Properties

Label 35.2.a
Level $35$
Weight $2$
Character orbit 35.a
Rep. character $\chi_{35}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $8$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(8\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(35))\).

Total New Old
Modular forms 6 3 3
Cusp forms 3 3 0
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(7\)FrickeDim
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(2\)
Plus space\(+\)\(0\)
Minus space\(-\)\(3\)

Trace form

\( 3 q - q^{2} + 3 q^{4} + q^{5} - 8 q^{6} - q^{7} - 9 q^{8} + q^{9} - q^{10} - 2 q^{11} + 4 q^{12} + 10 q^{13} + q^{14} - 2 q^{15} + 7 q^{16} - 2 q^{17} + 7 q^{18} - 4 q^{19} + 7 q^{20} + 2 q^{21} + 8 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 7
35.2.a.a 35.a 1.a $1$ $0.279$ \(\Q\) None 35.2.a.a \(0\) \(1\) \(-1\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-q^{5}+q^{7}-2q^{9}-3q^{11}+\cdots\)
35.2.a.b 35.a 1.a $2$ $0.279$ \(\Q(\sqrt{17}) \) None 35.2.a.b \(-1\) \(-1\) \(2\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-1+\beta )q^{3}+(2+\beta )q^{4}+q^{5}+\cdots\)