Properties

Label 35.4.b.a.29.8
Level $35$
Weight $4$
Character 35.29
Analytic conductor $2.065$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,4,Mod(29,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.29");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.06506685020\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 55x^{8} + 983x^{6} + 6409x^{4} + 13560x^{2} + 3600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 29.8
Root \(1.85474i\) of defining polynomial
Character \(\chi\) \(=\) 35.29
Dual form 35.4.b.a.29.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.85474i q^{2} -8.98858i q^{3} -0.149548 q^{4} +(3.91321 - 10.4731i) q^{5} +25.6601 q^{6} +7.00000i q^{7} +22.4110i q^{8} -53.7945 q^{9} +(29.8981 + 11.1712i) q^{10} +37.4408 q^{11} +1.34423i q^{12} -3.96370i q^{13} -19.9832 q^{14} +(-94.1387 - 35.1742i) q^{15} -65.1740 q^{16} +51.6780i q^{17} -153.569i q^{18} -25.9323 q^{19} +(-0.585214 + 1.56624i) q^{20} +62.9200 q^{21} +106.884i q^{22} +173.454i q^{23} +201.443 q^{24} +(-94.3736 - 81.9673i) q^{25} +11.3154 q^{26} +240.845i q^{27} -1.04684i q^{28} +245.676 q^{29} +(100.413 - 268.742i) q^{30} -172.074 q^{31} -6.76690i q^{32} -336.539i q^{33} -147.527 q^{34} +(73.3120 + 27.3925i) q^{35} +8.04488 q^{36} -250.699i q^{37} -74.0300i q^{38} -35.6281 q^{39} +(234.714 + 87.6990i) q^{40} -48.8649 q^{41} +179.620i q^{42} +143.612i q^{43} -5.59920 q^{44} +(-210.509 + 563.398i) q^{45} -495.167 q^{46} -36.6415i q^{47} +585.822i q^{48} -49.0000 q^{49} +(233.995 - 269.412i) q^{50} +464.511 q^{51} +0.592765i q^{52} -645.286i q^{53} -687.549 q^{54} +(146.514 - 392.123i) q^{55} -156.877 q^{56} +233.094i q^{57} +701.343i q^{58} -395.495 q^{59} +(14.0783 + 5.26024i) q^{60} +47.5130 q^{61} -491.228i q^{62} -376.562i q^{63} -502.074 q^{64} +(-41.5125 - 15.5108i) q^{65} +960.733 q^{66} +263.189i q^{67} -7.72835i q^{68} +1559.11 q^{69} +(-78.1984 + 209.287i) q^{70} -268.177 q^{71} -1205.59i q^{72} -199.757i q^{73} +715.680 q^{74} +(-736.769 + 848.284i) q^{75} +3.87813 q^{76} +262.085i q^{77} -101.709i q^{78} -473.640 q^{79} +(-255.040 + 682.577i) q^{80} +712.399 q^{81} -139.497i q^{82} +72.7028i q^{83} -9.40958 q^{84} +(541.231 + 202.227i) q^{85} -409.975 q^{86} -2208.28i q^{87} +839.086i q^{88} +1552.25 q^{89} +(-1608.36 - 600.950i) q^{90} +27.7459 q^{91} -25.9398i q^{92} +1546.70i q^{93} +104.602 q^{94} +(-101.478 + 271.593i) q^{95} -60.8248 q^{96} +243.338i q^{97} -139.882i q^{98} -2014.11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 36 q^{4} + 6 q^{5} + 12 q^{6} - 46 q^{9} - 16 q^{10} + 84 q^{11} - 56 q^{14} + 8 q^{15} + 148 q^{16} + 72 q^{19} - 68 q^{20} + 140 q^{21} + 72 q^{24} - 362 q^{25} - 620 q^{26} + 88 q^{29} + 52 q^{30}+ \cdots - 5304 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/35\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.85474i 1.00930i 0.863323 + 0.504652i \(0.168379\pi\)
−0.863323 + 0.504652i \(0.831621\pi\)
\(3\) 8.98858i 1.72985i −0.501899 0.864926i \(-0.667365\pi\)
0.501899 0.864926i \(-0.332635\pi\)
\(4\) −0.149548 −0.0186935
\(5\) 3.91321 10.4731i 0.350008 0.936747i
\(6\) 25.6601 1.74595
\(7\) 7.00000i 0.377964i
\(8\) 22.4110i 0.990436i
\(9\) −53.7945 −1.99239
\(10\) 29.8981 + 11.1712i 0.945462 + 0.353265i
\(11\) 37.4408 1.02626 0.513128 0.858312i \(-0.328487\pi\)
0.513128 + 0.858312i \(0.328487\pi\)
\(12\) 1.34423i 0.0323371i
\(13\) 3.96370i 0.0845641i −0.999106 0.0422821i \(-0.986537\pi\)
0.999106 0.0422821i \(-0.0134628\pi\)
\(14\) −19.9832 −0.381481
\(15\) −94.1387 35.1742i −1.62043 0.605463i
\(16\) −65.1740 −1.01834
\(17\) 51.6780i 0.737279i 0.929572 + 0.368640i \(0.120176\pi\)
−0.929572 + 0.368640i \(0.879824\pi\)
\(18\) 153.569i 2.01093i
\(19\) −25.9323 −0.313120 −0.156560 0.987668i \(-0.550040\pi\)
−0.156560 + 0.987668i \(0.550040\pi\)
\(20\) −0.585214 + 1.56624i −0.00654289 + 0.0175111i
\(21\) 62.9200 0.653823
\(22\) 106.884i 1.03580i
\(23\) 173.454i 1.57251i 0.617902 + 0.786255i \(0.287983\pi\)
−0.617902 + 0.786255i \(0.712017\pi\)
\(24\) 201.443 1.71331
\(25\) −94.3736 81.9673i −0.754988 0.655738i
\(26\) 11.3154 0.0853509
\(27\) 240.845i 1.71669i
\(28\) 1.04684i 0.00706549i
\(29\) 245.676 1.57314 0.786568 0.617503i \(-0.211856\pi\)
0.786568 + 0.617503i \(0.211856\pi\)
\(30\) 100.413 268.742i 0.611096 1.63551i
\(31\) −172.074 −0.996951 −0.498475 0.866904i \(-0.666107\pi\)
−0.498475 + 0.866904i \(0.666107\pi\)
\(32\) 6.76690i 0.0373822i
\(33\) 336.539i 1.77527i
\(34\) −147.527 −0.744139
\(35\) 73.3120 + 27.3925i 0.354057 + 0.132291i
\(36\) 8.04488 0.0372448
\(37\) 250.699i 1.11391i −0.830543 0.556954i \(-0.811970\pi\)
