312\pi\)
\(14\) −10.5000 54.5596i −0.200446 1.04155i
\(15\) −10.0000 −0.172133
\(16\) 35.5000 61.4878i 0.554688 0.960747i
\(17\) 27.0000 + 46.7654i 0.385204 + 0.667192i 0.991797 0.127820i \(-0.0407979\pi\)
−0.606594 + 0.795012i \(0.707465\pi\)
\(18\) 34.5000 + 59.7558i 0.451763 + 0.782476i
\(19\) 60.5000 104.789i 0.730508 1.26528i −0.226158 0.974091i \(-0.572617\pi\)
0.956666 0.291186i \(-0.0940500\pi\)
\(20\) 5.00000 0.0559017
\(21\) −35.0000 12.1244i −0.363696 0.125988i
\(22\) −135.000 −1.30828
\(23\) −34.5000 + 59.7558i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) −21.0000 36.3731i −0.178609 0.309359i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −88.5000 + 153.286i −0.667549 + 1.15623i
\(27\) 100.000 0.712778
\(28\) 17.5000 + 6.06218i 0.118114 + 0.0409159i
\(29\) −162.000 −1.03733 −0.518666 0.854977i \(-0.673571\pi\)
−0.518666 + 0.854977i \(0.673571\pi\)
\(30\) 15.0000 25.9808i 0.0912871 0.158114i
\(31\) 44.0000 + 76.2102i 0.254924 + 0.441541i 0.964875 0.262710i \(-0.0846163\pi\)
−0.709951 + 0.704251i \(0.751283\pi\)
\(32\) 22.5000 + 38.9711i 0.124296 + 0.215287i
\(33\) −45.0000 + 77.9423i −0.237379 + 0.411152i
\(34\) −162.000 −0.817140
\(35\) −17.5000 90.9327i −0.0845154 0.439155i
\(36\) −23.0000 −0.106481
\(37\) 129.500 224.301i 0.575396 0.996616i −0.420602 0.907245i \(-0.638181\pi\)
0.995998 0.0893706i \(-0.0284856\pi\)
\(38\) 181.500 + 314.367i 0.774821 + 1.34203i
\(39\) 59.0000 + 102.191i 0.242245 + 0.419581i
\(40\) 52.5000 90.9327i 0.207524 0.359443i
\(41\) 195.000 0.742778 0.371389 0.928477i \(-0.378882\pi\)
0.371389 + 0.928477i \(0.378882\pi\)
\(42\) 84.0000 72.7461i 0.308607 0.267261i
\(43\) −286.000 −1.01429 −0.507146 0.861860i \(-0.669300\pi\)
−0.507146 + 0.861860i \(0.669300\pi\)
\(44\) 22.5000 38.9711i 0.0770910 0.133525i
\(45\) 57.5000 + 99.5929i 0.190480 + 0.329921i
\(46\) −103.500 179.267i −0.331744 0.574598i
\(47\) −22.5000 + 38.9711i −0.0698290 + 0.120947i −0.898826 0.438306i \(-0.855579\pi\)
0.828997 + 0.559253i \(0.188912\pi\)
\(48\) 142.000 0.426999
\(49\) 49.0000 339.482i 0.142857 0.989743i
\(50\) 75.0000 0.212132
\(51\) −54.0000 + 93.5307i −0.148265 + 0.256802i
\(52\) −29.5000 51.0955i −0.0786714 0.136263i
\(53\) −298.500 517.017i −0.773625 1.33996i −0.935564 0.353157i \(-0.885108\pi\)
0.161939 0.986801i \(-0.448225\pi\)
\(54\) −150.000 + 259.808i −0.378008 + 0.654729i
\(55\) −225.000 −0.551618
\(56\) 294.000 254.611i 0.701561 0.607569i
\(57\) 242.000 0.562345
\(58\) 243.000 420.888i 0.550129 0.952851i
\(59\) 180.000 + 311.769i 0.397187 + 0.687947i 0.993378 0.114895i \(-0.0366533\pi\)
−0.596191 + 0.802843i \(0.703320\pi\)
\(60\) 5.00000 + 8.66025i 0.0107583 + 0.0186339i
\(61\) −196.000 + 339.482i −0.411397 + 0.712561i −0.995043 0.0994477i \(-0.968292\pi\)
0.583646 + 0.812009i \(0.301626\pi\)
\(62\) −264.000 −0.540775
\(63\) 80.5000 + 418.290i 0.160985 + 0.836502i
\(64\) 433.000 0.845703
\(65\) −147.500 + 255.477i −0.281463 + 0.487509i
\(66\) −135.000 233.827i −0.251778 0.436092i
\(67\) 140.000 + 242.487i 0.255279 + 0.442157i 0.964971 0.262355i \(-0.0844992\pi\)
−0.709692 + 0.704512i \(0.751166\pi\)
\(68\) 27.0000 46.7654i 0.0481505 0.0833990i
\(69\) −138.000 −0.240772
\(70\) 262.500 + 90.9327i 0.448211 + 0.155265i
\(71\) 48.0000 0.0802331 0.0401166 0.999195i \(-0.487227\pi\)
0.0401166 + 0.999195i \(0.487227\pi\)
\(72\) −241.500 + 418.290i −0.395292 + 0.684666i
\(73\) −334.000 578.505i −0.535503 0.927519i −0.999139 0.0414929i \(-0.986789\pi\)
0.463635 0.886026i \(-0.346545\pi\)
\(74\) 388.500 + 672.902i 0.610300 + 1.05707i
\(75\) 25.0000 43.3013i 0.0384900 0.0666667i
\(76\) −121.000 −0.182627
\(77\) −787.500 272.798i −1.16551 0.403743i
\(78\) −354.000 −0.513880
\(79\) −391.000 + 677.232i −0.556847 + 0.964488i 0.440910 + 0.897551i \(0.354656\pi\)
−0.997757 + 0.0669365i \(0.978678\pi\)
\(80\) 177.500 + 307.439i 0.248064 + 0.429659i
\(81\) −210.500 364.597i −0.288752 0.500133i
\(82\) −292.500 + 506.625i −0.393917 + 0.682285i
\(83\) 768.000 1.01565 0.507825 0.861460i \(-0.330450\pi\)
0.507825 + 0.861460i \(0.330450\pi\)
\(84\) 7.00000 + 36.3731i 0.00909241 + 0.0472456i
\(85\) −270.000 −0.344537
\(86\) 429.000 743.050i 0.537910 0.931687i
\(87\) −162.000 280.592i −0.199635 0.345778i
\(88\) −472.500 818.394i −0.572371 0.991376i
\(89\) 597.000 1034.03i 0.711032 1.23154i −0.253438 0.967352i \(-0.581561\pi\)
0.964470 0.264192i \(-0.0851054\pi\)
\(90\) −345.000 −0.404069
\(91\) −826.000 + 715.337i −0.951520 + 0.824041i
\(92\) 69.0000 0.0781929
\(93\) −88.0000 + 152.420i −0.0981202 + 0.169949i
\(94\) −67.5000 116.913i −0.0740648 0.128284i
\(95\) 302.500 + 523.945i 0.326693 + 0.565849i
\(96\) −45.0000 + 77.9423i −0.0478416 + 0.0828641i
\(97\) 902.000 0.944167 0.472084 0.881554i \(-0.343502\pi\)
0.472084 + 0.881554i \(0.343502\pi\)
\(98\) 808.500 + 636.529i 0.833376 + 0.656113i
\(99\) 1035.00 1.05072
\(100\) −12.5000 + 21.6506i −0.0125000 + 0.0216506i
\(101\) −342.000 592.361i −0.336933 0.583586i 0.646921 0.762557i \(-0.276056\pi\)
−0.983854 + 0.178971i \(0.942723\pi\)
\(102\) −162.000 280.592i −0.157259 0.272380i
