Properties

Label 35.4.a.c.1.1
Level $35$
Weight $4$
Character 35.1
Self dual yes
Analytic conductor $2.065$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,4,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.06506685020\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.14360.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.62456\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.62456 q^{2} -8.38660 q^{3} +13.3866 q^{4} +5.00000 q^{5} +38.7844 q^{6} +7.00000 q^{7} -24.9107 q^{8} +43.3350 q^{9} -23.1228 q^{10} -30.1117 q^{11} -112.268 q^{12} +88.9295 q^{13} -32.3720 q^{14} -41.9330 q^{15} +8.10818 q^{16} -4.73699 q^{17} -200.405 q^{18} +124.818 q^{19} +66.9330 q^{20} -58.7062 q^{21} +139.253 q^{22} +20.2680 q^{23} +208.916 q^{24} +25.0000 q^{25} -411.260 q^{26} -136.995 q^{27} +93.7062 q^{28} +134.088 q^{29} +193.922 q^{30} -2.03767 q^{31} +161.788 q^{32} +252.534 q^{33} +21.9065 q^{34} +35.0000 q^{35} +580.108 q^{36} -141.137 q^{37} -577.228 q^{38} -745.816 q^{39} -124.553 q^{40} +95.2784 q^{41} +271.490 q^{42} -298.646 q^{43} -403.093 q^{44} +216.675 q^{45} -93.7305 q^{46} -129.054 q^{47} -68.0000 q^{48} +49.0000 q^{49} -115.614 q^{50} +39.7272 q^{51} +1190.46 q^{52} +388.429 q^{53} +633.542 q^{54} -150.558 q^{55} -174.375 q^{56} -1046.80 q^{57} -620.098 q^{58} +838.501 q^{59} -561.340 q^{60} +389.422 q^{61} +9.42333 q^{62} +303.345 q^{63} -813.067 q^{64} +444.647 q^{65} -1167.86 q^{66} +697.794 q^{67} -63.4122 q^{68} -169.979 q^{69} -161.860 q^{70} -523.450 q^{71} -1079.50 q^{72} +66.4684 q^{73} +652.699 q^{74} -209.665 q^{75} +1670.89 q^{76} -210.782 q^{77} +3449.07 q^{78} -526.982 q^{79} +40.5409 q^{80} -21.1236 q^{81} -440.621 q^{82} +70.0265 q^{83} -785.876 q^{84} -23.6850 q^{85} +1381.11 q^{86} -1124.54 q^{87} +750.101 q^{88} -9.27925 q^{89} -1002.03 q^{90} +622.506 q^{91} +271.319 q^{92} +17.0891 q^{93} +596.817 q^{94} +624.089 q^{95} -1356.85 q^{96} -4.19493 q^{97} -226.604 q^{98} -1304.89 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 2 q^{3} + 13 q^{4} + 15 q^{5} + 24 q^{6} + 21 q^{7} - 15 q^{8} + 81 q^{9} - 15 q^{10} - 74 q^{11} - 152 q^{12} + 44 q^{13} - 21 q^{14} + 10 q^{15} - 79 q^{16} - 52 q^{17} - 411 q^{18} + 168 q^{19}+ \cdots - 3488 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.62456 −1.63503 −0.817515 0.575907i \(-0.804649\pi\)
−0.817515 + 0.575907i \(0.804649\pi\)
\(3\) −8.38660 −1.61400 −0.807001 0.590551i \(-0.798911\pi\)
−0.807001 + 0.590551i \(0.798911\pi\)
\(4\) 13.3866 1.67332
\(5\) 5.00000 0.447214
\(6\) 38.7844 2.63894
\(7\) 7.00000 0.377964
\(8\) −24.9107 −1.10091
\(9\) 43.3350 1.60500
\(10\) −23.1228 −0.731208
\(11\) −30.1117 −0.825364 −0.412682 0.910875i \(-0.635408\pi\)
−0.412682 + 0.910875i \(0.635408\pi\)
\(12\) −112.268 −2.70075
\(13\) 88.9295 1.89728 0.948639 0.316362i \(-0.102461\pi\)
0.948639 + 0.316362i \(0.102461\pi\)
\(14\) −32.3720 −0.617983
\(15\) −41.9330 −0.721803
\(16\) 8.10818 0.126690
\(17\) −4.73699 −0.0675817 −0.0337909 0.999429i \(-0.510758\pi\)
−0.0337909 + 0.999429i \(0.510758\pi\)
\(18\) −200.405 −2.62422
\(19\) 124.818 1.50711 0.753557 0.657382i \(-0.228336\pi\)
0.753557 + 0.657382i \(0.228336\pi\)
\(20\) 66.9330 0.748333
\(21\) −58.7062 −0.610035
\(22\) 139.253 1.34950
\(23\) 20.2680 0.183746 0.0918731 0.995771i \(-0.470715\pi\)
0.0918731 + 0.995771i \(0.470715\pi\)
\(24\) 208.916 1.77686
\(25\) 25.0000 0.200000
\(26\) −411.260 −3.10211
\(27\) −136.995 −0.976470
\(28\) 93.7062 0.632457
\(29\) 134.088 0.858603 0.429301 0.903161i \(-0.358760\pi\)
0.429301 + 0.903161i \(0.358760\pi\)
\(30\) 193.922 1.18017
\(31\) −2.03767 −0.0118057 −0.00590284 0.999983i \(-0.501879\pi\)
−0.00590284 + 0.999983i \(0.501879\pi\)
\(32\) 161.788 0.893764
\(33\) 252.534 1.33214
\(34\) 21.9065 0.110498
\(35\) 35.0000 0.169031
\(36\) 580.108 2.68568
\(37\) −141.137 −0.627104 −0.313552 0.949571i \(-0.601519\pi\)
−0.313552 + 0.949571i \(0.601519\pi\)
\(38\) −577.228 −2.46418
\(39\) −745.816 −3.06221
\(40\) −124.553 −0.492340
\(41\) 95.2784 0.362927 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(42\) 271.490 0.997426
\(43\) −298.646 −1.05914 −0.529571 0.848266i \(-0.677647\pi\)
−0.529571 + 0.848266i \(0.677647\pi\)
\(44\) −403.093 −1.38110
\(45\) 216.675 0.717778
\(46\) −93.7305 −0.300431
\(47\) −129.054 −0.400519 −0.200260 0.979743i \(-0.564179\pi\)
−0.200260 + 0.979743i \(0.564179\pi\)
\(48\) −68.0000 −0.204478
\(49\) 49.0000 0.142857
\(50\) −115.614 −0.327006
\(51\) 39.7272 0.109077
\(52\) 1190.46 3.17476
\(53\) 388.429 1.00669 0.503347 0.864084i \(-0.332102\pi\)
0.503347 + 0.864084i \(0.332102\pi\)
\(54\) 633.542 1.59656
\(55\) −150.558 −0.369114
\(56\) −174.375 −0.416103
\(57\) −1046.80 −2.43248
\(58\) −620.098 −1.40384
\(59\) 838.501 1.85023 0.925114 0.379688i \(-0.123969\pi\)
0.925114 + 0.379688i \(0.123969\pi\)
\(60\) −561.340 −1.20781
\(61\) 389.422 0.817384 0.408692 0.912672i \(-0.365985\pi\)
0.408692 + 0.912672i \(0.365985\pi\)
\(62\) 9.42333 0.0193027
\(63\) 303.345 0.606633
\(64\) −813.067 −1.58802
\(65\) 444.647 0.848488
\(66\) −1167.86 −2.17809
\(67\) 697.794 1.27237 0.636187 0.771534i \(-0.280510\pi\)
0.636187 + 0.771534i \(0.280510\pi\)
\(68\) −63.4122 −0.113086