0.830543 0.556954i \(-0.188030\pi\)
\(38\) 74.0300i 0.316033i
\(39\) −35.6281 −0.146283
\(40\) 234.714 + 87.6990i 0.927788 + 0.346661i
\(41\) −48.8649 −0.186132 −0.0930661 0.995660i \(-0.529667\pi\)
−0.0930661 + 0.995660i \(0.529667\pi\)
\(42\) 179.620i 0.659906i
\(43\) 143.612i 0.509317i 0.967031 + 0.254658i \(0.0819630\pi\)
−0.967031 + 0.254658i \(0.918037\pi\)
\(44\) −5.59920 −0.0191844
\(45\) −210.509 + 563.398i −0.697353 + 1.86636i
\(46\) −495.167 −1.58714
\(47\) 36.6415i 0.113717i −0.998382 0.0568587i \(-0.981892\pi\)
0.998382 0.0568587i \(-0.0181085\pi\)
\(48\) 585.822i 1.76159i
\(49\) −49.0000 −0.142857
\(50\) 233.995 269.412i 0.661839 0.762012i
\(51\) 464.511 1.27538
\(52\) 0.592765i 0.00158080i
\(53\) 645.286i 1.67239i −0.548430 0.836196i \(-0.684774\pi\)
0.548430 0.836196i \(-0.315226\pi\)
\(54\) −687.549 −1.73266
\(55\) 146.514 392.123i 0.359198 0.961342i
\(56\) −156.877 −0.374350
\(57\) 233.094i 0.541651i
\(58\) 701.343i 1.58777i
\(59\) −395.495 −0.872696 −0.436348 0.899778i \(-0.643728\pi\)
−0.436348 + 0.899778i \(0.643728\pi\)
\(60\) 14.0783 + 5.26024i 0.0302916 + 0.0113182i
\(61\) 47.5130 0.0997282 0.0498641 0.998756i \(-0.484121\pi\)
0.0498641 + 0.998756i \(0.484121\pi\)
\(62\) 491.228i 1.00623i
\(63\) 376.562i 0.753053i
\(64\) −502.074 −0.980614
\(65\) −41.5125 15.5108i −0.0792152 0.0295981i
\(66\) 960.733 1.79179
\(67\) 263.189i 0.479906i 0.970785 + 0.239953i \(0.0771320\pi\)
−0.970785 + 0.239953i \(0.922868\pi\)
\(68\) 7.72835i 0.0137824i
\(69\) 1559.11 2.72021
\(70\) −78.1984 + 209.287i −0.133521 + 0.357351i
\(71\) −268.177 −0.448264 −0.224132 0.974559i \(-0.571955\pi\)
−0.224132 + 0.974559i \(0.571955\pi\)
\(72\) 1205.59i 1.97333i
\(73\) 199.757i 0.320271i −0.987095 0.160136i \(-0.948807\pi\)
0.987095 0.160136i \(-0.0511931\pi\)
\(74\) 715.680 1.12427
\(75\) −736.769 + 848.284i −1.13433 + 1.30602i
\(76\) 3.87813 0.00585331
\(77\) 262.085i 0.387888i
\(78\) 101.709i 0.147644i
\(79\) −473.640 −0.674540 −0.337270 0.941408i \(-0.609503\pi\)
−0.337270 + 0.941408i \(0.609503\pi\)
\(80\) −255.040 + 682.577i −0.356429 + 0.953930i
\(81\) 712.399 0.977227
\(82\) 139.497i 0.187864i
\(83\) 72.7028i 0.0961466i 0.998844 + 0.0480733i \(0.0153081\pi\)
−0.998844 + 0.0480733i \(0.984692\pi\)
\(84\) −9.40958 −0.0122223
\(85\) 541.231 + 202.227i 0.690644 + 0.258054i
\(86\) −409.975 −0.514055
\(87\) 2208.28i 2.72129i
\(88\) 839.086i 1.01644i
\(89\) 1552.25 1.84874 0.924369 0.381500i \(-0.124592\pi\)
0.924369 + 0.381500i \(0.124592\pi\)
\(90\) −1608.36 600.950i −1.88373 0.703841i
\(91\) 27.7459 0.0319622
\(92\) 25.9398i 0.0293958i
\(93\) 1546.70i 1.72458i
\(94\) 104.602 0.114775
\(95\) −101.478 + 271.593i −0.109594 + 0.293314i
\(96\) −60.8248 −0.0646657
\(97\) 243.338i 0.254714i 0.991857 + 0.127357i \(0.0406494\pi\)
−0.991857 + 0.127357i \(0.959351\pi\)
\(98\) 139.882i 0.144186i
\(99\) −2014.11 −2.04470
\(100\) 14.1134 + 12.2581i 0.0141134 + 0.0122581i
\(101\) −1539.34 −1.51653 −0.758265 0.651946i \(-0.773953\pi\)
−0.758265 + 0.651946i \(0.773953\pi\)
\(102\) 1326.06i 1.28725i
\(103\) 948.628i 0.907486i −0.891133 0.453743i \(-0.850088\pi\)
0.891133 0.453743i \(-0.149912\pi\)
\(104\) 88.8306 0.0837554
\(105\) 246.219 658.971i 0.228843 0.612466i
\(106\) 1842.12 1.68795
\(107\) 863.983i 0.780602i 0.920687 + 0.390301i \(0.127629\pi\)
−0.920687 + 0.390301i \(0.872371\pi\)
\(108\) 36.0179i 0.0320910i
\(109\) −886.319 −0.778844 −0.389422 0.921060i \(-0.627325\pi\)
−0.389422 + 0.921060i \(0.627325\pi\)
\(110\) 1119.41 + 418.259i 0.970286 + 0.362540i
\(111\) −2253.42 −1.92690
\(112\) 456.218i 0.384898i
\(113\) 765.957i 0.637657i −0.947812 0.318828i \(-0.896711\pi\)
0.947812 0.318828i \(-0.103289\pi\)
\(114\) −665.424 −0.546690
\(115\) 1816.61 + 678.763i 1.47304 + 0.550391i
\(116\) −36.7405 −0.0294075
\(117\) 213.226i 0.168485i
\(118\) 1129.04i 0.880816i
\(119\) −361.746 −0.278665
\(120\) 788.289 2109.74i 0.599672 1.60494i
\(121\) 70.8116 0.0532018
\(122\) 135.637i 0.100656i
\(123\) 439.226i 0.321981i
\(124\) 25.7334 0.0186365
\(125\) −1227.76 + 667.633i −0.878513 + 0.477719i
\(126\) 1074.99 0.760059
\(127\) 505.042i 0.352876i 0.984312 + 0.176438i \(0.0564575\pi\)
−0.984312 + 0.176438i \(0.943543\pi\)
\(128\) 1487.43i 1.02712i
\(129\) 1290.87 0.881043
\(130\) 44.2794 118.507i 0.0298735 0.0799521i
\(131\) 672.930 0.448811 0.224405 0.974496i \(-0.427956\pi\)
0.224405 + 0.974496i \(0.427956\pi\)
\(132\) 50.3289i 0.0331861i
\(133\) 181.526i 0.118348i
\(134\) −751.337 −0.484371
\(135\) 2522.40 + 942.476i 1.60810 + 0.600855i
\(136\) −1158.16 −0.730228
\(137\) 1552.28i 0.968032i 0.875059 + 0.484016i \(0.160822\pi\)
