Defining parameters
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(35))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6 | 3 | 3 |
Cusp forms | 3 | 3 | 0 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(2\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | 7 | |||||||
35.2.a.a | $1$ | $0.279$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | \(q+q^{3}-2q^{4}-q^{5}+q^{7}-2q^{9}-3q^{11}+\cdots\) | |
35.2.a.b | $2$ | $0.279$ | \(\Q(\sqrt{17}) \) | None | \(-1\) | \(-1\) | \(2\) | \(-2\) | $-$ | $+$ | \(q-\beta q^{2}+(-1+\beta )q^{3}+(2+\beta )q^{4}+q^{5}+\cdots\) |