\(69\) −169.979 −0.296567
\(70\) −161.860 −0.276371
\(71\) −523.450 −0.874959 −0.437479 0.899228i \(-0.644129\pi\)
−0.437479 + 0.899228i \(0.644129\pi\)
\(72\) −1079.50 −1.76695
\(73\) 66.4684 0.106569 0.0532845 0.998579i \(-0.483031\pi\)
0.0532845 + 0.998579i \(0.483031\pi\)
\(74\) 652.699 1.02533
\(75\) −209.665 −0.322800
\(76\) 1670.89 2.52189
\(77\) −210.782 −0.311958
\(78\) 3449.07 5.00680
\(79\) −526.982 −0.750508 −0.375254 0.926922i \(-0.622444\pi\)
−0.375254 + 0.926922i \(0.622444\pi\)
\(80\) 40.5409 0.0566576
\(81\) −21.1236 −0.0289762
\(82\) −440.621 −0.593396
\(83\) 70.0265 0.0926074 0.0463037 0.998927i \(-0.485256\pi\)
0.0463037 + 0.998927i \(0.485256\pi\)
\(84\) −785.876 −1.02079
\(85\) −23.6850 −0.0302235
\(86\) 1381.11 1.73173
\(87\) −1124.54 −1.38579
\(88\) 750.101 0.908649
\(89\) −9.27925 −0.0110517 −0.00552584 0.999985i \(-0.501759\pi\)
−0.00552584 + 0.999985i \(0.501759\pi\)
\(90\) −1002.03 −1.17359
\(91\) 622.506 0.717103
\(92\) 271.319 0.307467
\(93\) 17.0891 0.0190544
\(94\) 596.817 0.654861
\(95\) 624.089 0.674002
\(96\) −1356.85 −1.44254
\(97\) −4.19493 −0.00439104 −0.00219552 0.999998i \(-0.500699\pi\)
−0.00219552 + 0.999998i \(0.500699\pi\)
\(98\) −226.604 −0.233576
\(99\) −1304.89 −1.32471
\(100\) 334.665 0.334665
\(101\) −865.844 −0.853016 −0.426508 0.904484i \(-0.640256\pi\)
−0.426508 + 0.904484i \(0.640256\pi\)
\(102\) −183.721 −0.178344
\(103\) −1166.12 −1.11554 −0.557771 0.829995i \(-0.688343\pi\)
−0.557771 + 0.829995i \(0.688343\pi\)
\(104\) −2215.29 −2.08872
\(105\) −293.531 −0.272816
\(106\) −1796.31 −1.64598
\(107\) 56.9652 0.0514676 0.0257338 0.999669i \(-0.491808\pi\)
0.0257338 + 0.999669i \(0.491808\pi\)
\(108\) −1833.90 −1.63395
\(109\) −1358.89 −1.19411 −0.597055 0.802200i \(-0.703663\pi\)
−0.597055 + 0.802200i \(0.703663\pi\)
\(110\) 696.267 0.603513
\(111\) 1183.66 1.01215
\(112\) 56.7572 0.0478844
\(113\) 436.038 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(114\) 4840.98 3.97719
\(115\) 101.340 0.0821738
\(116\) 1794.98 1.43672
\(117\) 3853.76 3.04513
\(118\) −3877.70 −3.02518
\(119\) −33.1590 −0.0255435
\(120\) 1044.58 0.794637
\(121\) −424.288 −0.318774
\(122\) −1800.91 −1.33645
\(123\) −799.062 −0.585764
\(124\) −27.2775 −0.0197547
\(125\) 125.000 0.0894427
\(126\) −1402.84 −0.991863
\(127\) 1186.69 0.829144 0.414572 0.910017i \(-0.363931\pi\)
0.414572 + 0.910017i \(0.363931\pi\)
\(128\) 2465.77 1.70270
\(129\) 2504.62 1.70946
\(130\) −2056.30 −1.38730
\(131\) 1034.56 0.689997 0.344999 0.938603i \(-0.387879\pi\)
0.344999 + 0.938603i \(0.387879\pi\)
\(132\) 3380.57 2.22910
\(133\) 873.725 0.569636
\(134\) −3226.99 −2.08037
\(135\) −684.975 −0.436691
\(136\) 118.002 0.0744011
\(137\) 646.219 0.402994 0.201497 0.979489i \(-0.435419\pi\)
0.201497 + 0.979489i \(0.435419\pi\)
\(138\) 786.080 0.484895
\(139\) 506.484 0.309061 0.154530 0.987988i \(-0.450614\pi\)
0.154530 + 0.987988i \(0.450614\pi\)
\(140\) 468.531 0.282843
\(141\) 1082.32 0.646439
\(142\) 2420.73 1.43058
\(143\) −2677.81 −1.56594
\(144\) 351.368 0.203338
\(145\) 670.439 0.383979
\(146\) −307.387 −0.174244
\(147\) −410.943 −0.230572
\(148\) −1889.35 −1.04935
\(149\) −1828.12 −1.00513 −0.502567 0.864538i \(-0.667611\pi\)
−0.502567 + 0.864538i \(0.667611\pi\)
\(150\) 969.609 0.527788
\(151\) 2975.17 1.60342 0.801708 0.597716i \(-0.203925\pi\)
0.801708 + 0.597716i \(0.203925\pi\)
\(152\) −3109.29 −1.65919
\(153\) −205.278 −0.108469
\(154\) 974.773 0.510061
\(155\) −10.1883 −0.00527966
\(156\) −9983.93 −5.12407
\(157\) −2131.74 −1.08364 −0.541820 0.840495i \(-0.682264\pi\)
−0.541820 + 0.840495i \(0.682264\pi\)
\(158\) 2437.06 1.22710
\(159\) −3257.59 −1.62481
\(160\) 808.942 0.399703
\(161\) 141.876 0.0694495
\(162\) 97.6876 0.0473769
\(163\) −593.939 −0.285404 −0.142702 0.989766i \(-0.545579\pi\)
−0.142702 + 0.989766i \(0.545579\pi\)
\(164\) 1275.45 0.607294
\(165\) 1262.67 0.595751
\(166\) −323.842 −0.151416
\(167\) −2936.30 −1.36059 −0.680293 0.732941i \(-0.738147\pi\)
−0.680293 + 0.732941i \(0.738147\pi\)
\(168\) 1462.41 0.671591
\(169\) 5711.45 2.59966
\(170\) 109.533 0.0494163
\(171\) 5408.98 2.41892
\(172\) −3997.85 −1.77229
\(173\) 2347.31 1.03158 0.515788 0.856716i \(-0.327499\pi\)
0.515788 + 0.856716i \(0.327499\pi\)
\(174\) 5200.51 2.26580
\(175\) 175.000 0.0755929
\(176\) −244.151 −0.104566
\(177\) −7032.17 −2.98627
\(178\) 42.9125 0.0180698
\(179\) 3036.56 1.26795 0.633975 0.773354i \(-0.281422\pi\)
0.633975 + 0.773354i \(0.281422\pi\)
\(180\) 2900.54 1.20107
\(181\) −899.776 −0.369502 −0.184751 0.982785i \(-0.559148\pi\)
−0.184751 + 0.982785i \(0.559148\pi\)
\(182\) −2878.82 −1.17249
\(183\) −3265.93 −1.31926
\(184\) −504.888 −0.202287
\(185\) −705.687 −0.280449
\(186\) −79.0297 −0.0311545
\(187\) 142.639 0.0557796
\(188\) −1727.59 −0.670199
\(189\) −958.964 −0.369071
\(190\) −2886.14 −1.10201
\(191\) 416.168 0.157659 0.0788294 0.996888i \(-0.474882\pi\)
0.0788294 + 0.996888i \(0.474882\pi\)
\(192\) 6818.86 2.56307
\(193\) −5181.05 −1.93233 −0.966166 0.257922i \(-0.916962\pi\)
−0.966166 + 0.257922i \(0.916962\pi\)
\(194\) 19.3997 0.00717948
\(195\) −3729.08 −1.36946
\(196\) 655.943 0.239046
\(197\) 1452.34 0.525255 0.262627 0.964897i \(-0.415411\pi\)