\(103\) 758.000 1312.89i 0.725126 1.25595i −0.233796 0.972286i \(-0.575115\pi\)
0.958922 0.283669i \(-0.0915518\pi\)
\(104\) −1239.00 −1.16821
\(105\) 140.000 121.244i 0.130120 0.112687i
\(106\) 1791.00 1.64111
\(107\) 366.000 633.931i 0.330678 0.572751i −0.651967 0.758247i \(-0.726056\pi\)
0.982645 + 0.185496i \(0.0593892\pi\)
\(108\) −50.0000 86.6025i −0.0445486 0.0771605i
\(109\) 800.000 + 1385.64i 0.702992 + 1.21762i 0.967411 + 0.253210i \(0.0814863\pi\)
−0.264420 + 0.964408i \(0.585180\pi\)
\(110\) 337.500 584.567i 0.292540 0.506694i
\(111\) 518.000 0.442940
\(112\) 248.500 + 1291.24i 0.209652 + 1.08938i
\(113\) −1392.00 −1.15883 −0.579417 0.815031i \(-0.696720\pi\)
−0.579417 + 0.815031i \(0.696720\pi\)
\(114\) −363.000 + 628.734i −0.298229 + 0.516547i
\(115\) −172.500 298.779i −0.139876 0.242272i
\(116\) 81.0000 + 140.296i 0.0648333 + 0.112295i
\(117\) 678.500 1175.20i 0.536131 0.928606i
\(118\) −1080.00 −0.842560
\(119\) −945.000 327.358i −0.727966 0.252175i
\(120\) 210.000 0.159752
\(121\) −347.000 + 601.022i −0.260706 + 0.451556i
\(122\) −588.000 1018.45i −0.436353 0.755785i
\(123\) 195.000 + 337.750i 0.142948 + 0.247593i
\(124\) 44.0000 76.2102i 0.0318655 0.0551926i
\(125\) 125.000 0.0894427
\(126\) −1207.50 418.290i −0.853751 0.295748i
\(127\) 803.000 0.561061 0.280530 0.959845i \(-0.409490\pi\)
0.280530 + 0.959845i \(0.409490\pi\)
\(128\) −829.500 + 1436.74i −0.572798 + 0.992115i
\(129\) −286.000 495.367i −0.195201 0.338098i
\(130\) −442.500 766.432i −0.298537 0.517081i
\(131\) −1009.50 + 1748.51i −0.673286 + 1.16617i 0.303681 + 0.952774i \(0.401784\pi\)
−0.976967 + 0.213391i \(0.931549\pi\)
\(132\) 90.0000 0.0593447
\(133\) 423.500 + 2200.57i 0.276106 + 1.43469i
\(134\) −840.000 −0.541529
\(135\) −250.000 + 433.013i −0.159382 + 0.276058i
\(136\) −567.000 982.073i −0.357499 0.619206i
\(137\) −30.0000 51.9615i −0.0187086 0.0324042i 0.856520 0.516115i \(-0.172622\pi\)
−0.875228 + 0.483710i \(0.839289\pi\)
\(138\) 207.000 358.535i 0.127688 0.221163i
\(139\) −1708.00 −1.04224 −0.521118 0.853485i \(-0.674485\pi\)
−0.521118 + 0.853485i \(0.674485\pi\)
\(140\) −70.0000 + 60.6218i −0.0422577 + 0.0365963i
\(141\) −90.0000 −0.0537544
\(142\) −72.0000 + 124.708i −0.0425500 + 0.0736988i
\(143\) 1327.50 + 2299.30i 0.776302 + 1.34459i
\(144\) −816.500 1414.22i −0.472512 0.818414i
\(145\) 405.000 701.481i 0.231955 0.401757i
\(146\) 2004.00 1.13597
\(147\) 637.000 254.611i 0.357407 0.142857i
\(148\) −259.000 −0.143849
\(149\) 543.000 940.504i 0.298552 0.517108i −0.677253 0.735751i \(-0.736830\pi\)
0.975805 + 0.218643i \(0.0701629\pi\)
\(150\) 75.0000 + 129.904i 0.0408248 + 0.0707107i
\(151\) 1433.00 + 2482.03i 0.772291 + 1.33765i 0.936305 + 0.351189i \(0.114222\pi\)
−0.164014 + 0.986458i \(0.552444\pi\)
\(152\) −1270.50 + 2200.57i −0.677968 + 1.17428i
\(153\) 1242.00 0.656273
\(154\) 1890.00 1636.79i 0.988965 0.856468i
\(155\) −440.000 −0.228011
\(156\) 59.0000 102.191i 0.0302806 0.0524476i
\(157\) 114.500 + 198.320i 0.0582044 + 0.100813i 0.893659 0.448746i \(-0.148129\pi\)
−0.835455 + 0.549559i \(0.814796\pi\)
\(158\) −1173.00 2031.70i −0.590626 1.02299i
\(159\) 597.000 1034.03i 0.297768 0.515750i
\(160\) −225.000 −0.111174
\(161\) −241.500 1254.87i −0.118217 0.614271i
\(162\) 1263.00 0.612535
\(163\) 614.000 1063.48i 0.295044 0.511031i −0.679951 0.733258i \(-0.737999\pi\)
0.974995 + 0.222226i \(0.0713323\pi\)
\(164\) −97.5000 168.875i −0.0464236 0.0804080i
\(165\) −225.000 389.711i −0.106159 0.183873i
\(166\) −1152.00 + 1995.32i −0.538630 + 0.932934i
\(167\) −1929.00 −0.893835 −0.446918 0.894575i \(-0.647478\pi\)
−0.446918 + 0.894575i \(0.647478\pi\)
\(168\) 735.000 + 254.611i 0.337539 + 0.116927i
\(169\) 1284.00 0.584433
\(170\) 405.000 701.481i 0.182718 0.316477i
\(171\) −1391.50 2410.15i −0.622285 1.07783i
\(172\) 143.000 + 247.683i 0.0633933 + 0.109800i
\(173\) 349.500 605.352i 0.153595 0.266035i −0.778951 0.627084i \(-0.784248\pi\)
0.932547 + 0.361049i \(0.117581\pi\)
\(174\) 972.000 0.423489
\(175\) 437.500 + 151.554i 0.188982 + 0.0654654i
\(176\) 3195.00 1.36836
\(177\) −360.000 + 623.538i −0.152877 + 0.264791i
\(178\) 1791.00 + 3102.10i 0.754164 + 1.30625i
\(179\) −1558.50 2699.40i −0.650770 1.12717i −0.982936 0.183945i \(-0.941113\pi\)
0.332167 0.943221i \(-0.392220\pi\)
\(180\) 57.5000 99.5929i 0.0238100 0.0412401i
\(181\) −1798.00 −0.738366 −0.369183 0.929357i \(-0.620362\pi\)
−0.369183 + 0.929357i \(0.620362\pi\)
\(182\) −619.500 3219.02i −0.252310 1.31104i
\(183\) −784.000 −0.316694
\(184\) 724.500 1254.87i 0.290276 0.502773i
\(185\) 647.500 + 1121.50i 0.257325 + 0.445700i
\(186\) −264.000 457.261i −0.104072 0.180258i
\(187\) −1215.00 + 2104.44i −0.475132 + 0.822952i
\(188\) 45.0000 0.0174572
\(189\) −1400.00 + 1212.44i −0.538810 + 0.466623i
\(190\) −1815.00 −0.693021
\(191\) 1194.00 2068.07i 0.452329 0.783457i −0.546201 0.837654i \(-0.683927\pi\)
0.998530 + 0.0541974i \(0.0172600\pi\)
\(192\) 433.000 + 749.978i 0.162756 + 0.281901i
\(193\) −136.000 235.559i −0.0507228 0.0878544i 0.839549 0.543284i \(-0.182819\pi\)
−0.890272 + 0.455429i \(0.849486\pi\)
\(194\) −1353.00 + 2343.46i −0.500720 + 0.867273i
