Properties

Label 35.10.k
Level $35$
Weight $10$
Character orbit 35.k
Rep. character $\chi_{35}(3,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $136$
Newform subspaces $1$
Sturm bound $40$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.k (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(40\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(35, [\chi])\).

Total New Old
Modular forms 152 152 0
Cusp forms 136 136 0
Eisenstein series 16 16 0

Trace form

\( 136 q - 2 q^{2} - 6 q^{3} - 1710 q^{5} + 5940 q^{7} - 3484 q^{8} + 153786 q^{10} - 87752 q^{11} + 3066 q^{12} - 318872 q^{15} + 3132804 q^{16} - 1578678 q^{17} - 239036 q^{18} - 5745396 q^{21} + 2132088 q^{22}+ \cdots + 5117393178 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(35, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
35.10.k.a 35.k 35.k $136$ $18.026$ None 35.10.k.a \(-2\) \(-6\) \(-1710\) \(5940\) $\mathrm{SU}(2)[C_{12}]$