0.262627 + 0.964897i \(0.415411\pi\)
\(198\) 6034.54 2.16594
\(199\) −1277.23 −0.454978 −0.227489 0.973781i \(-0.573052\pi\)
−0.227489 + 0.973781i \(0.573052\pi\)
\(200\) −622.766 −0.220181
\(201\) −5852.12 −2.05361
\(202\) 4004.15 1.39471
\(203\) 938.615 0.324521
\(204\) 531.813 0.182521
\(205\) 476.392 0.162306
\(206\) 5392.78 1.82395
\(207\) 878.312 0.294913
\(208\) 721.056 0.240367
\(209\) −3758.47 −1.24392
\(210\) 1357.45 0.446062
\(211\) −3259.09 −1.06334 −0.531670 0.846951i \(-0.678436\pi\)
−0.531670 + 0.846951i \(0.678436\pi\)
\(212\) 5199.74 1.68453
\(213\) 4389.96 1.41218
\(214\) −263.439 −0.0841511
\(215\) −1493.23 −0.473663
\(216\) 3412.63 1.07500
\(217\) −14.2637 −0.00446213
\(218\) 6284.27 1.95241
\(219\) −557.444 −0.172002
\(220\) −2015.46 −0.617648
\(221\) −421.258 −0.128221
\(222\) −5473.92 −1.65489
\(223\) 4373.35 1.31328 0.656639 0.754205i \(-0.271977\pi\)
0.656639 + 0.754205i \(0.271977\pi\)
\(224\) 1132.52 0.337811
\(225\) 1083.37 0.321000
\(226\) −2016.48 −0.593516
\(227\) −61.1145 −0.0178692 −0.00893461 0.999960i \(-0.502844\pi\)
−0.00893461 + 0.999960i \(0.502844\pi\)
\(228\) −14013.0 −4.07034
\(229\) 3019.41 0.871302 0.435651 0.900116i \(-0.356518\pi\)
0.435651 + 0.900116i \(0.356518\pi\)
\(230\) −468.653 −0.134357
\(231\) 1767.74 0.503501
\(232\) −3340.22 −0.945241
\(233\) −3531.17 −0.992851 −0.496426 0.868079i \(-0.665354\pi\)
−0.496426 + 0.868079i \(0.665354\pi\)
\(234\) −17822.0 −4.97888
\(235\) −645.268 −0.179118
\(236\) 11224.7 3.09603
\(237\) 4419.58 1.21132
\(238\) 153.346 0.0417644
\(239\) 2282.62 0.617785 0.308893 0.951097i \(-0.400042\pi\)
0.308893 + 0.951097i \(0.400042\pi\)
\(240\) −340.000 −0.0914454
\(241\) −2215.68 −0.592217 −0.296109 0.955154i \(-0.595689\pi\)
−0.296109 + 0.955154i \(0.595689\pi\)
\(242\) 1962.15 0.521205
\(243\) 3876.02 1.02324
\(244\) 5213.04 1.36775
\(245\) 245.000 0.0638877
\(246\) 3695.31 0.957742
\(247\) 11100.0 2.85941
\(248\) 50.7597 0.0129970
\(249\) −587.284 −0.149468
\(250\) −578.071 −0.146242
\(251\) −3082.55 −0.775174 −0.387587 0.921833i \(-0.626691\pi\)
−0.387587 + 0.921833i \(0.626691\pi\)
\(252\) 4060.76 1.01509
\(253\) −610.302 −0.151658
\(254\) −5487.90 −1.35568
\(255\) 198.636 0.0487807
\(256\) −4898.58 −1.19594
\(257\) −6032.40 −1.46417 −0.732083 0.681215i \(-0.761452\pi\)
−0.732083 + 0.681215i \(0.761452\pi\)
\(258\) −11582.8 −2.79501
\(259\) −987.962 −0.237023
\(260\) 5952.32 1.41980
\(261\) 5810.69 1.37806
\(262\) −4784.37 −1.12817
\(263\) 5923.81 1.38889 0.694445 0.719546i \(-0.255650\pi\)
0.694445 + 0.719546i \(0.255650\pi\)
\(264\) −6290.80 −1.46656
\(265\) 1942.14 0.450207
\(266\) −4040.60 −0.931372
\(267\) 77.8213 0.0178374
\(268\) 9341.09 2.12910
\(269\) 3252.80 0.737273 0.368637 0.929574i \(-0.379825\pi\)
0.368637 + 0.929574i \(0.379825\pi\)
\(270\) 3167.71 0.714002
\(271\) −6246.26 −1.40012 −0.700061 0.714083i \(-0.746844\pi\)
−0.700061 + 0.714083i \(0.746844\pi\)
\(272\) −38.4084 −0.00856195
\(273\) −5220.71 −1.15741
\(274\) −2988.48 −0.658907
\(275\) −752.792 −0.165073
\(276\) −2275.44 −0.496252
\(277\) −1572.17 −0.341020 −0.170510 0.985356i \(-0.554541\pi\)
−0.170510 + 0.985356i \(0.554541\pi\)
\(278\) −2342.27 −0.505324
\(279\) −88.3024 −0.0189481
\(280\) −871.873 −0.186087
\(281\) −7846.03 −1.66567 −0.832837 0.553518i \(-0.813285\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(282\) −5005.26 −1.05695
\(283\) 6265.58 1.31608 0.658039 0.752984i \(-0.271386\pi\)
0.658039 + 0.752984i \(0.271386\pi\)
\(284\) −7007.21 −1.46409
\(285\) −5233.98 −1.08784
\(286\) 12383.7 2.56037
\(287\) 666.949 0.137173
\(288\) 7011.10 1.43449
\(289\) −4890.56 −0.995433
\(290\) −3100.49 −0.627817
\(291\) 35.1812 0.00708714
\(292\) 889.785 0.178325
\(293\) −7264.99 −1.44855 −0.724276 0.689511i \(-0.757826\pi\)
−0.724276 + 0.689511i \(0.757826\pi\)
\(294\) 1900.43 0.376992
\(295\) 4192.50 0.827448
\(296\) 3515.83 0.690382
\(297\) 4125.14 0.805943
\(298\) 8454.24 1.64343
\(299\) 1802.42 0.348617
\(300\) −2806.70 −0.540149
\(301\) −2090.52 −0.400318
\(302\) −13758.9 −2.62163
\(303\) 7261.48 1.37677
\(304\) 1012.05 0.190937
\(305\) 1947.11 0.365545
\(306\) 949.319 0.177350
\(307\) 1328.32 0.246943 0.123471 0.992348i \(-0.460597\pi\)
0.123471 + 0.992348i \(0.460597\pi\)
\(308\) −2821.65 −0.522008
\(309\) 9779.75 1.80049
\(310\) 47.1167 0.00863241
\(311\) 4868.68 0.887709 0.443855 0.896099i \(-0.353611\pi\)
0.443855 + 0.896099i \(0.353611\pi\)
\(312\) 18578.8 3.37120
\(313\) 7733.39 1.39654 0.698270 0.715835i \(-0.253954\pi\)
0.698270 + 0.715835i \(0.253954\pi\)
\(314\) 9858.37 1.77178
\(315\) 1516.72 0.271294
\(316\) −7054.49 −1.25584
\(317\) −8175.03 −1.44844 −0.724220 0.689569i \(-0.757800\pi\)
−0.724220 + 0.689569i \(0.757800\pi\)
\(318\) 15065.0 2.65661
\(319\) −4037.61 −0.708660
\(320\) −4065.33 −0.710184
\(321\) −477.744 −0.0830688
\(322\) −656.114 −0.113552
\(323\) −591.261 −0.101853
\(324\) −282.774 −0.0484865
\(325\) 2223.24 0.379455
\(326\) 2746.71 0.466644
\(327\) 11396.5 1.92729
\(328\) −2373.45 −0.399548
\(329\) −903.375 −0.151382
\(330\) −5839.31 −0.974070
\(331\) −2040.76 −0.338884 −0.169442 0.985540i \(-0.554197\pi\)
−0.169442 + 0.985540i \(0.554197\pi\)