\(195\) −590.000 −0.216671
\(196\) −318.500 + 127.306i −0.116071 + 0.0463942i
\(197\) −2109.00 −0.762741 −0.381371 0.924422i \(-0.624548\pi\)
−0.381371 + 0.924422i \(0.624548\pi\)
\(198\) −1552.50 + 2689.01i −0.557229 + 0.965149i
\(199\) −712.000 1233.22i −0.253630 0.439300i 0.710893 0.703301i \(-0.248291\pi\)
−0.964522 + 0.264001i \(0.914958\pi\)
\(200\) 262.500 + 454.663i 0.0928078 + 0.160748i
\(201\) −280.000 + 484.974i −0.0982571 + 0.170186i
\(202\) 2052.00 0.714744
\(203\) 2268.00 1964.15i 0.784150 0.679094i
\(204\) 108.000 0.0370662
\(205\) −487.500 + 844.375i −0.166090 + 0.287677i
\(206\) 2274.00 + 3938.68i 0.769112 + 1.33214i
\(207\) 793.500 + 1374.38i 0.266435 + 0.461479i
\(208\) 2094.50 3627.78i 0.698209 1.20933i
\(209\) 5445.00 1.80210
\(210\) 105.000 + 545.596i 0.0345033 + 0.179284i
\(211\) −3625.00 −1.18273 −0.591363 0.806405i \(-0.701410\pi\)
−0.591363 + 0.806405i \(0.701410\pi\)
\(212\) −298.500 + 517.017i −0.0967031 + 0.167495i
\(213\) 48.0000 + 83.1384i 0.0154409 + 0.0267444i
\(214\) 1098.00 + 1901.79i 0.350737 + 0.607494i
\(215\) 715.000 1238.42i 0.226803 0.392834i
\(216\) −2100.00 −0.661513
\(217\) −1540.00 533.472i −0.481760 0.166887i
\(218\) −4800.00 −1.49127
\(219\) 668.000 1157.01i 0.206115 0.357002i
\(220\) 112.500 + 194.856i 0.0344761 + 0.0597144i
\(221\) 1593.00 + 2759.16i 0.484872 + 0.839823i
\(222\) −777.000 + 1345.80i −0.234905 + 0.406867i
\(223\) −4960.00 −1.48944 −0.744722 0.667374i \(-0.767418\pi\)
−0.744722 + 0.667374i \(0.767418\pi\)
\(224\) −787.500 272.798i −0.234898 0.0813709i
\(225\) −575.000 −0.170370
\(226\) 2088.00 3616.52i 0.614565 1.06446i
\(227\) 750.000 + 1299.04i 0.219292 + 0.379825i 0.954592 0.297917i \(-0.0962920\pi\)
−0.735300 + 0.677742i \(0.762959\pi\)
\(228\) −121.000 209.578i −0.0351466 0.0608757i
\(229\) −3046.00 + 5275.83i −0.878975 + 1.52243i −0.0265085 + 0.999649i \(0.508439\pi\)
−0.852467 + 0.522781i \(0.824894\pi\)
\(230\) 1035.00 0.296721
\(231\) −315.000 1636.79i −0.0897207 0.466202i
\(232\) 3402.00 0.962725
\(233\) −69.0000 + 119.512i −0.0194006 + 0.0336028i −0.875563 0.483104i \(-0.839509\pi\)
0.856162 + 0.516707i \(0.172842\pi\)
\(234\) 2035.50 + 3525.59i 0.568653 + 0.984936i
\(235\) −112.500 194.856i −0.0312285 0.0540893i
\(236\) 180.000 311.769i 0.0496483 0.0859934i
\(237\) −1564.00 −0.428661
\(238\) 2268.00 1964.15i 0.617700 0.534944i
\(239\) −5502.00 −1.48910 −0.744550 0.667567i \(-0.767336\pi\)
−0.744550 + 0.667567i \(0.767336\pi\)
\(240\) −355.000 + 614.878i −0.0954798 + 0.165376i
\(241\) −1775.50 3075.26i −0.474564 0.821970i 0.525011 0.851095i \(-0.324061\pi\)
−0.999576 + 0.0291256i \(0.990728\pi\)
\(242\) −1041.00 1803.06i −0.276521 0.478948i
\(243\) 1771.00 3067.46i 0.467530 0.809785i
\(244\) 392.000 0.102849
\(245\) 1347.50 + 1060.88i 0.351382 + 0.276642i
\(246\) −1170.00 −0.303238
\(247\) 3569.50 6182.56i 0.919522 1.59266i
\(248\) −924.000 1600.41i −0.236589 0.409784i
\(249\) 768.000 + 1330.22i 0.195462 + 0.338550i
\(250\) −187.500 + 324.760i −0.0474342 + 0.0821584i
\(251\) 7065.00 1.77665 0.888324 0.459216i \(-0.151870\pi\)
0.888324 + 0.459216i \(0.151870\pi\)
\(252\) 322.000 278.860i 0.0804924 0.0697085i
\(253\) −3105.00 −0.771580
\(254\) −1204.50 + 2086.26i −0.297547 + 0.515367i
\(255\) −270.000 467.654i −0.0663061 0.114846i
\(256\) −756.500 1310.30i −0.184692 0.319897i
\(257\) 2040.00 3533.38i 0.495143 0.857613i −0.504842 0.863212i \(-0.668449\pi\)
0.999984 + 0.00559954i \(0.00178240\pi\)
\(258\) 1716.00 0.414083
\(259\) 906.500 + 4710.31i 0.217479 + 1.13006i
\(260\) 295.000 0.0703659
\(261\) −1863.00 + 3226.81i −0.441827 + 0.765267i
\(262\) −3028.50 5245.52i −0.714127 1.23690i
\(263\) 1644.00 + 2847.49i 0.385450 + 0.667619i 0.991832 0.127555i \(-0.0407128\pi\)
−0.606381 + 0.795174i \(0.707380\pi\)
\(264\) 945.000 1636.79i 0.220306 0.381581i
\(265\) 2985.00 0.691951
\(266\) −6352.50 2200.57i −1.46427 0.507239i
\(267\) 2388.00 0.547353
\(268\) 140.000 242.487i 0.0319099 0.0552696i
\(269\) 1632.00 + 2826.71i 0.369906 + 0.640697i 0.989551 0.144186i \(-0.0460564\pi\)
−0.619644 + 0.784883i \(0.712723\pi\)
\(270\) −750.000 1299.04i −0.169050 0.292803i
\(271\) 1376.00 2383.30i 0.308436 0.534226i −0.669585 0.742736i \(-0.733528\pi\)
0.978020 + 0.208510i \(0.0668612\pi\)
\(272\) 3834.00 0.854671
\(273\) −2065.00 715.337i −0.457800 0.158587i
\(274\) 180.000 0.0396869
\(275\) 562.500 974.279i 0.123346 0.213641i
\(276\) 69.0000 + 119.512i 0.0150482 + 0.0260643i
\(277\) 2345.00 + 4061.66i 0.508655 + 0.881016i 0.999950 + 0.0100228i \(0.00319040\pi\)
−0.491295 + 0.870993i \(0.663476\pi\)
\(278\) 2562.00 4437.51i 0.552729 0.957354i
\(279\) 2024.00 0.434314
\(280\) 367.500 + 1909.59i 0.0784369 + 0.407570i
\(281\) 7821.00 1.66036 0.830181 0.557494i \(-0.188237\pi\)
0.830181 + 0.557494i \(0.188237\pi\)
\(282\) 135.000 233.827i 0.0285076 0.0493765i
\(283\) 329.000 + 569.845i 0.0691061 + 0.119695i 0.898508 0.438957i \(-0.144652\pi\)
−0.829402 + 0.558652i \(0.811319\pi\)
\(284\) −24.0000 41.5692i −0.00501457 0.00868549i
\(285\) −605.000 + 1047.89i −0.125744 + 0.217795i
\(286\) −7965.00 −1.64678