−0.875059 + 0.484016i \(0.839178\pi\)
\(138\) 4450.85i 2.74552i
\(139\) 1072.02 0.654154 0.327077 0.944998i \(-0.393936\pi\)
0.327077 + 0.944998i \(0.393936\pi\)
\(140\) −10.9637 4.09650i −0.00661857 0.00247298i
\(141\) −329.355 −0.196714
\(142\) 765.575i 0.452434i
\(143\) 148.404i 0.0867845i
\(144\) 3506.01 2.02894
\(145\) 961.384 2573.00i 0.550611 1.47363i
\(146\) 570.255 0.323251
\(147\) 440.440i 0.247122i
\(148\) 37.4915i 0.0208229i
\(149\) −645.936 −0.355149 −0.177574 0.984107i \(-0.556825\pi\)
−0.177574 + 0.984107i \(0.556825\pi\)
\(150\) −2421.63 2103.29i −1.31817 1.14488i
\(151\) 243.194 0.131065 0.0655326 0.997850i \(-0.479125\pi\)
0.0655326 + 0.997850i \(0.479125\pi\)
\(152\) 581.169i 0.310125i
\(153\) 2779.99i 1.46895i
\(154\) −748.186 −0.391497
\(155\) −673.363 + 1802.16i −0.348941 + 0.933890i
\(156\) 5.32811 0.00273455
\(157\) 1552.56i 0.789223i −0.918848 0.394611i \(-0.870879\pi\)
0.918848 0.394611i \(-0.129121\pi\)
\(158\) 1352.12i 0.680815i
\(159\) −5800.20 −2.89299
\(160\) −70.8707 26.4803i −0.0350176 0.0130841i
\(161\) −1214.18 −0.594353
\(162\) 2033.71i 0.986319i
\(163\) 2553.65i 1.22710i −0.789656 0.613550i \(-0.789741\pi\)
0.789656 0.613550i \(-0.210259\pi\)
\(164\) 7.30766 0.00347947
\(165\) −3524.63 1316.95i −1.66298 0.621360i
\(166\) −207.548 −0.0970411
\(167\) 3573.14i 1.65568i 0.560966 + 0.827839i \(0.310430\pi\)
−0.560966 + 0.827839i \(0.689570\pi\)
\(168\) 1410.10i 0.647570i
\(169\) 2181.29 0.992849
\(170\) −577.305 + 1545.07i −0.260455 + 0.697069i
\(171\) 1395.01 0.623856
\(172\) 21.4769i 0.00952093i
\(173\) 2234.71i 0.982090i −0.871134 0.491045i \(-0.836615\pi\)
0.871134 0.491045i \(-0.163385\pi\)
\(174\) 6304.07 2.74661
\(175\) 573.771 660.615i 0.247846 0.285359i
\(176\) −2440.17 −1.04508
\(177\) 3554.94i 1.50964i
\(178\) 4431.26i 1.86594i
\(179\) 1830.53 0.764361 0.382180 0.924088i \(-0.375173\pi\)
0.382180 + 0.924088i \(0.375173\pi\)
\(180\) 31.4813 84.2552i 0.0130360 0.0348889i
\(181\) 2437.22 1.00087 0.500433 0.865775i \(-0.333174\pi\)
0.500433 + 0.865775i \(0.333174\pi\)
\(182\) 79.2075i 0.0322596i
\(183\) 427.075i 0.172515i
\(184\) −3887.29 −1.55747
\(185\) −2625.60 981.037i −1.04345 0.389877i
\(186\) −4415.44 −1.74062
\(187\) 1934.86i 0.756638i
\(188\) 5.47968i 0.00212578i
\(189\) −1685.91 −0.648847
\(190\) −775.327 289.695i −0.296043 0.110614i
\(191\) 5079.50 1.92429 0.962145 0.272538i \(-0.0878632\pi\)
0.962145 + 0.272538i \(0.0878632\pi\)
\(192\) 4512.93i 1.69632i
\(193\) 2805.09i 1.04619i 0.852274 + 0.523095i \(0.175223\pi\)
−0.852274 + 0.523095i \(0.824777\pi\)
\(194\) −694.667 −0.257084
\(195\) −139.420 + 373.138i −0.0512004 + 0.137031i
\(196\) 7.32786 0.00267050
\(197\) 3107.79i 1.12396i −0.827149 0.561982i \(-0.810039\pi\)
0.827149 0.561982i \(-0.189961\pi\)
\(198\) 5749.76i 2.06373i
\(199\) 2145.63 0.764321 0.382161 0.924096i \(-0.375180\pi\)
0.382161 + 0.924096i \(0.375180\pi\)
\(200\) 1836.97 2115.01i 0.649467 0.747768i
\(201\) 2365.70 0.830166
\(202\) 4394.41i 1.53064i
\(203\) 1719.73i 0.594590i
\(204\) −69.4669 −0.0238414
\(205\) −191.219 + 511.769i −0.0651478 + 0.174359i
\(206\) 2708.09 0.915929
\(207\) 9330.89i 3.13305i
\(208\) 258.331i 0.0861154i
\(209\) −970.925 −0.321341
\(210\) 1881.19 + 702.893i 0.618164 + 0.230972i
\(211\) 2837.45 0.925772 0.462886 0.886418i \(-0.346814\pi\)
0.462886 + 0.886418i \(0.346814\pi\)
\(212\) 96.5013i 0.0312629i
\(213\) 2410.53i 0.775430i
\(214\) −2466.45 −0.787864
\(215\) 1504.07 + 561.984i 0.477101 + 0.178265i
\(216\) −5397.57 −1.70027
\(217\) 1204.52i 0.376812i
\(218\) 2530.21i 0.786089i
\(219\) −1795.53 −0.554022
\(220\) −21.9109 + 58.6413i −0.00671468 + 0.0179709i
\(221\) 204.836 0.0623474
\(222\) 6432.94i 1.94482i
\(223\) 4741.40i 1.42380i 0.702280 + 0.711901i \(0.252166\pi\)
−0.702280 + 0.711901i \(0.747834\pi\)
\(224\) 47.3683 0.0141291
\(225\) 5076.78 + 4409.39i 1.50423 + 1.30649i
\(226\) 2186.61 0.643589
\(227\) 960.790i 0.280925i −0.990086 0.140462i \(-0.955141\pi\)
0.990086 0.140462i \(-0.0448589\pi\)
\(228\) 34.8589i 0.0101254i
\(229\) −744.006 −0.214696 −0.107348 0.994222i \(-0.534236\pi\)
−0.107348 + 0.994222i \(0.534236\pi\)
\(230\) −1937.69 + 5185.96i −0.555512 + 1.48675i
\(231\) 2355.78 0.670990
\(232\) 5505.86i 1.55809i
\(233\) 1550.56i 0.435968i −0.975952 0.217984i \(-0.930052\pi\)
0.975952 0.217984i \(-0.0699480\pi\)
\(234\) −608.704 −0.170052
\(235\) −383.752 143.386i −0.106524 0.0398020i
\(236\) 59.1456 0.0163138
\(237\) 4257.35i 1.16685i
\(238\) 1032.69i 0.281258i
\(239\) −2775.00 −0.751045 −0.375523 0.926813i \(-0.622537\pi\)
−0.375523 + 0.926813i \(0.622537\pi\)