\(332\) 937.417 0.154962
\(333\) −6116.19 −1.00650
\(334\) 13579.1 2.22460
\(335\) 3488.97 0.569023
\(336\) −476.000 −0.0772855
\(337\) 7349.73 1.18803 0.594013 0.804455i \(-0.297543\pi\)
0.594013 + 0.804455i \(0.297543\pi\)
\(338\) −26413.0 −4.25052
\(339\) −3656.87 −0.585882
\(340\) −317.061 −0.0505737
\(341\) 61.3576 0.00974399
\(342\) −25014.2 −3.95500
\(343\) 343.000 0.0539949
\(344\) 7439.47 1.16602
\(345\) −849.896 −0.132629
\(346\) −10855.3 −1.68666
\(347\) −12069.9 −1.86728 −0.933642 0.358207i \(-0.883388\pi\)
−0.933642 + 0.358207i \(0.883388\pi\)
\(348\) −15053.8 −2.31887
\(349\) −4484.96 −0.687892 −0.343946 0.938989i \(-0.611764\pi\)
−0.343946 + 0.938989i \(0.611764\pi\)
\(350\) −809.299 −0.123597
\(351\) −12182.9 −1.85263
\(352\) −4871.72 −0.737681
\(353\) −12762.5 −1.92430 −0.962151 0.272517i \(-0.912144\pi\)
−0.962151 + 0.272517i \(0.912144\pi\)
\(354\) 32520.7 4.88264
\(355\) −2617.25 −0.391293
\(356\) −124.218 −0.0184930
\(357\) 278.091 0.0412272
\(358\) −14042.8 −2.07314
\(359\) −2419.42 −0.355689 −0.177844 0.984059i \(-0.556912\pi\)
−0.177844 + 0.984059i \(0.556912\pi\)
\(360\) −5397.52 −0.790206
\(361\) 8720.49 1.27139
\(362\) 4161.07 0.604147
\(363\) 3558.33 0.514501
\(364\) 8333.24 1.19995
\(365\) 332.342 0.0476591
\(366\) 15103.5 2.15703
\(367\) −7129.74 −1.01409 −0.507043 0.861921i \(-0.669261\pi\)
−0.507043 + 0.861921i \(0.669261\pi\)
\(368\) 164.336 0.0232789
\(369\) 4128.89 0.582497
\(370\) 3263.50 0.458543
\(371\) 2719.00 0.380495
\(372\) 228.765 0.0318842
\(373\) 11596.9 1.60983 0.804914 0.593391i \(-0.202211\pi\)
0.804914 + 0.593391i \(0.202211\pi\)
\(374\) −659.642 −0.0912013
\(375\) −1048.32 −0.144361
\(376\) 3214.81 0.440934
\(377\) 11924.4 1.62901
\(378\) 4434.79 0.603442
\(379\) −12770.8 −1.73085 −0.865424 0.501040i \(-0.832951\pi\)
−0.865424 + 0.501040i \(0.832951\pi\)
\(380\) 8354.43 1.12782
\(381\) −9952.25 −1.33824
\(382\) −1924.59 −0.257777
\(383\) 7470.10 0.996617 0.498308 0.867000i \(-0.333955\pi\)
0.498308 + 0.867000i \(0.333955\pi\)
\(384\) −20679.4 −2.74816
\(385\) −1053.91 −0.139512
\(386\) 23960.1 3.15942
\(387\) −12941.8 −1.69992
\(388\) −56.1558 −0.00734763
\(389\) 8749.77 1.14044 0.570220 0.821492i \(-0.306858\pi\)
0.570220 + 0.821492i \(0.306858\pi\)
\(390\) 17245.4 2.23911
\(391\) −96.0092 −0.0124179
\(392\) −1220.62 −0.157272
\(393\) −8676.41 −1.11366
\(394\) −6716.46 −0.858808
\(395\) −2634.91 −0.335637
\(396\) −17468.0 −2.21667
\(397\) 5375.25 0.679537 0.339769 0.940509i \(-0.389651\pi\)
0.339769 + 0.940509i \(0.389651\pi\)
\(398\) 5906.65 0.743903
\(399\) −7327.58 −0.919393
\(400\) 202.704 0.0253381
\(401\) 7361.33 0.916727 0.458363 0.888765i \(-0.348436\pi\)
0.458363 + 0.888765i \(0.348436\pi\)
\(402\) 27063.5 3.35772
\(403\) −181.209 −0.0223987
\(404\) −11590.7 −1.42737
\(405\) −105.618 −0.0129585
\(406\) −4340.68 −0.530602
\(407\) 4249.88 0.517589
\(408\) −989.632 −0.120084
\(409\) −2612.45 −0.315837 −0.157919 0.987452i \(-0.550478\pi\)
−0.157919 + 0.987452i \(0.550478\pi\)
\(410\) −2203.11 −0.265375
\(411\) −5419.57 −0.650433
\(412\) −15610.3 −1.86667
\(413\) 5869.51 0.699321
\(414\) −4061.81 −0.482191
\(415\) 350.133 0.0414153
\(416\) 14387.8 1.69572
\(417\) −4247.68 −0.498824
\(418\) 17381.3 2.03384
\(419\) 4398.21 0.512808 0.256404 0.966570i \(-0.417462\pi\)
0.256404 + 0.966570i \(0.417462\pi\)
\(420\) −3929.38 −0.456510
\(421\) 9723.32 1.12562 0.562810 0.826587i \(-0.309720\pi\)
0.562810 + 0.826587i \(0.309720\pi\)
\(422\) 15071.9 1.73859
\(423\) −5592.54 −0.642833
\(424\) −9676.01 −1.10828
\(425\) −118.425 −0.0135163
\(426\) −20301.7 −2.30896
\(427\) 2725.96 0.308942
\(428\) 762.570 0.0861220
\(429\) 22457.7 2.52744
\(430\) 6905.54 0.774453
\(431\) −14314.5 −1.59978 −0.799892 0.600144i \(-0.795110\pi\)
−0.799892 + 0.600144i \(0.795110\pi\)
\(432\) −1110.78 −0.123709
\(433\) −2373.62 −0.263438 −0.131719 0.991287i \(-0.542050\pi\)
−0.131719 + 0.991287i \(0.542050\pi\)
\(434\) 65.9633 0.00729572
\(435\) −5622.70 −0.619742
\(436\) −18190.9 −1.99813
\(437\) 2529.80 0.276927
\(438\) 2577.93 0.281229
\(439\) −9533.46 −1.03646 −0.518231 0.855240i \(-0.673409\pi\)
−0.518231 + 0.855240i \(0.673409\pi\)
\(440\) 3750.51 0.406360
\(441\) 2123.41 0.229286
\(442\) 1948.14 0.209646
\(443\) 6647.94 0.712987 0.356493 0.934298i \(-0.383972\pi\)
0.356493 + 0.934298i \(0.383972\pi\)
\(444\) 15845.2 1.69365
\(445\) −46.3963 −0.00494246
\(446\) −20224.8 −2.14725
\(447\) 15331.7 1.62229
\(448\) −5691.47 −0.600215
\(449\) −768.256 −0.0807489 −0.0403744 0.999185i \(-0.512855\pi\)
−0.0403744 + 0.999185i \(0.512855\pi\)
\(450\) −5010.14 −0.524845
\(451\) −2868.99 −0.299547
\(452\) 5837.06 0.607416
\(453\) −24951.5 −2.58791
\(454\) 282.628 0.0292167
\(455\) 3112.53 0.320698
\(456\) 26076.4 2.67794
\(457\) −3323.50 −0.340190 −0.170095 0.985428i \(-0.554407\pi\)
−0.170095 + 0.985428i \(0.554407\pi\)
\(458\) −13963.5 −1.42461
\(459\) 648.944 0.0659915
\(460\) 1356.60 0.137503
\(461\) −18840.7 −1.90347 −0.951733 0.306926i \(-0.900700\pi\)
−0.951733 + 0.306926i \(0.900700\pi\)
\(462\) −8175.03 −0.823240
\(463\) −10759.1 −1.07995 −0.539977 0.841679i \(-0.681567\pi\)
−0.539977 + 0.841679i \(0.681567\pi\)
\(464\) 1087.21 0.108777