\(287\) −2730.00 + 2364.25i −0.561487 + 0.486262i
\(288\) 1035.00 0.211764
\(289\) 998.500 1729.45i 0.203236 0.352016i
\(290\) 1215.00 + 2104.44i 0.246025 + 0.426128i
\(291\) 902.000 + 1562.31i 0.181705 + 0.314722i
\(292\) −334.000 + 578.505i −0.0669379 + 0.115940i
\(293\) −5997.00 −1.19573 −0.597864 0.801597i \(-0.703984\pi\)
−0.597864 + 0.801597i \(0.703984\pi\)
\(294\) −294.000 + 2036.89i −0.0583212 + 0.404061i
\(295\) −1800.00 −0.355254
\(296\) −2719.50 + 4710.31i −0.534013 + 0.924937i
\(297\) 2250.00 + 3897.11i 0.439590 + 0.761392i
\(298\) 1629.00 + 2821.51i 0.316663 + 0.548476i
\(299\) −2035.50 + 3525.59i −0.393699 + 0.681907i
\(300\) −50.0000 −0.00962250
\(301\) 4004.00 3467.57i 0.766733 0.664011i
\(302\) −8598.00 −1.63828
\(303\) 684.000 1184.72i 0.129686 0.224622i
\(304\) −4295.50 7440.02i −0.810407 1.40367i
\(305\) −980.000 1697.41i −0.183982 0.318667i
\(306\) −1863.00 + 3226.81i −0.348041 + 0.602825i
\(307\) −6226.00 −1.15745 −0.578724 0.815523i \(-0.696449\pi\)
−0.578724 + 0.815523i \(0.696449\pi\)
\(308\) 157.500 + 818.394i 0.0291376 + 0.151404i
\(309\) 3032.00 0.558202
\(310\) 660.000 1143.15i 0.120921 0.209441i
\(311\) −2340.00 4053.00i −0.426653 0.738985i 0.569920 0.821700i \(-0.306974\pi\)
−0.996573 + 0.0827149i \(0.973641\pi\)
\(312\) −1239.00 2146.01i −0.224822 0.389404i
\(313\) −514.000 + 890.274i −0.0928211 + 0.160771i −0.908697 0.417456i \(-0.862922\pi\)
0.815876 + 0.578227i \(0.196255\pi\)
\(314\) −687.000 −0.123470
\(315\) −2012.50 697.150i −0.359973 0.124698i
\(316\) 782.000 0.139212
\(317\) −4311.00 + 7466.87i −0.763817 + 1.32297i 0.177053 + 0.984201i \(0.443344\pi\)
−0.940870 + 0.338768i \(0.889990\pi\)
\(318\) 1791.00 + 3102.10i 0.315831 + 0.547036i
\(319\) −3645.00 6313.33i −0.639752 1.10808i
\(320\) −1082.50 + 1874.94i −0.189105 + 0.327539i
\(321\) 1464.00 0.254556
\(322\) 3622.50 + 1254.87i 0.626938 + 0.217178i
\(323\) 6534.00 1.12558
\(324\) −210.500 + 364.597i −0.0360940 + 0.0625166i
\(325\) −737.500 1277.39i −0.125874 0.218021i
\(326\) 1842.00 + 3190.44i 0.312942 + 0.542031i
\(327\) −1600.00 + 2771.28i −0.270582 + 0.468661i
\(328\) −4095.00 −0.689355
\(329\) −157.500 818.394i −0.0263929 0.137141i
\(330\) 1350.00 0.225197
\(331\) 999.500 1731.18i 0.165974 0.287476i −0.771027 0.636803i \(-0.780256\pi\)
0.937001 + 0.349327i \(0.113590\pi\)
\(332\) −384.000 665.108i −0.0634781 0.109947i
\(333\) −2978.50 5158.91i −0.490153 0.848969i
\(334\) 2893.50 5011.69i 0.474028 0.821040i
\(335\) −1400.00 −0.228329
\(336\) −1988.00 + 1721.66i −0.322781 + 0.279536i
\(337\) 5114.00 0.826639 0.413319 0.910586i \(-0.364369\pi\)
0.413319 + 0.910586i \(0.364369\pi\)
\(338\) −1926.00 + 3335.93i −0.309943 + 0.536836i
\(339\) −1392.00 2411.01i −0.223018 0.386278i
\(340\) 135.000 + 233.827i 0.0215335 + 0.0372972i
\(341\) −1980.00 + 3429.46i −0.314437 + 0.544621i
\(342\) 8349.00 1.32006
\(343\) 3430.00 + 5346.84i 0.539949 + 0.841698i
\(344\) 6006.00 0.941342
\(345\) 345.000 597.558i 0.0538382 0.0932505i
\(346\) 1048.50 + 1816.06i 0.162912 + 0.282173i
\(347\) −2160.00 3741.23i −0.334164 0.578789i 0.649160 0.760652i \(-0.275121\pi\)
−0.983324 + 0.181863i \(0.941787\pi\)
\(348\) −162.000 + 280.592i −0.0249543 + 0.0432222i
\(349\) 7922.00 1.21506 0.607529 0.794298i \(-0.292161\pi\)
0.607529 + 0.794298i \(0.292161\pi\)
\(350\) −1050.00 + 909.327i −0.160357 + 0.138873i
\(351\) 5900.00 0.897204
\(352\) −1012.50 + 1753.70i −0.153314 + 0.265547i
\(353\) −414.000 717.069i −0.0624221 0.108118i 0.833125 0.553084i \(-0.186549\pi\)
−0.895548 + 0.444966i \(0.853216\pi\)
\(354\) −1080.00 1870.61i −0.162151 0.280853i
\(355\) −120.000 + 207.846i −0.0179407 + 0.0310742i
\(356\) −1194.00 −0.177758
\(357\) −378.000 1964.15i −0.0560389 0.291187i
\(358\) 9351.00 1.38049
\(359\) 675.000 1169.13i 0.0992344 0.171879i −0.812134 0.583472i \(-0.801694\pi\)
0.911368 + 0.411593i \(0.135027\pi\)
\(360\) −1207.50 2091.45i −0.176780 0.306192i
\(361\) −3891.00 6739.41i −0.567284 0.982564i
\(362\) 2697.00 4671.34i 0.391578 0.678233i
\(363\) −1388.00 −0.200692
\(364\) 1032.50 + 357.668i 0.148675 + 0.0515025i
\(365\) 3340.00 0.478969
\(366\) 1176.00 2036.89i 0.167952 0.290902i
\(367\) −1400.50 2425.74i −0.199198 0.345020i 0.749071 0.662490i \(-0.230500\pi\)
−0.948268 + 0.317470i \(0.897167\pi\)
\(368\) 2449.50 + 4242.66i 0.346981 + 0.600989i
\(369\) 2242.50 3884.12i 0.316368 0.547966i
\(370\) −3885.00 −0.545869
\(371\) 10447.5 + 3619.12i 1.46201 + 0.506456i
\(372\) 176.000 0.0245300
\(373\) −3301.00 + 5717.50i −0.458229 + 0.793675i −0.998867 0.0475795i \(-0.984849\pi\)
0.540639 + 0.841255i \(0.318183\pi\)
\(374\) −3645.00 6313.33i −0.503953 0.872872i
\(375\) 125.000 + 216.506i 0.0172133 + 0.0298142i
\(376\) 472.500 818.394i 0.0648067 0.112249i
\(377\) −9558.00 −1.30573
\(378\) −1050.00 5455.96i −0.142873 0.742392i
\(379\) −8305.00 −1.12559 −0.562796 0.826596i \(-0.690274\pi\)
−0.562796 + 0.826596i \(0.690274\pi\)
\(380\) 302.500 523.945i 0.0408366 0.0707311i
\(381\) 803.000 + 1390.84i 0.107976 + 0.187020i
\(382\) 3582.00 + 6204.21i 0.479767 + 0.830981i