\(240\) 6135.40 + 2292.44i 1.65016 + 0.616569i
\(241\) −2550.20 −0.681630 −0.340815 0.940130i \(-0.610703\pi\)
−0.340815 + 0.940130i \(0.610703\pi\)
\(242\) 202.149i 0.0536968i
\(243\) 99.3558i 0.0262291i
\(244\) −7.10549 −0.00186427
\(245\) −191.747 + 513.184i −0.0500012 + 0.133821i
\(246\) −1253.88 −0.324977
\(247\) 102.788i 0.0264787i
\(248\) 3856.36i 0.987416i
\(249\) 653.494 0.166319
\(250\) −1905.92 3504.93i −0.482164 0.886686i
\(251\) −2933.00 −0.737568 −0.368784 0.929515i \(-0.620226\pi\)
−0.368784 + 0.929515i \(0.620226\pi\)
\(252\) 56.3141i 0.0140772i
\(253\) 6494.26i 1.61380i
\(254\) −1441.76 −0.356159
\(255\) 1817.73 4864.90i 0.446395 1.19471i
\(256\) 229.626 0.0560611
\(257\) 2725.22i 0.661459i 0.943726 + 0.330729i \(0.107295\pi\)
−0.943726 + 0.330729i \(0.892705\pi\)
\(258\) 3685.09i 0.889240i
\(259\) 1754.89 0.421018
\(260\) 6.20811 + 2.31961i 0.00148081 + 0.000553294i
\(261\) −13216.0 −3.13430
\(262\) 1921.04i 0.452986i
\(263\) 3027.26i 0.709767i −0.934910 0.354884i \(-0.884520\pi\)
0.934910 0.354884i \(-0.115480\pi\)
\(264\) 7542.19 1.75829
\(265\) −6758.17 2525.14i −1.56661 0.585351i
\(266\) 518.210 0.119449
\(267\) 13952.5i 3.19804i
\(268\) 39.3595i 0.00897114i
\(269\) 1442.46 0.326946 0.163473 0.986548i \(-0.447730\pi\)
0.163473 + 0.986548i \(0.447730\pi\)
\(270\) −2690.52 + 7200.80i −0.606445 + 1.62306i
\(271\) −6464.45 −1.44903 −0.724516 0.689258i \(-0.757937\pi\)
−0.724516 + 0.689258i \(0.757937\pi\)
\(272\) 3368.06i 0.750804i
\(273\) 249.396i 0.0552900i
\(274\) −4431.36 −0.977038
\(275\) −3533.42 3068.92i −0.774812 0.672955i
\(276\) −233.162 −0.0508503
\(277\) 876.614i 0.190147i −0.995470 0.0950733i \(-0.969691\pi\)
0.995470 0.0950733i \(-0.0303086\pi\)
\(278\) 3060.33i 0.660240i
\(279\) 9256.66 1.98631
\(280\) −613.893 + 1643.00i −0.131025 + 0.350671i
\(281\) 6252.19 1.32731 0.663655 0.748038i \(-0.269004\pi\)
0.663655 + 0.748038i \(0.269004\pi\)
\(282\) 940.224i 0.198544i
\(283\) 2250.07i 0.472625i 0.971677 + 0.236312i \(0.0759389\pi\)
−0.971677 + 0.236312i \(0.924061\pi\)
\(284\) 40.1054 0.00837963
\(285\) 2441.23 + 912.147i 0.507390 + 0.189582i
\(286\) 423.655 0.0875919
\(287\) 342.054i 0.0703513i
\(288\) 364.022i 0.0744799i
\(289\) 2242.39 0.456419
\(290\) 7345.26 + 2744.50i 1.48734 + 0.555733i
\(291\) 2187.26 0.440617
\(292\) 29.8733i 0.00598700i
\(293\) 5917.86i 1.17995i −0.807422 0.589975i \(-0.799138\pi\)
0.807422 0.589975i \(-0.200862\pi\)
\(294\) −1257.34 −0.249421
\(295\) −1547.66 + 4142.08i −0.305451 + 0.817495i
\(296\) 5618.41 1.10325
\(297\) 9017.41i 1.76176i
\(298\) 1843.98i 0.358453i
\(299\) 687.522 0.132978
\(300\) 110.183 126.859i 0.0212046 0.0244141i
\(301\) −1005.28 −0.192504
\(302\) 694.256i 0.132284i
\(303\) 13836.4i 2.62337i
\(304\) 1690.11 0.318864
\(305\) 185.929 497.611i 0.0349057 0.0934200i
\(306\) 7936.16 1.48261
\(307\) 9458.47i 1.75838i −0.476469 0.879191i \(-0.658084\pi\)
0.476469 0.879191i \(-0.341916\pi\)
\(308\) 39.1944i 0.00725100i
\(309\) −8526.81 −1.56982
\(310\) −5144.70 1922.28i −0.942579 0.352187i
\(311\) −7576.78 −1.38148 −0.690739 0.723104i \(-0.742715\pi\)
−0.690739 + 0.723104i \(0.742715\pi\)
\(312\) 798.461i 0.144884i
\(313\) 9172.41i 1.65641i −0.560427 0.828204i \(-0.689363\pi\)
0.560427 0.828204i \(-0.310637\pi\)
\(314\) 4432.16 0.796565
\(315\) −3943.79 1473.57i −0.705419 0.263575i
\(316\) 70.8320 0.0126095
\(317\) 3077.94i 0.545345i 0.962107 + 0.272672i \(0.0879075\pi\)
−0.962107 + 0.272672i \(0.912092\pi\)
\(318\) 16558.1i 2.91991i
\(319\) 9198.31 1.61444
\(320\) −1964.72 + 5258.30i −0.343223 + 0.918587i
\(321\) 7765.98 1.35033
\(322\) 3466.17i 0.599882i
\(323\) 1340.13i 0.230857i
\(324\) −106.538 −0.0182678
\(325\) −324.894 + 374.069i −0.0554519 + 0.0638449i
\(326\) 7290.01 1.23852
\(327\) 7966.75i 1.34728i
\(328\) 1095.11i 0.184352i
\(329\) 256.491 0.0429811
\(330\) 3759.55 10061.9i 0.627141 1.67845i
\(331\) 3234.50 0.537113 0.268557 0.963264i \(-0.413453\pi\)
0.268557 + 0.963264i \(0.413453\pi\)
\(332\) 10.8726i 0.00179732i
\(333\) 13486.2i 2.21934i
\(334\) −10200.4 −1.67108
\(335\) 2756.42 + 1029.92i 0.449550 + 0.167971i
\(336\) −4100.75 −0.665817
\(337\) 3777.84i 0.610658i 0.952247 + 0.305329i \(0.0987665\pi\)
−0.952247 + 0.305329i \(0.901234\pi\)
\(338\) 6227.02i 1.00209i
\(339\) −6884.87 −1.10305
\(340\) −80.9401 30.2427i −0.0129106 0.00482394i
\(341\) −6442.60 −1.02313
\(342\) 3982.41i 0.629660i
\(343\) 343.000i 0.0539949i
\(344\) −3218.49 −0.504446
\(345\) 6101.12 16328.8i 0.952096 2.54815i
\(346\) 6379.51 0.991227
\(347\) 8244.08i 1.27540i 0.770283 + 0.637702i \(0.220115\pi\)