\(465\) 85.4456 0.00852138
\(466\) 16330.1 1.62334
\(467\) 7441.70 0.737390 0.368695 0.929550i \(-0.379805\pi\)
0.368695 + 0.929550i \(0.379805\pi\)
\(468\) 51588.7 5.09549
\(469\) 4884.56 0.480913
\(470\) 2984.08 0.292863
\(471\) 17878.0 1.74899
\(472\) −20887.6 −2.03693
\(473\) 8992.73 0.874178
\(474\) −20438.7 −1.98055
\(475\) 3120.45 0.301423
\(476\) −443.885 −0.0427426
\(477\) 16832.6 1.61574
\(478\) −10556.1 −1.01010
\(479\) 5691.97 0.542949 0.271475 0.962446i \(-0.412489\pi\)
0.271475 + 0.962446i \(0.412489\pi\)
\(480\) −6784.27 −0.645121
\(481\) −12551.3 −1.18979
\(482\) 10246.5 0.968293
\(483\) −1189.85 −0.112092
\(484\) −5679.77 −0.533412
\(485\) −20.9746 −0.00196373
\(486\) −17924.9 −1.67302
\(487\) −2020.25 −0.187980 −0.0939899 0.995573i \(-0.529962\pi\)
−0.0939899 + 0.995573i \(0.529962\pi\)
\(488\) −9700.77 −0.899863
\(489\) 4981.12 0.460642
\(490\) −1133.02 −0.104458
\(491\) 7636.02 0.701851 0.350925 0.936403i \(-0.385867\pi\)
0.350925 + 0.936403i \(0.385867\pi\)
\(492\) −10696.7 −0.980173
\(493\) −635.173 −0.0580259
\(494\) −51332.6 −4.67523
\(495\) −6524.44 −0.592428
\(496\) −16.5218 −0.00149567
\(497\) −3664.15 −0.330703
\(498\) 2715.93 0.244385
\(499\) 6284.56 0.563799 0.281900 0.959444i \(-0.409036\pi\)
0.281900 + 0.959444i \(0.409036\pi\)
\(500\) 1673.32 0.149667
\(501\) 24625.6 2.19599
\(502\) 14255.4 1.26743
\(503\) 11310.9 1.00264 0.501319 0.865262i \(-0.332848\pi\)
0.501319 + 0.865262i \(0.332848\pi\)
\(504\) −7556.52 −0.667846
\(505\) −4329.22 −0.381481
\(506\) 2822.38 0.247965
\(507\) −47899.7 −4.19586
\(508\) 15885.7 1.38743
\(509\) 10712.7 0.932876 0.466438 0.884554i \(-0.345537\pi\)
0.466438 + 0.884554i \(0.345537\pi\)
\(510\) −918.606 −0.0797580
\(511\) 465.279 0.0402793
\(512\) 2927.65 0.252705
\(513\) −17099.4 −1.47165
\(514\) 27897.2 2.39396
\(515\) −5830.58 −0.498886
\(516\) 33528.4 2.86047
\(517\) 3886.02 0.330574
\(518\) 4568.89 0.387540
\(519\) −19685.9 −1.66496
\(520\) −11076.5 −0.934106
\(521\) 17721.9 1.49023 0.745116 0.666935i \(-0.232394\pi\)
0.745116 + 0.666935i \(0.232394\pi\)
\(522\) −26871.9 −2.25317
\(523\) 237.193 0.0198312 0.00991562 0.999951i \(-0.496844\pi\)
0.00991562 + 0.999951i \(0.496844\pi\)
\(524\) 13849.2 1.15459
\(525\) −1467.65 −0.122007
\(526\) −27395.0 −2.27088
\(527\) 9.65243 0.000797849 0
\(528\) 2047.59 0.168769
\(529\) −11756.2 −0.966237
\(530\) −8981.57 −0.736103
\(531\) 36336.4 2.96962
\(532\) 11696.2 0.953185
\(533\) 8473.06 0.688572
\(534\) −359.890 −0.0291647
\(535\) 284.826 0.0230170
\(536\) −17382.5 −1.40077
\(537\) −25466.4 −2.04647
\(538\) −15042.8 −1.20546
\(539\) −1475.47 −0.117909
\(540\) −9169.48 −0.730725
\(541\) −5352.94 −0.425399 −0.212699 0.977118i \(-0.568226\pi\)
−0.212699 + 0.977118i \(0.568226\pi\)
\(542\) 28886.2 2.28924
\(543\) 7546.06 0.596376
\(544\) −766.391 −0.0604021
\(545\) −6794.45 −0.534022
\(546\) 24143.5 1.89239
\(547\) −192.162 −0.0150206 −0.00751030 0.999972i \(-0.502391\pi\)
−0.00751030 + 0.999972i \(0.502391\pi\)
\(548\) 8650.67 0.674340
\(549\) 16875.6 1.31190
\(550\) 3481.33 0.269899
\(551\) 16736.5 1.29401
\(552\) 4234.29 0.326492
\(553\) −3688.87 −0.283665
\(554\) 7270.60 0.557578
\(555\) 5918.31 0.452646
\(556\) 6780.10 0.517159
\(557\) −4850.62 −0.368990 −0.184495 0.982833i \(-0.559065\pi\)
−0.184495 + 0.982833i \(0.559065\pi\)
\(558\) 408.360 0.0309808
\(559\) −26558.4 −2.00949
\(560\) 283.786 0.0214146
\(561\) −1196.25 −0.0900283
\(562\) 36284.4 2.72343
\(563\) 9699.11 0.726055 0.363027 0.931778i \(-0.381743\pi\)
0.363027 + 0.931778i \(0.381743\pi\)
\(564\) 14488.6 1.08170
\(565\) 2180.19 0.162338
\(566\) −28975.6 −2.15183
\(567\) −147.865 −0.0109520
\(568\) 13039.5 0.963247
\(569\) 3109.53 0.229100 0.114550 0.993417i \(-0.463457\pi\)
0.114550 + 0.993417i \(0.463457\pi\)
\(570\) 24204.9 1.77865
\(571\) −14476.2 −1.06097 −0.530483 0.847695i \(-0.677990\pi\)
−0.530483 + 0.847695i \(0.677990\pi\)
\(572\) −35846.8 −2.62033
\(573\) −3490.23 −0.254461
\(574\) −3084.35 −0.224283
\(575\) 506.699 0.0367492
\(576\) −35234.2 −2.54877
\(577\) −2208.23 −0.159323 −0.0796617 0.996822i \(-0.525384\pi\)
−0.0796617 + 0.996822i \(0.525384\pi\)
\(578\) 22616.7 1.62756
\(579\) 43451.4 3.11879
\(580\) 8974.90 0.642521
\(581\) 490.186 0.0350023
\(582\) −162.698 −0.0115877
\(583\) −11696.2 −0.830889
\(584\) −1655.77 −0.117322
\(585\) 19268.8 1.36182
\(586\) 33597.4 2.36843
\(587\) −23988.7 −1.68675 −0.843374 0.537327i \(-0.819434\pi\)
−0.843374 + 0.537327i \(0.819434\pi\)
\(588\) −5501.13 −0.385821
\(589\) −254.338 −0.0177925
\(590\) −19388.5 −1.35290
\(591\) −12180.2 −0.847762
\(592\) −1144.37 −0.0794480
\(593\) −15869.4 −1.09895 −0.549474 0.835511i \(-0.685172\pi\)
−0.549474 + 0.835511i \(0.685172\pi\)
\(594\) −19077.0 −1.31774
\(595\) −165.795 −0.0114234
\(596\) −24472.2 −1.68192
\(597\) 10711.6 0.734335
\(598\) −8335.41 −0.570000
\(599\) −15236.6 −1.03932 −0.519660 0.854373i \(-0.673941\pi\)
−0.519660 + 0.854373i \(0.673941\pi\)
\(600\) 5222.89 0.355373
\(601\) 12258.8 0.832026 0.416013 0.909359i \(-0.363427\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(602\) 9667.75 0.654532
\(603\) 30238.9 2.04216
\(604\) 39827.4 2.68303
\(605\) −2121.44 −0.142560