\(383\) −472.500 + 818.394i −0.0630382 + 0.109185i −0.895822 0.444413i \(-0.853412\pi\)
0.832784 + 0.553598i \(0.186746\pi\)
\(384\) −3318.00 −0.440940
\(385\) 3150.00 2727.98i 0.416984 0.361119i
\(386\) 816.000 0.107599
\(387\) −3289.00 + 5696.72i −0.432014 + 0.748270i
\(388\) −451.000 781.155i −0.0590105 0.102209i
\(389\) −6018.00 10423.5i −0.784382 1.35859i −0.929367 0.369156i \(-0.879647\pi\)
0.144985 0.989434i \(-0.453687\pi\)
\(390\) 885.000 1532.86i 0.114907 0.199025i
\(391\) −3726.00 −0.481923
\(392\) −1029.00 + 7129.12i −0.132583 + 0.918559i
\(393\) −4038.00 −0.518296
\(394\) 3163.50 5479.34i 0.404505 0.700623i
\(395\) −1955.00 3386.16i −0.249030 0.431332i
\(396\) −517.500 896.336i −0.0656701 0.113744i
\(397\) 1349.00 2336.54i 0.170540 0.295384i −0.768069 0.640367i \(-0.778782\pi\)
0.938609 + 0.344983i \(0.112115\pi\)
\(398\) 4272.00 0.538030
\(399\) −3388.00 + 2934.09i −0.425093 + 0.368141i
\(400\) −1775.00 −0.221875
\(401\) −3526.50 + 6108.08i −0.439165 + 0.760655i −0.997625 0.0688756i \(-0.978059\pi\)
0.558461 + 0.829531i \(0.311392\pi\)
\(402\) −840.000 1454.92i −0.104217 0.180510i
\(403\) 2596.00 + 4496.40i 0.320883 + 0.555786i
\(404\) −342.000 + 592.361i −0.0421167 + 0.0729482i
\(405\) 2105.00 0.258267
\(406\) 1701.00 + 8838.66i 0.207929 + 1.08043i
\(407\) 11655.0 1.41945
\(408\) 1134.00 1964.15i 0.137601 0.238333i
\(409\) 5435.00 + 9413.70i 0.657074 + 1.13809i 0.981369 + 0.192130i \(0.0615396\pi\)
−0.324295 + 0.945956i \(0.605127\pi\)
\(410\) −1462.50 2533.12i −0.176165 0.305127i
\(411\) 60.0000 103.923i 0.00720093 0.0124724i
\(412\) −1516.00 −0.181281
\(413\) −6300.00 2182.38i −0.750612 0.260020i
\(414\) −4761.00 −0.565194
\(415\) −1920.00 + 3325.54i −0.227106 + 0.393360i
\(416\) 1327.50 + 2299.30i 0.156457 + 0.270991i
\(417\) −1708.00 2958.34i −0.200578 0.347412i
\(418\) −8167.50 + 14146.5i −0.955707 + 1.65533i
\(419\) −9729.00 −1.13435 −0.567175 0.823597i \(-0.691964\pi\)
−0.567175 + 0.823597i \(0.691964\pi\)
\(420\) −175.000 60.6218i −0.0203313 0.00704295i
\(421\) −12550.0 −1.45285 −0.726425 0.687246i \(-0.758819\pi\)
−0.726425 + 0.687246i \(0.758819\pi\)
\(422\) 5437.50 9418.03i 0.627235 1.08640i
\(423\) 517.500 + 896.336i 0.0594840 + 0.103029i
\(424\) 6268.50 + 10857.4i 0.717984 + 1.24358i
\(425\) 675.000 1169.13i 0.0770407 0.133438i
\(426\) −288.000 −0.0327550
\(427\) −1372.00 7129.12i −0.155494 0.807968i
\(428\) −732.000 −0.0826695
\(429\) −2655.00 + 4598.59i −0.298799 + 0.517534i
\(430\) 2145.00 + 3715.25i 0.240561 + 0.416663i
\(431\) −1494.00 2587.68i −0.166969 0.289198i 0.770384 0.637580i \(-0.220065\pi\)
−0.937353 + 0.348382i \(0.886731\pi\)
\(432\) 3550.00 6148.78i 0.395369 0.684799i
\(433\) 16616.0 1.84414 0.922072 0.387019i \(-0.126495\pi\)
0.922072 + 0.387019i \(0.126495\pi\)
\(434\) 3696.00 3200.83i 0.408787 0.354020i
\(435\) 1620.00 0.178559
\(436\) 800.000 1385.64i 0.0878740 0.152202i
\(437\) 4174.50 + 7230.45i 0.456964 + 0.791485i
\(438\) 2004.00 + 3471.03i 0.218618 + 0.378658i
\(439\) −3673.00 + 6361.82i −0.399323 + 0.691647i −0.993642 0.112581i \(-0.964088\pi\)
0.594320 + 0.804229i \(0.297421\pi\)
\(440\) 4725.00 0.511944
\(441\) −6198.50 4880.05i −0.669312 0.526947i
\(442\) −9558.00 −1.02857
\(443\) −6.00000 + 10.3923i −0.000643496 + 0.00111457i −0.866347 0.499443i \(-0.833538\pi\)
0.865703 + 0.500557i \(0.166871\pi\)
\(444\) −259.000 448.601i −0.0276838 0.0479497i
\(445\) 2985.00 + 5170.17i 0.317983 + 0.550763i
\(446\) 7440.00 12886.5i 0.789897 1.36814i
\(447\) 2172.00 0.229826
\(448\) −6062.00 + 5249.85i −0.639291 + 0.553643i
\(449\) 9669.00 1.01628 0.508138 0.861275i \(-0.330334\pi\)
0.508138 + 0.861275i \(0.330334\pi\)
\(450\) 862.500 1493.89i 0.0903525 0.156495i
\(451\) 4387.50 + 7599.37i 0.458092 + 0.793438i
\(452\) 696.000 + 1205.51i 0.0724272 + 0.125448i
\(453\) −2866.00 + 4964.06i −0.297255 + 0.514860i
\(454\) −4500.00 −0.465188
\(455\) −1032.50 5365.03i −0.106383 0.552783i
\(456\) −5082.00 −0.521900
\(457\) 4817.00 8343.29i 0.493063 0.854010i −0.506905 0.862002i \(-0.669211\pi\)
0.999968 + 0.00799181i \(0.00254390\pi\)
\(458\) −9138.00 15827.5i −0.932294 1.61478i
\(459\) 2700.00 + 4676.54i 0.274565 + 0.475560i
\(460\) −172.500 + 298.779i −0.0174845 + 0.0302840i
\(461\) −342.000 −0.0345521 −0.0172761 0.999851i \(-0.505499\pi\)
−0.0172761 + 0.999851i \(0.505499\pi\)
\(462\) 4725.00 + 1636.79i 0.475816 + 0.164827i
\(463\) 2411.00 0.242006 0.121003 0.992652i \(-0.461389\pi\)
0.121003 + 0.992652i \(0.461389\pi\)
\(464\) −5751.00 + 9961.02i −0.575395 + 0.996614i
\(465\) −440.000 762.102i −0.0438807 0.0760035i
\(466\) −207.000 358.535i −0.0205774 0.0356412i
\(467\) 603.000 1044.43i 0.0597506 0.103491i −0.834603 0.550852i \(-0.814303\pi\)
0.894353 + 0.447361i \(0.147636\pi\)
\(468\) −1357.00 −0.134033
\(469\) −4900.00 1697.41i −0.482433 0.167120i
\(470\) 675.000 0.0662456
\(471\) −229.000 + 396.640i −0.0224029 + 0.0388030i
\(472\) −3780.00 6547.15i −0.368620 0.638468i
\(473\) −6435.00 11145.7i −0.625543 1.08347i
\(474\) 2346.00 4063.39i 0.227332 0.393751i
\(475\) −3025.00 −0.292203
\(476\) 189.000 + 982.073i 0.0181992 + 0.0945656i
\(477\) −13731.0 −1.31803