−0.770283 + 0.637702i \(0.779885\pi\)
\(348\) 330.245i 0.0508706i
\(349\) −7173.78 −1.10030 −0.550148 0.835067i \(-0.685429\pi\)
−0.550148 + 0.835067i \(0.685429\pi\)
\(350\) 1885.88 + 1637.97i 0.288014 + 0.250152i
\(351\) 954.637 0.145170
\(352\) 253.358i 0.0383637i
\(353\) 4191.51i 0.631987i −0.948761 0.315994i \(-0.897662\pi\)
0.948761 0.315994i \(-0.102338\pi\)
\(354\) −10148.4 −1.52368
\(355\) −1049.43 + 2808.65i −0.156896 + 0.419910i
\(356\) −232.136 −0.0345594
\(357\) 3251.58i 0.482050i
\(358\) 5225.70i 0.771472i
\(359\) 3136.29 0.461078 0.230539 0.973063i \(-0.425951\pi\)
0.230539 + 0.973063i \(0.425951\pi\)
\(360\) −12626.3 4717.73i −1.84851 0.690683i
\(361\) −6186.52 −0.901956
\(362\) 6957.62i 1.01018i
\(363\) 636.496i 0.0920313i
\(364\) −4.14936 −0.000597487
\(365\) −2092.08 781.691i −0.300013 0.112098i
\(366\) 1219.19 0.174120
\(367\) 1723.30i 0.245110i −0.992462 0.122555i \(-0.960891\pi\)
0.992462 0.122555i \(-0.0391088\pi\)
\(368\) 11304.7i 1.60136i
\(369\) 2628.67 0.370848
\(370\) 2800.61 7495.42i 0.393504 1.05316i
\(371\) 4517.00 0.632105
\(372\) 231.307i 0.0322384i
\(373\) 2818.55i 0.391258i −0.980678 0.195629i \(-0.937325\pi\)
0.980678 0.195629i \(-0.0626748\pi\)
\(374\) −5523.53 −0.763677
\(375\) 6001.07 + 11035.8i 0.826384 + 1.51970i
\(376\) 821.174 0.112630
\(377\) 973.788i 0.133031i
\(378\) 4812.84i 0.654884i
\(379\) 10466.1 1.41849 0.709246 0.704961i \(-0.249036\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(380\) 15.1759 40.6162i 0.00204871 0.00548307i
\(381\) 4539.61 0.610423
\(382\) 14500.6i 1.94219i
\(383\) 258.055i 0.0344282i 0.999852 + 0.0172141i \(0.00547969\pi\)
−0.999852 + 0.0172141i \(0.994520\pi\)
\(384\) −13369.9 −1.77677
\(385\) 2744.86 + 1025.60i 0.363353 + 0.135764i
\(386\) −8007.81 −1.05592
\(387\) 7725.54i 1.01476i
\(388\) 36.3908i 0.00476150i
\(389\) −4573.87 −0.596156 −0.298078 0.954542i \(-0.596346\pi\)
−0.298078 + 0.954542i \(0.596346\pi\)
\(390\) −1065.21 398.008i −0.138305 0.0516768i
\(391\) −8963.77 −1.15938
\(392\) 1098.14i 0.141491i
\(393\) 6048.69i 0.776376i
\(394\) 8871.94 1.13442
\(395\) −1853.45 + 4960.50i −0.236094 + 0.631873i
\(396\) 301.206 0.0382227
\(397\) 3624.55i 0.458215i 0.973401 + 0.229107i \(0.0735807\pi\)
−0.973401 + 0.229107i \(0.926419\pi\)
\(398\) 6125.23i 0.771432i
\(399\) −1631.66 −0.204725
\(400\) 6150.70 + 5342.14i 0.768838 + 0.667767i
\(401\) 6358.32 0.791819 0.395910 0.918289i \(-0.370429\pi\)
0.395910 + 0.918289i \(0.370429\pi\)
\(402\) 6753.45i 0.837890i
\(403\) 682.052i 0.0843063i
\(404\) 230.205 0.0283493
\(405\) 2787.77 7461.05i 0.342038 0.915414i
\(406\) −4909.40 −0.600121
\(407\) 9386.35i 1.14316i
\(408\) 10410.2i 1.26319i
\(409\) 6536.39 0.790228 0.395114 0.918632i \(-0.370705\pi\)
0.395114 + 0.918632i \(0.370705\pi\)
\(410\) −1460.97 545.880i −0.175981 0.0657539i
\(411\) 13952.8 1.67455
\(412\) 141.866i 0.0169641i
\(413\) 2768.47i 0.329848i
\(414\) 26637.3 3.16220
\(415\) 761.427 + 284.501i 0.0900650 + 0.0336521i
\(416\) −26.8220 −0.00316119
\(417\) 9635.91i 1.13159i
\(418\) 2771.74i 0.324331i
\(419\) −6333.56 −0.738460 −0.369230 0.929338i \(-0.620379\pi\)
−0.369230 + 0.929338i \(0.620379\pi\)
\(420\) −36.8217 + 98.5479i −0.00427789 + 0.0114492i
\(421\) −8139.62 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(422\) 8100.18i 0.934385i
\(423\) 1971.11i 0.226569i
\(424\) 14461.5 1.65640
\(425\) 4235.90 4877.03i 0.483462 0.556637i
\(426\) −6881.43 −0.782645
\(427\) 332.591i 0.0376937i
\(428\) 129.207i 0.0145922i
\(429\) −1333.94 −0.150124
\(430\) −1604.32 + 4293.73i −0.179924 + 0.481539i
\(431\) −14367.6 −1.60571 −0.802856 0.596173i \(-0.796687\pi\)
−0.802856 + 0.596173i \(0.796687\pi\)
\(432\) 15696.8i 1.74818i
\(433\) 8399.05i 0.932176i 0.884738 + 0.466088i \(0.154337\pi\)
−0.884738 + 0.466088i \(0.845663\pi\)
\(434\) 3438.59 0.380318
\(435\) −23127.6 8641.47i −2.54916 0.952475i
\(436\) 132.547 0.0145593
\(437\) 4498.07i 0.492384i
\(438\) 5125.78i 0.559176i
\(439\) 17860.8 1.94180 0.970901 0.239482i \(-0.0769777\pi\)
0.970901 + 0.239482i \(0.0769777\pi\)
\(440\) 8787.87 + 3283.52i 0.952148 + 0.355763i
\(441\) 2635.93 0.284627
\(442\) 584.754i 0.0629274i
\(443\) 1901.57i 0.203942i −0.994787 0.101971i \(-0.967485\pi\)
0.994787 0.101971i \(-0.0325148\pi\)
\(444\) 336.996 0.0360205
\(445\) 6074.26 16256.9i 0.647074 1.73180i
\(446\) −13535.5 −1.43705
\(447\) 5806.05i 0.614355i
\(448\) 3514.52i 0.370637i
\(449\) 5185.68 0.545050 0.272525 0.962149i \(-0.412141\pi\)
0.272525 + 0.962149i \(0.412141\pi\)
\(450\) −12587.7 + 14492.9i −1.31864 + 1.51823i
\(451\) −1829.54 −0.191019
\(452\) 114.548i 0.0119201i
