Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [35,10,Mod(4,35)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(35, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("35.4");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.j (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.0262542657\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Relative dimension: | \(34\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −36.5251 | + | 21.0878i | 102.116 | + | 58.9569i | 633.390 | − | 1097.06i | −1329.14 | − | 431.869i | −4973.09 | −5598.79 | − | 3001.19i | 31833.3i | −2889.66 | − | 5005.04i | 57654.2 | − | 12254.6i | ||||
4.2 | −35.8858 | + | 20.7187i | −184.448 | − | 106.491i | 602.527 | − | 1043.61i | 1390.19 | − | 143.200i | 8825.40 | −4378.93 | − | 4602.02i | 28718.3i | 12839.1 | + | 22238.0i | −46921.0 | + | 33941.7i | ||||
4.3 | −35.3468 | + | 20.4075i | 43.4263 | + | 25.0722i | 576.931 | − | 999.273i | 387.775 | + | 1342.67i | −2046.64 | 4188.72 | + | 4775.79i | 26197.5i | −8584.27 | − | 14868.4i | −41107.1 | − | 39545.5i | ||||
4.4 | −32.3116 | + | 18.6551i | −168.242 | − | 97.1346i | 440.026 | − | 762.147i | −1358.14 | + | 329.525i | 7248.23 | 1751.31 | + | 6106.27i | 13732.1i | 9028.78 | + | 15638.3i | 37736.3 | − | 35983.7i | ||||
4.5 | −30.6738 | + | 17.7095i | 0.297969 | + | 0.172033i | 371.254 | − | 643.031i | 442.043 | − | 1325.79i | −12.1865 | 5985.24 | − | 2128.50i | 8164.37i | −9841.44 | − | 17045.9i | 9919.98 | + | 48495.4i | ||||
4.6 | −27.8265 | + | 16.0657i | 156.189 | + | 90.1756i | 260.211 | − | 450.698i | 887.615 | + | 1079.47i | −5794.92 | −3258.53 | − | 5453.04i | 270.581i | 6421.77 | + | 11122.8i | −42041.7 | − | 15777.9i | ||||
4.7 | −27.6841 | + | 15.9834i | 230.747 | + | 133.222i | 254.940 | − | 441.569i | 776.768 | − | 1161.79i | −8517.36 | 42.1213 | + | 6352.31i | − | 67.7831i | 25654.5 | + | 44435.0i | −2934.76 | + | 44578.5i | |||
4.8 | −22.4039 | + | 12.9349i | −81.7829 | − | 47.2174i | 78.6223 | − | 136.178i | −750.881 | − | 1178.69i | 2443.00 | −5976.81 | + | 2152.05i | − | 9177.44i | −5382.54 | − | 9322.83i | 32068.8 | + | 16694.6i | |||
4.9 | −21.6431 | + | 12.4956i | −124.860 | − | 72.0879i | 56.2825 | − | 97.4842i | −505.151 | + | 1303.05i | 3603.14 | 1540.11 | − | 6162.93i | − | 9982.40i | 551.823 | + | 955.786i | −5349.45 | − | 34514.3i | |||
4.10 | −20.6049 | + | 11.8963i | −52.9576 | − | 30.5751i | 27.0421 | − | 46.8384i | 1394.21 | + | 96.5081i | 1454.92 | −4324.08 | + | 4653.59i | − | 10895.0i | −7971.83 | − | 13807.6i | −29875.6 | + | 14597.3i | |||
4.11 | −17.7536 | + | 10.2500i | 138.618 | + | 80.0311i | −45.8742 | + | 79.4564i | −1388.74 | − | 156.575i | −3281.28 | 5604.70 | − | 2990.15i | − | 12376.9i | 2968.46 | + | 5141.53i | 26260.0 | − | 11454.9i | |||
4.12 | −14.7876 | + | 8.53763i | 107.686 | + | 62.1724i | −110.218 | + | 190.903i | −936.651 | + | 1037.21i | −2123.22 | −3129.65 | + | 5528.01i | − | 12506.5i | −2110.69 | − | 3655.82i | 4995.50 | − | 23334.7i | |||
4.13 | −12.6515 | + | 7.30432i | −237.207 | − | 136.952i | −149.294 | + | 258.585i | 343.475 | − | 1354.68i | 4001.35 | 6124.66 | + | 1685.86i | − | 11841.6i | 27670.0 | + | 47925.9i | 5549.54 | + | 19647.5i | |||
4.14 | −8.03642 | + | 4.63983i | −42.5238 | − | 24.5511i | −212.944 | + | 368.830i | 1267.36 | + | 589.003i | 455.652 | 6091.79 | + | 1801.04i | − | 8703.28i | −8635.99 | − | 14958.0i | −12917.9 | + | 1146.86i | |||
4.15 | −6.57154 | + | 3.79408i | 105.463 | + | 60.8890i | −227.210 | + | 393.539i | 1041.64 | − | 931.723i | −924.071 | −3603.23 | − | 5231.67i | − | 7333.35i | −2426.56 | − | 4202.92i | −3310.15 | + | 10074.9i | |||
4.16 | −2.09289 | + | 1.20833i | −91.4053 | − | 52.7729i | −253.080 | + | 438.347i | −1104.79 | − | 855.896i | 255.068 | −1695.36 | − | 6122.04i | − | 2460.55i | −4271.55 | − | 7398.54i | 3346.41 | + | 456.340i | |||
4.17 | −1.15888 | + | 0.669077i | −212.277 | − | 122.558i | −255.105 | + | 441.854i | 563.506 | + | 1278.90i | 328.003 | −6227.19 | + | 1255.26i | − | 1367.87i | 20199.5 | + | 34986.6i | −1508.72 | − | 1105.06i | |||
4.18 | 1.15888 | − | 0.669077i | 212.277 | + | 122.558i | −255.105 | + | 441.854i | 825.807 | + | 1127.46i | 328.003 | 6227.19 | − | 1255.26i | 1367.87i | 20199.5 | + | 34986.6i | 1711.37 | + | 754.058i | ||||
4.19 | 2.09289 | − | 1.20833i | 91.4053 | + | 52.7729i | −253.080 | + | 438.347i | −188.831 | − | 1384.73i | 255.068 | 1695.36 | + | 6122.04i | 2460.55i | −4271.55 | − | 7398.54i | −2068.41 | − | 2669.91i | ||||
4.20 | 6.57154 | − | 3.79408i | −105.463 | − | 60.8890i | −227.210 | + | 393.539i | −1327.72 | + | 436.226i | −924.071 | 3603.23 | + | 5231.67i | 7333.35i | −2426.56 | − | 4202.92i | −7070.06 | + | 7904.14i | ||||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
35.j | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 35.10.j.a | ✓ | 68 |
5.b | even | 2 | 1 | inner | 35.10.j.a | ✓ | 68 |
7.c | even | 3 | 1 | inner | 35.10.j.a | ✓ | 68 |
35.j | even | 6 | 1 | inner | 35.10.j.a | ✓ | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.10.j.a | ✓ | 68 | 1.a | even | 1 | 1 | trivial |
35.10.j.a | ✓ | 68 | 5.b | even | 2 | 1 | inner |
35.10.j.a | ✓ | 68 | 7.c | even | 3 | 1 | inner |
35.10.j.a | ✓ | 68 | 35.j | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(35, [\chi])\).