Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [35,10,Mod(3,35)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(35, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([9, 2]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("35.3");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.k (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.0262542657\) |
Analytic rank: | \(0\) |
Dimension: | \(136\) |
Relative dimension: | \(34\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −42.4707 | − | 11.3800i | 54.8950 | + | 204.871i | 1230.85 | + | 710.632i | −1352.09 | + | 353.508i | − | 9325.71i | −5765.26 | + | 2667.46i | −28269.7 | − | 28269.7i | −21912.6 | + | 12651.2i | 61447.3 | + | 373.073i | |
3.2 | −39.0059 | − | 10.4516i | −2.23944 | − | 8.35771i | 968.820 | + | 559.349i | 42.9502 | − | 1396.88i | 349.406i | 6351.67 | − | 99.7449i | −17323.8 | − | 17323.8i | 16981.1 | − | 9804.07i | −16275.0 | + | 54037.8i | ||
3.3 | −38.4135 | − | 10.2929i | −42.0355 | − | 156.879i | 926.246 | + | 534.768i | −1180.00 | + | 748.818i | 6458.92i | 2179.94 | − | 5966.70i | −15678.3 | − | 15678.3i | −5797.93 | + | 3347.44i | 53035.3 | − | 16619.1i | ||
3.4 | −38.3290 | − | 10.2702i | −32.9968 | − | 123.146i | 920.231 | + | 531.296i | 1155.42 | + | 786.218i | 5058.95i | −1359.24 | + | 6205.33i | −15448.9 | − | 15448.9i | 2969.87 | − | 1714.65i | −36211.3 | − | 42001.4i | ||
3.5 | −33.5878 | − | 8.99984i | 42.7497 | + | 159.544i | 603.741 | + | 348.570i | 1387.01 | + | 171.250i | − | 5743.49i | −142.293 | − | 6350.86i | −4552.24 | − | 4552.24i | −6580.85 | + | 3799.45i | −45045.5 | − | 18234.8i | |
3.6 | −30.1591 | − | 8.08111i | −1.23807 | − | 4.62053i | 400.862 | + | 231.438i | −158.539 | − | 1388.52i | 149.356i | −6321.02 | + | 631.073i | 1084.56 | + | 1084.56i | 17026.2 | − | 9830.06i | −6439.39 | + | 43157.7i | ||
3.7 | −27.8720 | − | 7.46827i | 30.2294 | + | 112.818i | 277.667 | + | 160.311i | 211.406 | + | 1381.46i | − | 3370.21i | 3847.43 | + | 5054.79i | 3904.82 | + | 3904.82i | 5231.97 | − | 3020.68i | 4424.83 | − | 40082.9i | |
3.8 | −26.6836 | − | 7.14985i | −65.2186 | − | 243.399i | 217.489 | + | 125.567i | 1313.38 | − | 477.656i | 6961.07i | −2565.03 | − | 5811.56i | 5095.68 | + | 5095.68i | −37943.7 | + | 21906.8i | −38460.9 | + | 3355.11i | ||
3.9 | −23.4249 | − | 6.27668i | 42.5378 | + | 158.753i | 65.9235 | + | 38.0610i | −1392.00 | − | 124.303i | − | 3985.77i | 5750.30 | − | 2699.57i | 7474.53 | + | 7474.53i | −6347.10 | + | 3664.50i | 31827.3 | + | 11649.0i | |
3.10 | −22.3519 | − | 5.98917i | −10.0261 | − | 37.4181i | 20.3322 | + | 11.7388i | −924.440 | + | 1048.11i | 896.413i | −6331.22 | − | 518.872i | 7993.56 | + | 7993.56i | 15746.4 | − | 9091.18i | 26940.3 | − | 17890.6i | ||