\(606\) −33581.2 −2.25106
\(607\) 23487.2 1.57054 0.785269 0.619155i \(-0.212525\pi\)
0.785269 + 0.619155i \(0.212525\pi\)
\(608\) 20194.1 1.34700
\(609\) −7871.78 −0.523778
\(610\) −9004.54 −0.597678
\(611\) −11476.7 −0.759896
\(612\) −2747.97 −0.181503
\(613\) −22305.3 −1.46966 −0.734830 0.678251i \(-0.762738\pi\)
−0.734830 + 0.678251i \(0.762738\pi\)
\(614\) −6142.92 −0.403759
\(615\) −3995.31 −0.261962
\(616\) 5250.71 0.343437
\(617\) 3285.91 0.214402 0.107201 0.994237i \(-0.465811\pi\)
0.107201 + 0.994237i \(0.465811\pi\)
\(618\) −45227.1 −2.94385
\(619\) −11613.1 −0.754069 −0.377035 0.926199i \(-0.623056\pi\)
−0.377035 + 0.926199i \(0.623056\pi\)
\(620\) −136.387 −0.00883459
\(621\) −2776.61 −0.179423
\(622\) −22515.5 −1.45143
\(623\) −64.9548 −0.00417714
\(624\) −6047.21 −0.387952
\(625\) 625.000 0.0400000
\(626\) −35763.5 −2.28338
\(627\) 31520.8 2.00769
\(628\) −28536.7 −1.81328
\(629\) 668.567 0.0423808
\(630\) −7014.19 −0.443575
\(631\) 6890.91 0.434743 0.217372 0.976089i \(-0.430252\pi\)
0.217372 + 0.976089i \(0.430252\pi\)
\(632\) 13127.5 0.826238
\(633\) 27332.7 1.71623
\(634\) 37805.9 2.36824
\(635\) 5933.43 0.370804
\(636\) −43608.1 −2.71883
\(637\) 4357.55 0.271040
\(638\) 18672.2 1.15868
\(639\) −22683.7 −1.40431
\(640\) 12328.9 0.761470
\(641\) 18769.3 1.15654 0.578269 0.815846i \(-0.303728\pi\)
0.578269 + 0.815846i \(0.303728\pi\)
\(642\) 2209.36 0.135820
\(643\) −3142.30 −0.192722 −0.0963609 0.995346i \(-0.530720\pi\)
−0.0963609 + 0.995346i \(0.530720\pi\)
\(644\) 1899.23 0.116212
\(645\) 12523.1 0.764492
\(646\) 2734.33 0.166533
\(647\) 19038.1 1.15683 0.578413 0.815744i \(-0.303672\pi\)
0.578413 + 0.815744i \(0.303672\pi\)
\(648\) 526.204 0.0319000
\(649\) −25248.7 −1.52711
\(650\) −10281.5 −0.620421
\(651\) 119.624 0.00720188
\(652\) −7950.82 −0.477574
\(653\) −20538.6 −1.23084 −0.615420 0.788199i \(-0.711014\pi\)
−0.615420 + 0.788199i \(0.711014\pi\)
\(654\) −52703.6 −3.15119
\(655\) 5172.78 0.308576
\(656\) 772.534 0.0459793
\(657\) 2880.41 0.171043
\(658\) 4177.72 0.247514
\(659\) −937.046 −0.0553902 −0.0276951 0.999616i \(-0.508817\pi\)
−0.0276951 + 0.999616i \(0.508817\pi\)
\(660\) 16902.9 0.996884
\(661\) 21116.5 1.24257 0.621283 0.783586i \(-0.286612\pi\)
0.621283 + 0.783586i \(0.286612\pi\)
\(662\) 9437.65 0.554085
\(663\) 3532.92 0.206949
\(664\) −1744.41 −0.101952
\(665\) 4368.62 0.254749
\(666\) 28284.7 1.64566
\(667\) 2717.69 0.157765
\(668\) −39307.1 −2.27670
\(669\) −36677.5 −2.11963
\(670\) −16135.0 −0.930371
\(671\) −11726.2 −0.674640
\(672\) −9497.98 −0.545227
\(673\) 13825.9 0.791903 0.395952 0.918271i \(-0.370415\pi\)
0.395952 + 0.918271i \(0.370415\pi\)
\(674\) −33989.3 −1.94246
\(675\) −3424.87 −0.195294
\(676\) 76456.9 4.35008
\(677\) −16928.4 −0.961021 −0.480510 0.876989i \(-0.659549\pi\)
−0.480510 + 0.876989i \(0.659549\pi\)
\(678\) 16911.4 0.957935
\(679\) −29.3645 −0.00165966
\(680\) 590.008 0.0332732
\(681\) 512.543 0.0288409
\(682\) −283.752 −0.0159317
\(683\) −13817.3 −0.774091 −0.387045 0.922061i \(-0.626504\pi\)
−0.387045 + 0.922061i \(0.626504\pi\)
\(684\) 72407.8 4.04763
\(685\) 3231.09 0.180224
\(686\) −1586.23 −0.0882833
\(687\) −25322.6 −1.40628
\(688\) −2421.47 −0.134183
\(689\) 34542.8 1.90998
\(690\) 3930.40 0.216852
\(691\) −23671.6 −1.30320 −0.651600 0.758563i \(-0.725902\pi\)
−0.651600 + 0.758563i \(0.725902\pi\)
\(692\) 31422.5 1.72616
\(693\) −9134.22 −0.500693
\(694\) 55818.2 3.05307
\(695\) 2532.42 0.138216
\(696\) 28013.0 1.52562
\(697\) −451.333 −0.0245272
\(698\) 20741.0 1.12472
\(699\) 29614.5 1.60246
\(700\) 2342.65 0.126491
\(701\) −17009.7 −0.916472 −0.458236 0.888831i \(-0.651519\pi\)
−0.458236 + 0.888831i \(0.651519\pi\)
\(702\) 56340.6 3.02911
\(703\) −17616.5 −0.945117
\(704\) 24482.8 1.31070
\(705\) 5411.60 0.289096
\(706\) 59020.9 3.14629
\(707\) −6060.91 −0.322410
\(708\) −94136.8 −4.99700
\(709\) 22038.9 1.16740 0.583701 0.811969i \(-0.301604\pi\)
0.583701 + 0.811969i \(0.301604\pi\)
\(710\) 12103.6 0.639777
\(711\) −22836.8 −1.20456
\(712\) 231.152 0.0121669
\(713\) −41.2994 −0.00216925
\(714\) −1286.05 −0.0674078
\(715\) −13389.1 −0.700312
\(716\) 40649.2 2.12169
\(717\) −19143.4 −0.997106
\(718\) 11188.8 0.581562
\(719\) 7287.44 0.377991 0.188996 0.981978i \(-0.439477\pi\)
0.188996 + 0.981978i \(0.439477\pi\)
\(720\) 1756.84 0.0909354
\(721\) −8162.82 −0.421636
\(722\) −40328.5 −2.07877
\(723\) 18582.0 0.955839
\(724\) −12044.9 −0.618297
\(725\) 3352.20 0.171721
\(726\) −16455.7 −0.841225
\(727\) −29676.7 −1.51396 −0.756980 0.653438i \(-0.773326\pi\)
−0.756980 + 0.653438i \(0.773326\pi\)
\(728\) −15507.0 −0.789463
\(729\) −31936.3 −1.62253
\(730\) −1536.94 −0.0779241
\(731\) 1414.68 0.0715786
\(732\) −43719.7 −2.20755
\(733\) 23111.8 1.16460 0.582300 0.812974i \(-0.302153\pi\)
0.582300 + 0.812974i \(0.302153\pi\)
\(734\) 32971.9 1.65806
\(735\) −2054.72 −0.103115
\(736\) 3279.12 0.164226
\(737\) −21011.7 −1.05017
\(738\) −19094.3 −0.952400
\(739\) −31171.4 −1.55164 −0.775818 0.630957i \(-0.782662\pi\)
−0.775818 + 0.630957i \(0.782662\pi\)
\(740\) −9446.75 −0.469283
\(741\) −93091.1 −4.61510
\(742\) −12574.2 −0.622120
\(743\) −31324.4 −1.54668 −0.773338 0.633993i \(-0.781415\pi\)