\(453\) 2185.97i 0.226723i
\(454\) 2742.81 0.283538
\(455\) 108.576 290.587i 0.0111870 0.0299405i
\(456\) −5223.88 −0.536471
\(457\) 11198.8i 1.14630i −0.819451 0.573149i \(-0.805722\pi\)
0.819451 0.573149i \(-0.194278\pi\)
\(458\) 2123.94i 0.216693i
\(459\) −12446.4 −1.26568
\(460\) −271.671 101.508i −0.0275364 0.0102888i
\(461\) 17270.7 1.74485 0.872427 0.488744i \(-0.162545\pi\)
0.872427 + 0.488744i \(0.162545\pi\)
\(462\) 6725.13i 0.677232i
\(463\) 385.660i 0.0387109i −0.999813 0.0193554i \(-0.993839\pi\)
0.999813 0.0193554i \(-0.00616141\pi\)
\(464\) −16011.7 −1.60199
\(465\) 16198.9 + 6052.58i 1.61549 + 0.603616i
\(466\) 4426.44 0.440024
\(467\) 5035.36i 0.498947i 0.968382 + 0.249474i \(0.0802576\pi\)
−0.968382 + 0.249474i \(0.919742\pi\)
\(468\) 31.8875i 0.00314957i
\(469\) −1842.33 −0.181387
\(470\) 409.330 1095.51i 0.0401723 0.107515i
\(471\) −13955.3 −1.36524
\(472\) 8863.45i 0.864350i
\(473\) 5376.94i 0.522689i
\(474\) −12153.6 −1.17771
\(475\) 2447.32 + 2125.60i 0.236402 + 0.205324i
\(476\) 54.0985 0.00520924
\(477\) 34712.8i 3.33206i
\(478\) 7921.91i 0.758033i
\(479\) 8681.99 0.828163 0.414082 0.910240i \(-0.364103\pi\)
0.414082 + 0.910240i \(0.364103\pi\)
\(480\) −238.020 + 637.027i −0.0226335 + 0.0605754i
\(481\) −993.695 −0.0941967
\(482\) 7280.16i 0.687972i
\(483\) 10913.8i 1.02814i
\(484\) −10.5898 −0.000994530
\(485\) 2548.51 + 952.233i 0.238602 + 0.0891519i
\(486\) −283.635 −0.0264731
\(487\) 890.476i 0.0828569i 0.999141 + 0.0414284i \(0.0131909\pi\)
−0.999141 + 0.0414284i \(0.986809\pi\)
\(488\) 1064.81i 0.0987744i
\(489\) −22953.7 −2.12270
\(490\) −1465.01 547.389i −0.135066 0.0504664i
\(491\) 1562.48 0.143613 0.0718063 0.997419i \(-0.477124\pi\)
0.0718063 + 0.997419i \(0.477124\pi\)
\(492\) 65.6855i 0.00601897i
\(493\) 12696.1i 1.15984i
\(494\) −293.433 −0.0267250
\(495\) −7881.63 + 21094.1i −0.715663 + 1.91537i
\(496\) 11214.8 1.01524
\(497\) 1877.24i 0.169428i
\(498\) 1865.56i 0.167867i
\(499\) −8234.33 −0.738716 −0.369358 0.929287i \(-0.620422\pi\)
−0.369358 + 0.929287i \(0.620422\pi\)
\(500\) 183.609 99.8433i 0.0164225 0.00893026i
\(501\) 32117.5 2.86408
\(502\) 8372.97i 0.744430i
\(503\) 72.5340i 0.00642969i −0.999995 0.00321484i \(-0.998977\pi\)
0.999995 0.00321484i \(-0.00102332\pi\)
\(504\) 8439.13 0.745850
\(505\) −6023.75 + 16121.7i −0.530798 + 1.42061i
\(506\) −18539.4 −1.62881
\(507\) 19606.7i 1.71748i
\(508\) 75.5281i 0.00659649i
\(509\) −7793.44 −0.678660 −0.339330 0.940667i \(-0.610200\pi\)
−0.339330 + 0.940667i \(0.610200\pi\)
\(510\) 13888.0 + 5189.15i 1.20583 + 0.450548i
\(511\) 1398.30 0.121051
\(512\) 11243.9i 0.970537i
\(513\) 6245.65i 0.537529i
\(514\) −7779.81 −0.667612
\(515\) −9935.12 3712.18i −0.850084 0.317628i
\(516\) −193.047 −0.0164698
\(517\) 1371.89i 0.116703i
\(518\) 5009.76i 0.424935i
\(519\) −20086.8 −1.69887
\(520\) 347.613 930.336i 0.0293151 0.0784576i
\(521\) 4645.42 0.390633 0.195316 0.980740i \(-0.437427\pi\)
0.195316 + 0.980740i \(0.437427\pi\)
\(522\) 37728.4i 3.16346i
\(523\) 8783.88i 0.734402i −0.930142 0.367201i \(-0.880316\pi\)
0.930142 0.367201i \(-0.119684\pi\)
\(524\) −100.636 −0.00838986
\(525\) −5937.99 5157.38i −0.493629 0.428737i
\(526\) 8642.04 0.716371
\(527\) 8892.46i 0.735031i
\(528\) 21933.6i 1.80784i
\(529\) −17919.4 −1.47279
\(530\) 7208.62 19292.8i 0.590797 1.58118i
\(531\) 21275.5 1.73875
\(532\) 27.1469i 0.00221234i
\(533\) 193.686i 0.0157401i
\(534\) 39830.7 3.22780
\(535\) 9048.62 + 3380.95i 0.731226 + 0.273217i
\(536\) −5898.34 −0.475316
\(537\) 16453.9i 1.32223i
\(538\) 4117.86i 0.329988i
\(539\) −1834.60 −0.146608
\(540\) −377.221 140.946i −0.0300611 0.0112321i
\(541\) −7054.13 −0.560593 −0.280296 0.959913i \(-0.590433\pi\)
−0.280296 + 0.959913i \(0.590433\pi\)
\(542\) 18454.3i 1.46251i
\(543\) 21907.1i 1.73135i
\(544\) 349.700 0.0275611
\(545\) −3468.35 + 9282.55i −0.272602 + 0.729579i
\(546\) 711.962 0.0558043
\(547\) 5776.83i 0.451553i −0.974179 0.225776i \(-0.927508\pi\)
0.974179 0.225776i \(-0.0724919\pi\)
\(548\) 232.141i 0.0180959i
\(549\) −2555.94 −0.198697
\(550\) 8760.97 10087.0i 0.679216 0.782020i
\(551\) −6370.95 −0.492580
\(552\) 34941.2i 2.69419i
\(553\) 3315.48i 0.254952i
\(554\) 2502.51 0.191916
\(555\) −8818.12 + 23600.4i −0.674430 + 1.80501i
\(556\) −160.318 −0.0122284
\(557\) 20562.6i 1.56421i 0.623145 + 0.782106i \(0.285854\pi\)
−0.623145 + 0.782106i \(0.714146\pi\)
\(558\) 26425.4i 2.00479i
\(559\) 569.235 0.0430699
\(560\) −4778.04 1785.28i −0.360552 0.134717i
\(561\) 17391.7 1.30887
\(562\) 17848.4i 1.33966i
\(563\) 24009.5i 1.79730i 0.438666 + 0.898650i \(0.355451\pi\)