\(478\) 8253.00 14294.6i 0.789714 1.36783i
\(479\) 216.000 + 374.123i 0.0206039 + 0.0356871i 0.876144 0.482050i \(-0.160108\pi\)
−0.855540 + 0.517737i \(0.826774\pi\)
\(480\) −225.000 389.711i −0.0213954 0.0370579i
\(481\) 7640.50 13233.7i 0.724276 1.25448i
\(482\) 10653.0 1.00670
\(483\) 1932.00 1673.16i 0.182006 0.157622i
\(484\) 694.000 0.0651766
\(485\) −2255.00 + 3905.77i −0.211122 + 0.365674i
\(486\) 5313.00 + 9202.39i 0.495890 + 0.858907i
\(487\) 5948.00 + 10302.2i 0.553449 + 0.958602i 0.998022 + 0.0628592i \(0.0200219\pi\)
−0.444574 + 0.895742i \(0.646645\pi\)
\(488\) 4116.00 7129.12i 0.381809 0.661312i
\(489\) 2456.00 0.227125
\(490\) −4777.50 + 1909.59i −0.440460 + 0.176054i
\(491\) −12276.0 −1.12833 −0.564163 0.825663i \(-0.690801\pi\)
−0.564163 + 0.825663i \(0.690801\pi\)
\(492\) 195.000 337.750i 0.0178685 0.0309491i
\(493\) −4374.00 7575.99i −0.399584 0.692100i
\(494\) 10708.5 + 18547.7i 0.975300 + 1.68927i
\(495\) −2587.50 + 4481.68i −0.234948 + 0.406943i
\(496\) 6248.00 0.565612
\(497\) −672.000 + 581.969i −0.0606505 + 0.0525249i
\(498\) −4608.00 −0.414637
\(499\) 5438.00 9418.89i 0.487852 0.844985i −0.512050 0.858956i \(-0.671114\pi\)
0.999902 + 0.0139706i \(0.00444712\pi\)
\(500\) −62.5000 108.253i −0.00559017 0.00968246i
\(501\) −1929.00 3341.13i −0.172019 0.297945i
\(502\) −10597.5 + 18355.4i −0.942210 + 1.63196i
\(503\) 12000.0 1.06372 0.531862 0.846831i \(-0.321492\pi\)
0.531862 + 0.846831i \(0.321492\pi\)
\(504\) −1690.50 8784.10i −0.149406 0.776339i
\(505\) 3420.00 0.301362
\(506\) 4657.50 8067.03i 0.409192 0.708741i
\(507\) 1284.00 + 2223.95i 0.112474 + 0.194811i
\(508\) −401.500 695.418i −0.0350663 0.0607366i
\(509\) 5841.00 10116.9i 0.508640 0.880990i −0.491310 0.870985i \(-0.663482\pi\)
0.999950 0.0100055i \(-0.00318492\pi\)
\(510\) 1620.00 0.140656
\(511\) 11690.0 + 4049.53i 1.01201 + 0.350569i
\(512\) −8733.00 −0.753804
\(513\) 6050.00 10478.9i 0.520690 0.901862i
\(514\) 6120.00 + 10600.2i 0.525178 + 0.909635i
\(515\) 3790.00 + 6564.47i 0.324286 + 0.561680i
\(516\) −286.000 + 495.367i −0.0244001 + 0.0422622i
\(517\) −2025.00 −0.172262
\(518\) −13597.5 4710.31i −1.15336 0.399535i
\(519\) 1398.00 0.118238
\(520\) 3097.50 5365.03i 0.261220 0.452446i
\(521\) −4804.50 8321.64i −0.404010 0.699765i 0.590196 0.807260i \(-0.299050\pi\)
−0.994206 + 0.107495i \(0.965717\pi\)
\(522\) −5589.00 9680.43i −0.468628 0.811688i
\(523\) −10594.0 + 18349.3i −0.885742 + 1.53415i −0.0408820 + 0.999164i \(0.513017\pi\)
−0.844860 + 0.534987i \(0.820317\pi\)
\(524\) 2019.00 0.168321
\(525\) 175.000 + 909.327i 0.0145479 + 0.0755929i
\(526\) −9864.00 −0.817663
\(527\) −2376.00 + 4115.35i −0.196395 + 0.340166i
\(528\) 3195.00 + 5533.90i 0.263342 + 0.456122i
\(529\) 3703.00 + 6413.78i 0.304348 + 0.527146i
\(530\) −4477.50 + 7755.26i −0.366963 + 0.635598i
\(531\) 8280.00 0.676688
\(532\) 1694.00 1467.05i 0.138053 0.119557i
\(533\) 11505.0 0.934966
\(534\) −3582.00 + 6204.21i −0.290278 + 0.502776i
\(535\) 1830.00 + 3169.65i 0.147884 + 0.256142i
\(536\) −2940.00 5092.23i −0.236919 0.410356i
\(537\) 3117.00 5398.80i 0.250481 0.433846i
\(538\) −9792.00 −0.784690
\(539\) 14332.5 5728.76i 1.14535 0.457802i
\(540\) 500.000 0.0398455
\(541\) −4036.00 + 6990.56i −0.320742 + 0.555541i −0.980641 0.195813i \(-0.937265\pi\)
0.659900 + 0.751354i \(0.270599\pi\)
\(542\) 4128.00 + 7149.91i 0.327145 + 0.566632i
\(543\) −1798.00 3114.23i −0.142099 0.246122i
\(544\) −1215.00 + 2104.44i −0.0957586 + 0.165859i
\(545\) −8000.00 −0.628775
\(546\) 4956.00 4292.02i 0.388456 0.336413i
\(547\) 344.000 0.0268892 0.0134446 0.999910i \(-0.495720\pi\)
0.0134446 + 0.999910i \(0.495720\pi\)
\(548\) −30.0000 + 51.9615i −0.00233857 + 0.00405052i
\(549\) 4508.00 + 7808.09i 0.350449 + 0.606996i
\(550\) 1687.50 + 2922.84i 0.130828 + 0.226600i
\(551\) −9801.00 + 16975.8i −0.757780 + 1.31251i
\(552\) 2898.00 0.223455
\(553\) −2737.00 14221.9i −0.210468 1.09363i
\(554\) −14070.0 −1.07902
\(555\) −1295.00 + 2243.01i −0.0990445 + 0.171550i
\(556\) 854.000 + 1479.17i 0.0651397 + 0.112825i
\(557\) −9181.50 15902.8i −0.698443 1.20974i −0.969006 0.247036i \(-0.920543\pi\)
0.270563 0.962702i \(-0.412790\pi\)
\(558\) −3036.00 + 5258.51i −0.230330 + 0.398943i
\(559\) −16874.0 −1.27673
\(560\) −6212.50 2152.07i −0.468797 0.162396i
\(561\) −4860.00 −0.365756
\(562\) −11731.5 + 20319.6i −0.880540 + 1.52514i
\(563\) 3147.00 + 5450.76i 0.235578 + 0.408033i 0.959440 0.281912i \(-0.0909685\pi\)
−0.723863 + 0.689944i \(0.757635\pi\)
\(564\) 45.0000 + 77.9423i 0.00335965 + 0.00581908i
\(565\) 3480.00 6027.54i 0.259123 0.448815i
\(566\) −1974.00 −0.146596
\(567\) 7367.50 + 2552.18i 0.545689 + 0.189032i
\(568\) −1008.00 −0.0744626
\(569\) −5866.50 + 10161.1i −0.432226 + 0.748637i −0.997065 0.0765642i \(-0.975605\pi\)
0.564839 + 0.825201i \(0.308938\pi\)
\(570\) −1815.00 3143.67i −0.133372 0.231007i
\(571\) −526.000 911.059i −0.0385506 0.0667717i 0.846106 0.533014i \(-0.178941\pi\)
−0.884657 + 0.466242i \(0.845607\pi\)
\(572\) 1327.50 2299.30i 0.0970377 0.168074i
\(573\) 4776.00 0.348203
\(574\) −2047.50 10639.1i −0.148887 0.773638i
