Properties

Label 35.3
Level 35
Weight 3
Dimension 70
Nonzero newspaces 6
Newform subspaces 9
Sturm bound 288
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 35 = 5 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 9 \)
Sturm bound: \(288\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(35))\).

Total New Old
Modular forms 120 98 22
Cusp forms 72 70 2
Eisenstein series 48 28 20

Trace form

\( 70 q - 6 q^{2} - 12 q^{3} - 22 q^{4} - 12 q^{5} - 24 q^{6} + 2 q^{7} - 18 q^{8} - 30 q^{9} - 12 q^{10} - 12 q^{11} - 12 q^{12} - 12 q^{13} - 54 q^{14} - 24 q^{15} - 2 q^{16} - 12 q^{17} + 42 q^{18} - 12 q^{19}+ \cdots + 564 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(35))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
35.3.c \(\chi_{35}(34, \cdot)\) 35.3.c.a 1 1
35.3.c.b 1
35.3.c.c 4
35.3.d \(\chi_{35}(6, \cdot)\) 35.3.d.a 2 1
35.3.d.b 2
35.3.g \(\chi_{35}(8, \cdot)\) 35.3.g.a 12 2
35.3.h \(\chi_{35}(26, \cdot)\) 35.3.h.a 12 2
35.3.i \(\chi_{35}(19, \cdot)\) 35.3.i.a 12 2
35.3.l \(\chi_{35}(2, \cdot)\) 35.3.l.a 24 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(35))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(35)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)