−0.773338 + 0.633993i \(0.781415\pi\)
\(744\) −425.701 −0.0209771
\(745\) −9140.58 −0.449510
\(746\) −53630.7 −2.63212
\(747\) 3034.60 0.148635
\(748\) 1909.45 0.0933373
\(749\) 398.756 0.0194529
\(750\) 4848.04 0.236034
\(751\) 4032.20 0.195922 0.0979608 0.995190i \(-0.468768\pi\)
0.0979608 + 0.995190i \(0.468768\pi\)
\(752\) −1046.39 −0.0507419
\(753\) 25852.1 1.25113
\(754\) −55145.0 −2.66348
\(755\) 14875.8 0.717069
\(756\) −12837.3 −0.617575
\(757\) 34263.7 1.64509 0.822546 0.568699i \(-0.192553\pi\)
0.822546 + 0.568699i \(0.192553\pi\)
\(758\) 59059.3 2.82999
\(759\) 5118.36 0.244775
\(760\) −15546.5 −0.742013
\(761\) 7265.88 0.346108 0.173054 0.984912i \(-0.444637\pi\)
0.173054 + 0.984912i \(0.444637\pi\)
\(762\) 46024.8 2.18806
\(763\) −9512.22 −0.451331
\(764\) 5571.07 0.263814
\(765\) −1026.39 −0.0485087
\(766\) −34546.0 −1.62950
\(767\) 74567.5 3.51040
\(768\) 41082.4 1.93025
\(769\) 38116.2 1.78739 0.893695 0.448674i \(-0.148104\pi\)
0.893695 + 0.448674i \(0.148104\pi\)
\(770\) 4873.87 0.228106
\(771\) 50591.3 2.36317
\(772\) −69356.6 −3.23342
\(773\) 16158.2 0.751838 0.375919 0.926652i \(-0.377327\pi\)
0.375919 + 0.926652i \(0.377327\pi\)
\(774\) 59850.3 2.77942
\(775\) −50.9417 −0.00236114
\(776\) 104.498 0.00483412
\(777\) 8285.64 0.382555
\(778\) −40463.9 −1.86465
\(779\) 11892.4 0.546972
\(780\) −49919.7 −2.29155
\(781\) 15761.9 0.722160
\(782\) 444.001 0.0203036
\(783\) −18369.3 −0.838400
\(784\) 397.301 0.0180986
\(785\) −10658.7 −0.484618
\(786\) 40124.6 1.82086
\(787\) 5092.49 0.230658 0.115329 0.993327i \(-0.463208\pi\)
0.115329 + 0.993327i \(0.463208\pi\)
\(788\) 19441.9 0.878922
\(789\) −49680.6 −2.24167
\(790\) 12185.3 0.548777
\(791\) 3052.26 0.137201
\(792\) 32505.6 1.45838
\(793\) 34631.1 1.55080
\(794\) −24858.2 −1.11106
\(795\) −16288.0 −0.726635
\(796\) −17097.8 −0.761326
\(797\) −34666.2 −1.54070 −0.770350 0.637621i \(-0.779919\pi\)
−0.770350 + 0.637621i \(0.779919\pi\)
\(798\) 33886.9 1.50323
\(799\) 611.326 0.0270678
\(800\) 4044.71 0.178753
\(801\) −402.116 −0.0177379
\(802\) −34043.0 −1.49888
\(803\) −2001.47 −0.0879582
\(804\) −78339.9 −3.43636
\(805\) 709.379 0.0310588
\(806\) 838.012 0.0366225
\(807\) −27279.9 −1.18996
\(808\) 21568.7 0.939091
\(809\) 15126.2 0.657365 0.328683 0.944440i \(-0.393395\pi\)
0.328683 + 0.944440i \(0.393395\pi\)
\(810\) 488.438 0.0211876
\(811\) 29416.5 1.27368 0.636840 0.770996i \(-0.280241\pi\)
0.636840 + 0.770996i \(0.280241\pi\)
\(812\) 12564.9 0.543030
\(813\) 52384.9 2.25980
\(814\) −19653.9 −0.846274
\(815\) −2969.69 −0.127637
\(816\) 322.116 0.0138190
\(817\) −37276.3 −1.59625
\(818\) 12081.5 0.516404
\(819\) 26976.3 1.15095
\(820\) 6377.27 0.271590
\(821\) −15334.4 −0.651856 −0.325928 0.945395i \(-0.605677\pi\)
−0.325928 + 0.945395i \(0.605677\pi\)
\(822\) 25063.2 1.06348
\(823\) −11003.7 −0.466056 −0.233028 0.972470i \(-0.574863\pi\)
−0.233028 + 0.972470i \(0.574863\pi\)
\(824\) 29048.7 1.22811
\(825\) 6313.36 0.266428
\(826\) −27143.9 −1.14341
\(827\) −3261.59 −0.137142 −0.0685711 0.997646i \(-0.521844\pi\)
−0.0685711 + 0.997646i \(0.521844\pi\)
\(828\) 11757.6 0.493484
\(829\) 5163.30 0.216319 0.108160 0.994134i \(-0.465504\pi\)
0.108160 + 0.994134i \(0.465504\pi\)
\(830\) −1619.21 −0.0677152
\(831\) 13185.1 0.550406
\(832\) −72305.6 −3.01292
\(833\) −232.113 −0.00965453
\(834\) 19643.7 0.815593
\(835\) −14681.5 −0.608472
\(836\) −50313.1 −2.08148
\(837\) 279.150 0.0115279
\(838\) −20339.8 −0.838457
\(839\) −5641.70 −0.232149 −0.116075 0.993241i \(-0.537031\pi\)
−0.116075 + 0.993241i \(0.537031\pi\)
\(840\) 7312.05 0.300345
\(841\) −6409.46 −0.262801
\(842\) −44966.1 −1.84042
\(843\) 65801.4 2.68840
\(844\) −43628.1 −1.77931
\(845\) 28557.3 1.16260
\(846\) 25863.0 1.05105
\(847\) −2970.01 −0.120485
\(848\) 3149.45 0.127538
\(849\) −52546.8 −2.12415
\(850\) 547.663 0.0220996
\(851\) −2860.57 −0.115228
\(852\) 58766.7 2.36304
\(853\) −7799.52 −0.313072 −0.156536 0.987672i \(-0.550033\pi\)
−0.156536 + 0.987672i \(0.550033\pi\)
\(854\) −12606.4 −0.505130
\(855\) 27044.9 1.08177
\(856\) −1419.04 −0.0566610
\(857\) −21540.0 −0.858568 −0.429284 0.903170i \(-0.641234\pi\)
−0.429284 + 0.903170i \(0.641234\pi\)
\(858\) −103857. −4.13244
\(859\) 4447.97 0.176674 0.0883370 0.996091i \(-0.471845\pi\)
0.0883370 + 0.996091i \(0.471845\pi\)
\(860\) −19989.3 −0.792591
\(861\) −5593.43 −0.221398
\(862\) 66198.5 2.61569
\(863\) −9425.21 −0.371770 −0.185885 0.982571i \(-0.559515\pi\)
−0.185885 + 0.982571i \(0.559515\pi\)
\(864\) −22164.2 −0.872733
\(865\) 11736.5 0.461335
\(866\) 10977.0 0.430730
\(867\) 41015.2 1.60663
\(868\) −190.942 −0.00746659
\(869\) 15868.3 0.619442
\(870\) 26002.5 1.01330
\(871\) 62054.5 2.41405
\(872\) 33850.8 1.31460
\(873\) −181.787 −0.00704761
\(874\) −11699.2 −0.452783
\(875\) 875.000 0.0338062
\(876\) −7462.27 −0.287816
\(877\) 22346.1 0.860403 0.430201 0.902733i \(-0.358443\pi\)
0.430201 + 0.902733i \(0.358443\pi\)
\(878\) 44088.1 1.69465
\(879\) 60928.6 2.33796
\(880\) −1220.75 −0.0467632
\(881\) 12074.9 0.461762 0.230881 0.972982i \(-0.425839\pi\)
0.230881 + 0.972982i \(0.425839\pi\)
\(882\) −9819.87 −0.374889
\(883\) −30499.6 −1.16239 −0.581196 0.813764i \(-0.697415\pi\)