\(575\) 1725.00 0.125109
\(576\) 4979.50 8624.75i 0.360207 0.623897i
\(577\) 6578.00 + 11393.4i 0.474603 + 0.822036i 0.999577 0.0290821i \(-0.00925844\pi\)
−0.524974 + 0.851118i \(0.675925\pi\)
\(578\) 2995.50 + 5188.36i 0.215565 + 0.373369i
\(579\) 272.000 471.118i 0.0195232 0.0338152i
\(580\) −810.000 −0.0579887
\(581\) −10752.0 + 9311.51i −0.767759 + 0.664899i
\(582\) −5412.00 −0.385455
\(583\) 13432.5 23265.8i 0.954232 1.65278i
\(584\) 7014.00 + 12148.6i 0.496989 + 0.860810i
\(585\) 3392.50 + 5875.98i 0.239765 + 0.415285i
\(586\) 8995.50 15580.7i 0.634131 1.09835i
\(587\) −13368.0 −0.939960 −0.469980 0.882677i \(-0.655739\pi\)
−0.469980 + 0.882677i \(0.655739\pi\)
\(588\) −539.000 424.352i −0.0378027 0.0297619i
\(589\) 10648.0 0.744895
\(590\) 2700.00 4676.54i 0.188402 0.326322i
\(591\) −2109.00 3652.90i −0.146790 0.254247i
\(592\) −9194.50 15925.3i −0.638330 1.10562i
\(593\) −13332.0 + 23091.7i −0.923237 + 1.59909i −0.128865 + 0.991662i \(0.541133\pi\)
−0.794372 + 0.607431i \(0.792200\pi\)
\(594\) −13500.0 −0.932511
\(595\) 3780.00 3273.58i 0.260445 0.225552i
\(596\) −1086.00 −0.0746381
\(597\) 1424.00 2466.44i 0.0976222 0.169087i
\(598\) −6106.50 10576.8i −0.417581 0.723271i
\(599\) −3807.00 6593.92i −0.259682 0.449783i 0.706474 0.707739i \(-0.250285\pi\)
−0.966157 + 0.257955i \(0.916951\pi\)
\(600\) −525.000 + 909.327i −0.0357217 + 0.0618718i
\(601\) 6410.00 0.435057 0.217529 0.976054i \(-0.430200\pi\)
0.217529 + 0.976054i \(0.430200\pi\)
\(602\) 3003.00 + 15604.0i 0.203311 + 1.05643i
\(603\) 6440.00 0.434921
\(604\) 1433.00 2482.03i 0.0965363 0.167206i
\(605\) −1735.00 3005.11i −0.116591 0.201942i
\(606\) 2052.00 + 3554.17i 0.137552 + 0.238248i
\(607\) 10734.5 18592.7i 0.717792 1.24325i −0.244080 0.969755i \(-0.578486\pi\)
0.961873 0.273498i \(-0.0881806\pi\)
\(608\) 5445.00 0.363197
\(609\) 5670.00 + 1964.15i 0.377274 + 0.130692i
\(610\) 5880.00 0.390286
\(611\) −1327.50 + 2299.30i −0.0878967 + 0.152242i
\(612\) −621.000 1075.60i −0.0410171 0.0710436i
\(613\) −1868.50 3236.34i −0.123113 0.213237i 0.797881 0.602815i \(-0.205954\pi\)
−0.920994 + 0.389578i \(0.872621\pi\)
\(614\) 9339.00 16175.6i 0.613830 1.06318i
\(615\) −1950.00 −0.127856
\(616\) 16537.5 + 5728.76i 1.08168 + 0.374705i
\(617\) 18078.0 1.17957 0.589784 0.807561i \(-0.299213\pi\)
0.589784 + 0.807561i \(0.299213\pi\)
\(618\) −4548.00 + 7877.37i −0.296031 + 0.512741i
\(619\) −6143.50 10640.9i −0.398915 0.690940i 0.594678 0.803964i \(-0.297280\pi\)
−0.993592 + 0.113024i \(0.963946\pi\)
\(620\) 220.000 + 381.051i 0.0142507 + 0.0246829i
\(621\) −3450.00 + 5975.58i −0.222937 + 0.386138i
\(622\) 14040.0 0.905069
\(623\) 4179.00 + 21714.7i 0.268745 + 1.39644i
\(624\) 8378.00 0.537481
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −1542.00 2670.82i −0.0984516 0.170523i
\(627\) 5445.00 + 9431.02i 0.346814 + 0.600699i
\(628\) 114.500 198.320i 0.00727555 0.0126016i
\(629\) 13986.0 0.886579
\(630\) 4830.00 4182.90i 0.305447 0.264525i
\(631\) −9580.00 −0.604396 −0.302198 0.953245i \(-0.597720\pi\)
−0.302198 + 0.953245i \(0.597720\pi\)
\(632\) 8211.00 14221.9i 0.516798 0.895120i
\(633\) −3625.00 6278.68i −0.227616 0.394242i
\(634\) −12933.0 22400.6i −0.810150 1.40322i
\(635\) −2007.50 + 3477.09i −0.125457 + 0.217298i
\(636\) −1194.00 −0.0744421
\(637\) 2891.00 20029.4i 0.179820 1.24583i
\(638\) 21870.0 1.35712
\(639\) 552.000 956.092i 0.0341734 0.0591900i
\(640\) −4147.50 7183.68i −0.256163 0.443687i
\(641\) −5389.50 9334.89i −0.332094 0.575204i 0.650828 0.759225i \(-0.274422\pi\)
−0.982922 + 0.184021i \(0.941089\pi\)
\(642\) −2196.00 + 3803.58i −0.134999 + 0.233825i
\(643\) 8882.00 0.544746 0.272373 0.962192i \(-0.412191\pi\)
0.272373 + 0.962192i \(0.412191\pi\)
\(644\) −966.000 + 836.581i −0.0591083 + 0.0511893i
\(645\) 2860.00 0.174593
\(646\) −9801.00 + 16975.8i −0.596928 + 1.03391i
\(647\) 5509.50 + 9542.73i 0.334777 + 0.579851i 0.983442 0.181223i \(-0.0580056\pi\)
−0.648665 + 0.761074i \(0.724672\pi\)
\(648\) 4420.50 + 7656.53i 0.267984 + 0.464162i
\(649\) −8100.00 + 14029.6i −0.489912 + 0.848552i
\(650\) 4425.00 0.267020
\(651\) −616.000 3200.83i −0.0370859 0.192704i
\(652\) −1228.00 −0.0737610
\(653\) −11161.5 + 19332.3i −0.668887 + 1.15855i 0.309329 + 0.950955i \(0.399896\pi\)
−0.978216 + 0.207591i \(0.933438\pi\)
\(654\) −4800.00 8313.84i −0.286995 0.497090i
\(655\) −5047.50 8742.53i −0.301103 0.521525i
\(656\) 6922.50 11990.1i 0.412009 0.713621i
\(657\) −15364.0 −0.912339
\(658\) 2362.50 + 818.394i 0.139969 + 0.0484868i
\(659\) −11856.0 −0.700826 −0.350413 0.936595i \(-0.613959\pi\)
−0.350413 + 0.936595i \(0.613959\pi\)
\(660\) −225.000 + 389.711i −0.0132699 + 0.0229841i
\(661\) 16622.0 + 28790.1i 0.978095 + 1.69411i 0.669318 + 0.742976i \(0.266586\pi\)
0.308777 + 0.951134i \(0.400080\pi\)
\(662\) 2998.50 + 5193.55i 0.176042 + 0.304914i
\(663\) −3186.00 + 5518.31i −0.186627 + 0.323248i
\(664\) −16128.0 −0.942602
\(665\) −10587.5 3667.62i −0.617392 0.213871i
\(666\) 17871.0 1.03977
\(667\) 5589.00 9680.43i 0.324448 0.561961i
\(668\) 964.500 + 1670.56i 0.0558647 + 0.0967605i
\(669\) −4960.00 8590.97i −0.286644 0.496482i