−0.438666 + 0.898650i \(0.644549\pi\)
\(564\) 49.2545 0.00367729
\(565\) −8021.98 2997.35i −0.597323 0.223185i
\(566\) −6423.37 −0.477022
\(567\) 4986.79i 0.369357i
\(568\) 6010.11i 0.443977i
\(569\) 24157.5 1.77985 0.889925 0.456107i \(-0.150757\pi\)
0.889925 + 0.456107i \(0.150757\pi\)
\(570\) −2603.94 + 6969.08i −0.191346 + 0.512110i
\(571\) −706.993 −0.0518157 −0.0259078 0.999664i \(-0.508248\pi\)
−0.0259078 + 0.999664i \(0.508248\pi\)
\(572\) 22.1936i 0.00162231i
\(573\) 45657.4i 3.32874i
\(574\) 976.477 0.0710059
\(575\) 14217.6 16369.5i 1.03115 1.18723i
\(576\) 27008.9 1.95377
\(577\) 16057.2i 1.15853i 0.815139 + 0.579265i \(0.196660\pi\)
−0.815139 + 0.579265i \(0.803340\pi\)
\(578\) 6401.44i 0.460665i
\(579\) 25213.8 1.80976
\(580\) −143.773 + 384.788i −0.0102929 + 0.0275474i
\(581\) −508.919 −0.0363400
\(582\) 6244.07i 0.444717i
\(583\) 24160.0i 1.71630i
\(584\) 4476.76 0.317208
\(585\) 2233.14 + 834.397i 0.157827 + 0.0589710i
\(586\) 16894.0 1.19093
\(587\) 8605.63i 0.605098i 0.953134 + 0.302549i \(0.0978376\pi\)
−0.953134 + 0.302549i \(0.902162\pi\)
\(588\) 65.8671i 0.00461958i
\(589\) 4462.28 0.312165
\(590\) −11824.6 4418.16i −0.825101 0.308293i
\(591\) −27934.6 −1.94429
\(592\) 16339.0i 1.13434i
\(593\) 20355.6i 1.40962i 0.709397 + 0.704809i \(0.248967\pi\)
−0.709397 + 0.704809i \(0.751033\pi\)
\(594\) −25742.4 −1.77815
\(595\) −1415.59 + 3788.62i −0.0975352 + 0.261039i
\(596\) 96.5986 0.00663898
\(597\) 19286.2i 1.32216i
\(598\) 1962.70i 0.134215i
\(599\) −22635.7 −1.54402 −0.772010 0.635610i \(-0.780749\pi\)
−0.772010 + 0.635610i \(0.780749\pi\)
\(600\) −19010.9 16511.7i −1.29353 1.12348i
\(601\) −22553.8 −1.53077 −0.765383 0.643575i \(-0.777450\pi\)
−0.765383 + 0.643575i \(0.777450\pi\)
\(602\) 2869.83i 0.194295i
\(603\) 14158.1i 0.956159i
\(604\) −36.3692 −0.00245007
\(605\) 277.101 741.620i 0.0186211 0.0498366i
\(606\) −39499.4 −2.64778
\(607\) 17534.2i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(608\) 175.481i 0.0117051i
\(609\) 15458.0 1.02855
\(610\) 1420.55 + 530.778i 0.0942892 + 0.0352304i
\(611\) −145.236 −0.00961641
\(612\) 415.743i 0.0274598i
\(613\) 10445.5i 0.688238i 0.938926 + 0.344119i \(0.111822\pi\)
−0.938926 + 0.344119i \(0.888178\pi\)
\(614\) 27001.5 1.77474
\(615\) 4600.08 + 1718.78i 0.301615 + 0.112696i
\(616\) −5873.60 −0.384179
\(617\) 13218.9i 0.862516i 0.902229 + 0.431258i \(0.141930\pi\)
−0.902229 + 0.431258i \(0.858070\pi\)
\(618\) 24341.8i 1.58442i
\(619\) −23438.9 −1.52195 −0.760976 0.648780i \(-0.775280\pi\)
−0.760976 + 0.648780i \(0.775280\pi\)
\(620\) 100.700 269.510i 0.00652294 0.0174577i
\(621\) −41775.5 −2.69951
\(622\) 21629.8i 1.39433i
\(623\) 10865.7i 0.698757i
\(624\) 2322.02 0.148967
\(625\) 2187.74 + 15471.1i 0.140015 + 0.990149i
\(626\) 26184.9 1.67182
\(627\) 8727.23i 0.555873i
\(628\) 232.183i 0.0147534i
\(629\) 12955.6 0.821262
\(630\) 4206.65 11258.5i 0.266027 0.711982i
\(631\) −874.004 −0.0551403 −0.0275702 0.999620i \(-0.508777\pi\)
−0.0275702 + 0.999620i \(0.508777\pi\)
\(632\) 10614.7i 0.668089i
\(633\) 25504.6i 1.60145i
\(634\) −8786.72 −0.550419
\(635\) 5289.38 + 1976.34i 0.330555 + 0.123509i
\(636\) 867.410 0.0540802
\(637\) 194.222i 0.0120806i
\(638\) 26258.8i 1.62946i
\(639\) 14426.4 0.893116
\(640\) −15578.0 5820.62i −0.962151 0.359500i
\(641\) 23977.0 1.47743 0.738715 0.674017i \(-0.235433\pi\)
0.738715 + 0.674017i \(0.235433\pi\)
\(642\) 22169.9i 1.36289i
\(643\) 27698.0i 1.69876i 0.527782 + 0.849380i \(0.323024\pi\)
−0.527782 + 0.849380i \(0.676976\pi\)
\(644\) 181.579 0.0111106
\(645\) 5051.44 13519.4i 0.308372 0.825314i
\(646\) 3825.72 0.233004
\(647\) 10965.1i 0.666282i −0.942877 0.333141i \(-0.891891\pi\)
0.942877 0.333141i \(-0.108109\pi\)
\(648\) 15965.6i 0.967881i
\(649\) −14807.6 −0.895610
\(650\) −1067.87 927.488i −0.0644389 0.0559678i
\(651\) −10826.9 −0.651829
\(652\) 381.894i 0.0229388i
\(653\) 12336.2i 0.739285i 0.929174 + 0.369642i \(0.120520\pi\)
−0.929174 + 0.369642i \(0.879480\pi\)
\(654\) −22743.0 −1.35982
\(655\) 2633.32 7047.70i 0.157087 0.420422i
\(656\) 3184.72 0.189547
\(657\) 10745.8i 0.638105i
\(658\) 732.215i 0.0433810i
\(659\) 25275.6 1.49408 0.747040 0.664779i \(-0.231474\pi\)
0.747040 + 0.664779i \(0.231474\pi\)
\(660\) 527.102 + 196.947i 0.0310870 + 0.0116154i
\(661\) −4447.92 −0.261731 −0.130865 0.991400i \(-0.541776\pi\)
−0.130865 + 0.991400i \(0.541776\pi\)
\(662\) 9233.67i 0.542110i
\(663\) 1841.19i 0.107852i
\(664\) −1629.34 −0.0952270
\(665\) −1901.15 710.349i −0.110862 0.0414228i
\(666\) −38499.7 −2.23999
\(667\) 42613.6i 2.47377i
\(668\) 534.357i 0.0309505i
\(669\) 42618.5 2.46297