−0.581196 + 0.813764i \(0.697415\pi\)
\(884\) −5639.22 −0.214556
\(885\) −35160.8 −1.33550
\(886\) −30743.8 −1.16576
\(887\) 23344.2 0.883675 0.441838 0.897095i \(-0.354327\pi\)
0.441838 + 0.897095i \(0.354327\pi\)
\(888\) −29485.8 −1.11428
\(889\) 8306.80 0.313387
\(890\) 214.562 0.00808107
\(891\) 636.068 0.0239159
\(892\) 58544.3 2.19754
\(893\) −16108.2 −0.603628
\(894\) −70902.3 −2.65249
\(895\) 15182.8 0.567044
\(896\) 17260.4 0.643560
\(897\) −15116.2 −0.562669
\(898\) 3552.85 0.132027
\(899\) −273.227 −0.0101364
\(900\) 14502.7 0.537137
\(901\) −1839.98 −0.0680341
\(902\) 13267.8 0.489768
\(903\) 17532.4 0.646113
\(904\) −10862.0 −0.399629
\(905\) −4498.88 −0.165246
\(906\) 115390. 4.23132
\(907\) −15092.5 −0.552523 −0.276262 0.961082i \(-0.589096\pi\)
−0.276262 + 0.961082i \(0.589096\pi\)
\(908\) −818.115 −0.0299010
\(909\) −37521.3 −1.36909
\(910\) −14394.1 −0.524352
\(911\) −15207.8 −0.553081 −0.276541 0.961002i \(-0.589188\pi\)
−0.276541 + 0.961002i \(0.589188\pi\)
\(912\) −8487.61 −0.308172
\(913\) −2108.62 −0.0764348
\(914\) 15369.7 0.556221
\(915\) −16329.6 −0.589990
\(916\) 40419.6 1.45797
\(917\) 7241.90 0.260794
\(918\) −3001.08 −0.107898
\(919\) 24818.1 0.890831 0.445415 0.895324i \(-0.353056\pi\)
0.445415 + 0.895324i \(0.353056\pi\)
\(920\) −2524.44 −0.0904656
\(921\) −11140.1 −0.398566
\(922\) 87130.0 3.11223
\(923\) −46550.1 −1.66004
\(924\) 23664.0 0.842521
\(925\) −3528.44 −0.125421
\(926\) 49756.3 1.76576
\(927\) −50533.7 −1.79045
\(928\) 21693.9 0.767388
\(929\) 39906.4 1.40935 0.704675 0.709530i \(-0.251093\pi\)
0.704675 + 0.709530i \(0.251093\pi\)
\(930\) −395.148 −0.0139327
\(931\) 6116.07 0.215302
\(932\) −47270.3 −1.66136
\(933\) −40831.7 −1.43276
\(934\) −34414.6 −1.20565
\(935\) 713.194 0.0249454
\(936\) −95999.7 −3.35240
\(937\) 16923.0 0.590020 0.295010 0.955494i \(-0.404677\pi\)
0.295010 + 0.955494i \(0.404677\pi\)
\(938\) −22589.0 −0.786307
\(939\) −64856.8 −2.25402
\(940\) −8637.94 −0.299722
\(941\) −53014.1 −1.83657 −0.918285 0.395921i \(-0.870426\pi\)
−0.918285 + 0.395921i \(0.870426\pi\)
\(942\) −82678.1 −2.85966
\(943\) 1931.10 0.0666864
\(944\) 6798.71 0.234406
\(945\) −4794.82 −0.165054
\(946\) −41587.4 −1.42931
\(947\) −25798.9 −0.885271 −0.442636 0.896702i \(-0.645957\pi\)
−0.442636 + 0.896702i \(0.645957\pi\)
\(948\) 59163.2 2.02693
\(949\) 5911.00 0.202191
\(950\) −14430.7 −0.492836
\(951\) 68560.6 2.33778
\(952\) 826.011 0.0281210
\(953\) −17942.7 −0.609885 −0.304943 0.952371i \(-0.598637\pi\)
−0.304943 + 0.952371i \(0.598637\pi\)
\(954\) −77843.2 −2.64179
\(955\) 2080.84 0.0705072
\(956\) 30556.6 1.03375
\(957\) 33861.8 1.14378
\(958\) −26322.9 −0.887739
\(959\) 4523.53 0.152317
\(960\) 34094.3 1.14624
\(961\) −29786.8 −0.999861
\(962\) 58044.2 1.94534
\(963\) 2468.59 0.0826055
\(964\) −29660.4 −0.990971
\(965\) −25905.2 −0.864165
\(966\) 5502.56 0.183273
\(967\) 19668.3 0.654073 0.327036 0.945012i \(-0.393950\pi\)
0.327036 + 0.945012i \(0.393950\pi\)
\(968\) 10569.3 0.350940
\(969\) 4958.67 0.164392
\(970\) 96.9986 0.00321076
\(971\) 6332.97 0.209304 0.104652 0.994509i \(-0.466627\pi\)
0.104652 + 0.994509i \(0.466627\pi\)
\(972\) 51886.7 1.71221
\(973\) 3545.39 0.116814
\(974\) 9342.76 0.307353
\(975\) −18645.4 −0.612441
\(976\) 3157.51 0.103555
\(977\) −11334.1 −0.371145 −0.185573 0.982631i \(-0.559414\pi\)
−0.185573 + 0.982631i \(0.559414\pi\)
\(978\) −23035.5 −0.753164
\(979\) 279.414 0.00912166
\(980\) 3279.72 0.106905
\(981\) −58887.4 −1.91655
\(982\) −35313.3 −1.14755
\(983\) −37654.3 −1.22175 −0.610877 0.791725i \(-0.709183\pi\)
−0.610877 + 0.791725i \(0.709183\pi\)
\(984\) 19905.1 0.644871
\(985\) 7261.72 0.234901
\(986\) 2937.40 0.0948741
\(987\) 7576.24 0.244331
\(988\) 148591. 4.78473
\(989\) −6052.95 −0.194613
\(990\) 30172.7 0.968638
\(991\) −53441.5 −1.71304 −0.856522 0.516111i \(-0.827379\pi\)
−0.856522 + 0.516111i \(0.827379\pi\)
\(992\) −329.671 −0.0105515
\(993\) 17115.1 0.546959
\(994\) 16945.1 0.540710
\(995\) −6386.16 −0.203472
\(996\) −7861.74 −0.250109
\(997\) 37919.3 1.20453 0.602266 0.798296i \(-0.294265\pi\)
0.602266 + 0.798296i \(0.294265\pi\)
\(998\) −29063.4 −0.921829
\(999\) 19335.1 0.612348
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.4.a.c.1.1 3
3.2 odd 2 315.4.a.p.1.3 3
4.3 odd 2 560.4.a.u.1.3 3
5.2 odd 4 175.4.b.e.99.1 6
5.3 odd 4 175.4.b.e.99.6 6
5.4 even 2 175.4.a.f.1.3 3
7.2 even 3 245.4.e.m.116.3 6
7.3 odd 6 245.4.e.n.226.3 6
7.4 even 3 245.4.e.m.226.3 6
7.5 odd 6 245.4.e.n.116.3 6
7.6 odd 2 245.4.a.l.1.1 3
8.3 odd 2 2240.4.a.bv.1.1 3
8.5 even 2 2240.4.a.bt.1.3 3
15.14 odd 2 1575.4.a.ba.1.1 3
21.20 even 2 2205.4.a.bm.1.3 3
35.34 odd 2 1225.4.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.a.c.1.1 3 1.1 even 1 trivial
175.4.a.f.1.3 3 5.4 even 2
175.4.b.e.99.1 6 5.2 odd 4
175.4.b.e.99.6 6 5.3 odd 4
245.4.a.l.1.1 3 7.6 odd 2
245.4.e.m.116.3 6 7.2 even 3
245.4.e.m.226.3 6 7.4 even 3
245.4.e.n.116.3 6 7.5 odd 6
245.4.e.n.226.3 6 7.3 odd 6
315.4.a.p.1.3 3 3.2 odd 2
560.4.a.u.1.3 3 4.3 odd 2
1225.4.a.y.1.3 3 35.34 odd 2
1575.4.a.ba.1.1 3 15.14 odd 2
2205.4.a.bm.1.3 3 21.20 even 2
2240.4.a.bt.1.3 3 8.5 even 2
2240.4.a.bv.1.1 3 8.3 odd 2