\(670\) 2100.00 3637.31i 0.121090 0.209733i
\(671\) −17640.0 −1.01488
\(672\) −315.000 1636.79i −0.0180824 0.0939590i
\(673\) −12322.0 −0.705763 −0.352881 0.935668i \(-0.614798\pi\)
−0.352881 + 0.935668i \(0.614798\pi\)
\(674\) −7671.00 + 13286.6i −0.438392 + 0.759316i
\(675\) −1250.00 2165.06i −0.0712778 0.123457i
\(676\) −642.000 1111.98i −0.0365271 0.0632668i
\(677\) 6298.50 10909.3i 0.357564 0.619320i −0.629989 0.776604i \(-0.716941\pi\)
0.987553 + 0.157285i \(0.0502740\pi\)
\(678\) 8352.00 0.473092
\(679\) −12628.0 + 10936.2i −0.713723 + 0.618103i
\(680\) 5670.00 0.319757
\(681\) −1500.00 + 2598.08i −0.0844055 + 0.146195i
\(682\) −5940.00 10288.4i −0.333511 0.577658i
\(683\) 4170.00 + 7222.65i 0.233617 + 0.404637i 0.958870 0.283846i \(-0.0916104\pi\)
−0.725253 + 0.688483i \(0.758277\pi\)
\(684\) −1391.50 + 2410.15i −0.0777856 + 0.134729i
\(685\) 300.000 0.0167334
\(686\) −19036.5 + 891.140i −1.05950 + 0.0495975i
\(687\) −12184.0 −0.676636
\(688\) −10153.0 + 17585.5i −0.562616 + 0.974479i
\(689\) −17611.5 30504.0i −0.973795 1.68666i
\(690\) 1035.00 + 1792.67i 0.0571040 + 0.0989071i
\(691\) 10100.0 17493.7i 0.556038 0.963086i −0.441784 0.897121i \(-0.645654\pi\)
0.997822 0.0659643i \(-0.0210124\pi\)
\(692\) −699.000 −0.0383988
\(693\) −14490.0 + 12548.7i −0.794271 + 0.687859i
\(694\) 12960.0 0.708869
\(695\) 4270.00 7395.86i 0.233051 0.403656i
\(696\) 3402.00 + 5892.44i 0.185277 + 0.320908i
\(697\) 5265.00 + 9119.25i 0.286121 + 0.495576i
\(698\) −11883.0 + 20582.0i −0.644381 + 1.11610i
\(699\) −276.000 −0.0149346
\(700\) −87.5000 454.663i −0.00472456 0.0245495i
\(701\) 474.000 0.0255388 0.0127694 0.999918i \(-0.495935\pi\)
0.0127694 + 0.999918i \(0.495935\pi\)
\(702\) −8850.00 + 15328.6i −0.475814 + 0.824135i
\(703\) −15669.5 27140.4i −0.840663 1.45607i
\(704\) 9742.50 + 16874.5i 0.521569 + 0.903383i
\(705\) 225.000 389.711i 0.0120198 0.0208190i
\(706\) 2484.00 0.132417
\(707\) 11970.0 + 4146.53i 0.636744 + 0.220575i
\(708\) 720.000 0.0382193
\(709\) 12563.0 21759.8i 0.665463 1.15262i −0.313696 0.949523i \(-0.601567\pi\)
0.979160 0.203093i \(-0.0650993\pi\)
\(710\) −360.000 623.538i −0.0190290 0.0329591i
\(711\) 8993.00 + 15576.3i 0.474351 + 0.821601i
\(712\) −12537.0 + 21714.7i −0.659893 + 1.14297i
\(713\) −6072.00 −0.318932
\(714\) 5670.00 + 1964.15i 0.297191 + 0.102950i
\(715\) −13275.0 −0.694345
\(716\) −1558.50 + 2699.40i −0.0813462 + 0.140896i
\(717\) −5502.00 9529.74i −0.286577 0.496367i
\(718\) 2025.00 + 3507.40i 0.105254 + 0.182305i
\(719\) 3648.00 6318.52i 0.189218 0.327734i −0.755772 0.654835i \(-0.772738\pi\)
0.944990 + 0.327100i \(0.106072\pi\)
\(720\) 8165.00 0.422627
\(721\) 5306.00 + 27570.8i 0.274072 + 1.42412i
\(722\) 23346.0 1.20339
\(723\) 3551.00 6150.51i 0.182660 0.316376i
\(724\) 899.000 + 1557.11i 0.0461479 + 0.0799305i
\(725\) 2025.00 + 3507.40i 0.103733 + 0.179671i
\(726\) 2082.00 3606.13i 0.106433 0.184347i
\(727\) −15421.0 −0.786703 −0.393352 0.919388i \(-0.628684\pi\)
−0.393352 + 0.919388i \(0.628684\pi\)
\(728\) 17346.0 15022.1i 0.883085 0.764774i
\(729\) −4283.00 −0.217599
\(730\) −5010.00 + 8677.57i −0.254012 + 0.439961i
\(731\) −7722.00 13374.9i −0.390709 0.676728i
\(732\) 392.000 + 678.964i 0.0197934 + 0.0342831i
\(733\) 14583.5 25259.4i 0.734862 1.27282i −0.219922 0.975517i \(-0.570580\pi\)
0.954784 0.297301i \(-0.0960864\pi\)
\(734\) 8403.00 0.422562
\(735\) −490.000 + 3394.82i −0.0245904 + 0.170367i
\(736\) −3105.00 −0.155505
\(737\) −6300.00 + 10911.9i −0.314876 + 0.545381i
\(738\) 6727.50 + 11652.4i 0.335559 + 0.581206i
\(739\) 6690.50 + 11588.3i 0.333037 + 0.576836i 0.983106 0.183039i \(-0.0585934\pi\)
−0.650069 + 0.759875i \(0.725260\pi\)
\(740\) 647.500 1121.50i 0.0321656 0.0557125i
\(741\) 14278.0 0.707848
\(742\) −25074.0 + 21714.7i −1.24056 + 1.07436i
\(743\) 5487.00 0.270927 0.135463 0.990782i \(-0.456748\pi\)
0.135463 + 0.990782i \(0.456748\pi\)
\(744\) 1848.00 3200.83i 0.0910631 0.157726i
\(745\) 2715.00 + 4702.52i 0.133517 + 0.231258i
\(746\) −9903.00 17152.5i −0.486025 0.841820i
\(747\) 8832.00 15297.5i 0.432592 0.749271i
\(748\) 2430.00 0.118783
\(749\) 2562.00 + 13312.5i 0.124985 + 0.649439i
\(750\) −750.000 −0.0365148
\(751\) −3319.00 + 5748.68i −0.161268 + 0.279324i −0.935324 0.353793i \(-0.884892\pi\)
0.774056 + 0.633117i \(0.218225\pi\)
\(752\) 1597.50 + 2766.95i 0.0774665 + 0.134176i
\(753\) 7065.00 + 12236.9i 0.341916 + 0.592216i
\(754\) 14337.0 24832.4i 0.692470 1.19939i
\(755\) −14330.0 −0.690758
\(756\) 1750.00 + 606.218i 0.0841890 + 0.0291639i
\(757\) 14846.0 0.712797 0.356398 0.934334i \(-0.384005\pi\)
0.356398 + 0.934334i \(0.384005\pi\)
\(758\) 12457.5 21577.0i 0.596935 1.03392i
\(759\) −3105.00 5378.02i −0.148491 0.257193i
\(760\) −6352.50 11002.9i −0.303197 0.525152i
\(761\) 1825.50 3161.86i 0.0869571 0.150614i −0.819266 0.573413i \(-0.805619\pi\)
0.906223 + 0.422799i \(0.138952\pi\)
\(762\) −4818.00 −0.229052
\(763\) −28000.0 9699.48i −1.32853 0.460216i
\(764\) −2388.00 −0.113082
\(765\) −3105.00 + 5378.02i −0.146747 + 0.254173i
\(766\) −1417.50 2455.18i −0.0668621 0.115809i