3.11 | −21.6149 | − | 5.79170i | −55.2156 | − | 206.067i | −9.74350 | − | 5.62541i | −1252.88 | − | 619.202i | 4773.93i | 2224.73 | + | 5950.14i | 8279.52 | + | 8279.52i | −22369.0 | + | 12914.8i | 23494.7 | + | 20640.3i | ||
3.12 | −17.7903 | − | 4.76691i | 63.8550 | + | 238.310i | −149.632 | − | 86.3901i | 439.946 | − | 1326.49i | − | 4544.01i | −516.855 | + | 6331.39i | 8918.19 | + | 8918.19i | −35668.3 | + | 20593.1i | −14150.1 | + | 21501.5i | |
3.13 | −12.1913 | − | 3.26666i | −24.7239 | − | 92.2709i | −305.447 | − | 176.350i | 348.098 | + | 1353.50i | 1205.67i | 4216.39 | − | 4751.39i | 7717.17 | + | 7717.17i | 9143.33 | − | 5278.91i | 177.633 | − | 17638.0i | ||
3.14 | −10.2381 | − | 2.74328i | −21.6326 | − | 80.7338i | −346.113 | − | 199.828i | 1190.45 | − | 732.094i | 885.901i | 5772.19 | + | 2652.45i | 6832.66 | + | 6832.66i | 10996.0 | − | 6348.54i | −14196.2 | + | 4229.50i | ||
3.15 | −6.27232 | − | 1.68066i | 15.1291 | + | 56.4624i | −406.888 | − | 234.917i | −873.884 | − | 1090.62i | − | 379.577i | 259.777 | − | 6347.14i | 4508.24 | + | 4508.24i | 14086.9 | − | 8133.05i | 3648.32 | + | 8309.42i | |
3.16 | −6.05635 | − | 1.62279i | 21.6603 | + | 80.8372i | −409.359 | − | 236.344i | 1391.85 | + | 125.989i | − | 524.728i | −6352.13 | + | 63.6305i | 4365.66 | + | 4365.66i | 10980.5 | − | 6339.59i | −8225.08 | − | 3021.72i | |
3.17 | −0.878798 | − | 0.235473i | 69.2202 | + | 258.333i | −442.688 | − | 255.586i | −379.993 | + | 1344.89i | − | 243.323i | −3345.20 | − | 5400.30i | 658.232 | + | 658.232i | −44898.7 | + | 25922.3i | 650.623 | − | 1092.41i | |
3.18 | 2.78516 | + | 0.746280i | −58.8948 | − | 219.798i | −436.205 | − | 251.843i | 332.404 | + | 1357.44i | − | 656.125i | −4609.57 | + | 4370.98i | −2070.86 | − | 2070.86i | −27796.8 | + | 16048.5i | −87.2304 | + | 4028.74i | |
3.19 | 3.77794 | + | 1.01230i | 19.1492 | + | 71.4659i | −430.157 | − | 248.351i | −1392.86 | + | 114.359i | 289.378i | −868.604 | + | 6292.78i | −2789.71 | − | 2789.71i | 12305.3 | − | 7104.46i | −5377.89 | − | 977.939i | ||
3.20 | 3.83230 | + | 1.02686i | −48.4413 | − | 180.785i | −429.773 | − | 248.130i | −576.593 | − | 1273.05i | − | 742.566i | −2972.03 | − | 5614.33i | −2828.61 | − | 2828.61i | −13290.8 | + | 7673.46i | −902.428 | − | 5470.80i | |
See next 80 embeddings (of 136 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
7.d | odd | 6 | 1 | inner |
35.k | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 35.10.k.a | ✓ | 136 |
5.c | odd | 4 | 1 | inner | 35.10.k.a | ✓ | 136 |
7.d | odd | 6 | 1 | inner | 35.10.k.a | ✓ | 136 |
35.k | even | 12 | 1 | inner | 35.10.k.a | ✓ | 136 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.10.k.a | ✓ | 136 | 1.a | even | 1 | 1 | trivial |
35.10.k.a | ✓ | 136 | 5.c | odd | 4 | 1 | inner |
35.10.k.a | ✓ | 136 | 7.d | odd | 6 | 1 | inner |
35.10.k.a | ✓ | 136 | 35.k | even | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(35, [\chi])\).