\(670\) −2940.14 + 7868.87i −0.169534 + 0.453733i
\(671\) 1778.92 0.102347
\(672\) 425.774i 0.0244413i
\(673\) 30358.9i 1.73885i −0.494061 0.869427i \(-0.664488\pi\)
0.494061 0.869427i \(-0.335512\pi\)
\(674\) −10784.7 −0.616340
\(675\) 19741.4 22729.4i 1.12570 1.29608i
\(676\) −326.208 −0.0185599
\(677\) 6916.48i 0.392647i 0.980539 + 0.196324i \(0.0629003\pi\)
−0.980539 + 0.196324i \(0.937100\pi\)
\(678\) 19654.5i 1.11331i
\(679\) −1703.37 −0.0962728
\(680\) −4532.11 + 12129.5i −0.255586 + 0.684039i
\(681\) −8636.14 −0.485958
\(682\) 18392.0i 1.03265i
\(683\) 4532.72i 0.253938i −0.991907 0.126969i \(-0.959475\pi\)
0.991907 0.126969i \(-0.0405249\pi\)
\(684\) −208.622 −0.0116621
\(685\) 16257.3 + 6074.40i 0.906800 + 0.338819i
\(686\) 979.176 0.0544973
\(687\) 6687.56i 0.371392i
\(688\) 9359.77i 0.518660i
\(689\) −2557.72 −0.141424
\(690\) 46614.4 + 17417.1i 2.57185 + 0.960954i
\(691\) 27235.2 1.49939 0.749694 0.661785i \(-0.230201\pi\)
0.749694 + 0.661785i \(0.230201\pi\)
\(692\) 334.197i 0.0183587i
\(693\) 14098.8i 0.772825i
\(694\) −23534.7 −1.28727
\(695\) 4195.03 11227.4i 0.228959 0.612776i
\(696\) 49489.8 2.69527
\(697\) 2525.24i 0.137231i
\(698\) 20479.3i 1.11053i
\(699\) −13937.3 −0.754160
\(700\) −85.8064 + 98.7938i −0.00463311 + 0.00533436i
\(701\) −17144.3 −0.923726 −0.461863 0.886951i \(-0.652819\pi\)
−0.461863 + 0.886951i \(0.652819\pi\)
\(702\) 2725.24i 0.146521i
\(703\) 6501.19i 0.348787i
\(704\) −18798.1 −1.00636
\(705\) −1288.84 + 3449.39i −0.0688516 + 0.184271i
\(706\) 11965.7 0.637867
\(707\) 10775.3i 0.573195i
\(708\) 531.635i 0.0282204i
\(709\) −16724.1 −0.885877 −0.442939 0.896552i \(-0.646064\pi\)
−0.442939 + 0.896552i \(0.646064\pi\)
\(710\) −8017.98 2995.86i −0.423816 0.158356i
\(711\) 25479.2 1.34395
\(712\) 34787.4i 1.83106i
\(713\) 29847.0i 1.56771i
\(714\) −9282.42 −0.486535
\(715\) −1554.26 580.737i −0.0812951 0.0303753i
\(716\) −273.753 −0.0142886
\(717\) 24943.3i 1.29920i
\(718\) 8953.30i 0.465368i
\(719\) −4308.66 −0.223485 −0.111743 0.993737i \(-0.535643\pi\)
−0.111743 + 0.993737i \(0.535643\pi\)
\(720\) 13719.7 36718.9i 0.710145 1.90060i
\(721\) 6640.39 0.342997
\(722\) 17660.9i 0.910347i
\(723\) 22922.7i 1.17912i
\(724\) −364.481 −0.0187097
\(725\) −23185.4 20137.4i −1.18770 1.03157i
\(726\) 1817.03 0.0928875
\(727\) 29435.6i 1.50166i −0.660496 0.750830i \(-0.729654\pi\)
0.660496 0.750830i \(-0.270346\pi\)
\(728\) 621.814i 0.0316566i
\(729\) 20127.8 1.02260
\(730\) 2231.53 5972.36i 0.113140 0.302804i
\(731\) −7421.58 −0.375509
\(732\) 63.8683i 0.00322492i
\(733\) 6587.69i 0.331954i 0.986130 + 0.165977i \(0.0530777\pi\)
−0.986130 + 0.165977i \(0.946922\pi\)
\(734\) 4919.57 0.247390
\(735\) 4612.80 + 1723.54i 0.231490 + 0.0864947i
\(736\) 1173.75 0.0587839
\(737\) 9854.01i 0.492506i
\(738\) 7504.16i 0.374298i
\(739\) −3684.46 −0.183404 −0.0917018 0.995787i \(-0.529231\pi\)
−0.0917018 + 0.995787i \(0.529231\pi\)
\(740\) 392.654 + 146.712i 0.0195058 + 0.00728818i
\(741\) 923.917 0.0458042
\(742\) 12894.9i 0.637986i
\(743\) 12271.9i 0.605940i −0.953000 0.302970i \(-0.902022\pi\)
0.953000 0.302970i \(-0.0979783\pi\)
\(744\) −34663.2 −1.70808
\(745\) −2527.68 + 6764.98i −0.124305 + 0.332684i
\(746\) 8046.24 0.394898
\(747\) 3911.01i 0.191561i
\(748\) 289.355i 0.0141442i
\(749\) −6047.88 −0.295040
\(750\) −31504.4 + 17131.5i −1.53384 + 0.834072i
\(751\) −30871.0 −1.50000 −0.749999 0.661439i \(-0.769946\pi\)
−0.749999 + 0.661439i \(0.769946\pi\)
\(752\) 2388.08i 0.115803i
\(753\) 26363.5i 1.27588i
\(754\) 2779.91 0.134269
\(755\) 951.669 2547.00i 0.0458739 0.122775i
\(756\) 252.125 0.0121292
\(757\) 11442.1i 0.549368i 0.961535 + 0.274684i \(0.0885732\pi\)
−0.961535 + 0.274684i \(0.911427\pi\)
\(758\) 29878.1i 1.43169i
\(759\) 58374.2 2.79163
\(760\) −6086.66 2274.24i −0.290509 0.108546i
\(761\) 14423.3 0.687048 0.343524 0.939144i \(-0.388379\pi\)
0.343524 + 0.939144i \(0.388379\pi\)
\(762\) 12959.4i 0.616102i
\(763\) 6204.23i 0.294375i
\(764\) −759.630 −0.0359718
\(765\) −29115.3 10878.7i −1.37603 0.514144i
\(766\) −736.681 −0.0347485
\(767\) 1567.63i 0.0737988i
\(768\) 2064.01i 0.0969775i
\(769\) −26772.8 −1.25546 −0.627731 0.778430i \(-0.716016\pi\)
−0.627731 + 0.778430i \(0.716016\pi\)
\(770\) −2927.81 + 7835.86i −0.137027 + 0.366734i
\(771\) 24495.9 1.14423
\(772\) 419.496i 0.0195570i
\(773\) 27669.3i 1.28745i −0.765258 0.643724i \(-0.777389\pi\)
0.765258 0.643724i \(-0.222611\pi\)
\(774\) 22054.4 1.02420
\(775\) 16239.3 + 14104.5i 0.752686 + 0.653739i
\(776\) −5453.45 −0.252278
\(777\) 15774.0i 0.728299i
\(778\) 13057.2i 0.601702i
\(779\) 1267.18