Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [35,10,Mod(13,35)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(35, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 2]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("35.13");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.0262542657\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Relative dimension: | \(34\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | −30.0796 | + | 30.0796i | −165.104 | + | 165.104i | − | 1297.56i | −1175.60 | + | 755.707i | − | 9932.50i | −6017.78 | + | 2034.69i | 23629.3 | + | 23629.3i | − | 34835.5i | 12630.2 | − | 58092.8i | |||
13.2 | −30.0796 | + | 30.0796i | 165.104 | − | 165.104i | − | 1297.56i | 1175.60 | − | 755.707i | 9932.50i | −2034.69 | + | 6017.78i | 23629.3 | + | 23629.3i | − | 34835.5i | −12630.2 | + | 58092.8i | ||||
13.3 | −28.4613 | + | 28.4613i | −65.3602 | + | 65.3602i | − | 1108.09i | 920.000 | − | 1052.01i | − | 3720.47i | 334.479 | − | 6343.64i | 16965.6 | + | 16965.6i | 11139.1i | 3757.16 | + | 56126.0i | ||||
13.4 | −28.4613 | + | 28.4613i | 65.3602 | − | 65.3602i | − | 1108.09i | −920.000 | + | 1052.01i | 3720.47i | 6343.64 | − | 334.479i | 16965.6 | + | 16965.6i | 11139.1i | −3757.16 | − | 56126.0i | |||||
13.5 | −22.4049 | + | 22.4049i | −64.8175 | + | 64.8175i | − | 491.961i | 1234.64 | + | 654.815i | − | 2904.46i | −2084.54 | + | 6000.69i | −448.973 | − | 448.973i | 11280.4i | −42333.1 | + | 12991.0i | ||||
13.6 | −22.4049 | + | 22.4049i | 64.8175 | − | 64.8175i | − | 491.961i | −1234.64 | − | 654.815i | 2904.46i | −6000.69 | + | 2084.54i | −448.973 | − | 448.973i | 11280.4i | 42333.1 | − | 12991.0i | |||||
13.7 | −21.8088 | + | 21.8088i | −80.0540 | + | 80.0540i | − | 439.244i | −536.173 | − | 1290.60i | − | 3491.76i | 5525.04 | + | 3134.88i | −1586.71 | − | 1586.71i | 6865.73i | 39839.6 | + | 16453.1i | ||||
13.8 | −21.8088 | + | 21.8088i | 80.0540 | − | 80.0540i | − | 439.244i | 536.173 | + | 1290.60i | 3491.76i | −3134.88 | − | 5525.04i | −1586.71 | − | 1586.71i | 6865.73i | −39839.6 | − | 16453.1i | |||||
13.9 | −16.7332 | + | 16.7332i | −158.487 | + | 158.487i | − | 47.9996i | 572.153 | + | 1275.06i | − | 5303.99i | 4880.13 | − | 4066.68i | −7764.21 | − | 7764.21i | − | 30553.3i | −30909.7 | − | 11761.8i | |||
13.10 | −16.7332 | + | 16.7332i | 158.487 | − | 158.487i | − | 47.9996i | −572.153 | − | 1275.06i | 5303.99i | 4066.68 | − | 4880.13i | −7764.21 | − | 7764.21i | − | 30553.3i | 30909.7 | + | 11761.8i | ||||
13.11 | −10.7176 | + | 10.7176i | −94.9252 | + | 94.9252i | 282.266i | −1392.70 | + | 116.269i | − | 2034.74i | −2241.22 | − | 5943.95i | −8512.63 | − | 8512.63i | 1661.42i | 13680.3 | − | 16172.5i | |||||
13.12 | −10.7176 | + | 10.7176i | 94.9252 | − | 94.9252i | 282.266i | 1392.70 | − | 116.269i | 2034.74i | 5943.95 | + | 2241.22i | −8512.63 | − | 8512.63i | 1661.42i | −13680.3 | + | 16172.5i | ||||||
13.13 | −8.85794 | + | 8.85794i | −185.026 | + | 185.026i | 355.074i | 321.387 | − | 1360.09i | − | 3277.89i | −4056.41 | + | 4888.68i | −7680.49 | − | 7680.49i | − | 48786.0i | 9200.74 | + | 14894.4i | ||||
13.14 | −8.85794 | + | 8.85794i | 185.026 | − | 185.026i | 355.074i | −321.387 | + | 1360.09i | 3277.89i | −4888.68 | + | 4056.41i | −7680.49 | − | 7680.49i | − | 48786.0i | −9200.74 | − | 14894.4i | |||||
13.15 | −7.91668 | + | 7.91668i | −12.0397 | + | 12.0397i | 386.652i | −979.158 | + | 997.183i | − | 190.628i | 3026.19 | + | 5585.32i | −7114.34 | − | 7114.34i | 19393.1i | −142.700 | − | 15646.1i | |||||
13.16 | −7.91668 | + | 7.91668i | 12.0397 | − | 12.0397i | 386.652i | 979.158 | − | 997.183i | 190.628i | −5585.32 | − | 3026.19i | −7114.34 | − | 7114.34i | 19393.1i | 142.700 | + | 15646.1i | ||||||
13.17 | 3.98832 | − | 3.98832i | −120.818 | + | 120.818i | 480.187i | 1318.93 | − | 462.121i | 963.720i | 5668.35 | − | 2867.66i | 3957.16 | + | 3957.16i | − | 9510.88i | 3417.22 | − | 7103.39i | |||||
13.18 | 3.98832 | − | 3.98832i | 120.818 | − | 120.818i | 480.187i | −1318.93 | + | 462.121i | − | 963.720i | 2867.66 | − | 5668.35i | 3957.16 | + | 3957.16i | − | 9510.88i | −3417.22 | + | 7103.39i | ||||
13.19 | 4.04483 | − | 4.04483i | −81.7433 | + | 81.7433i | 479.279i | 613.563 | + | 1255.65i | 661.275i | −6068.65 | + | 1877.53i | 4009.55 | + | 4009.55i | 6319.07i | 7560.66 | + | 2597.14i | ||||||
13.20 | 4.04483 | − | 4.04483i | 81.7433 | − | 81.7433i | 479.279i | −613.563 | − | 1255.65i | − | 661.275i | −1877.53 | + | 6068.65i | 4009.55 | + | 4009.55i | 6319.07i | −7560.66 | − | 2597.14i | |||||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
7.b | odd | 2 | 1 | inner |
35.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 35.10.f.a | ✓ | 68 |
5.c | odd | 4 | 1 | inner | 35.10.f.a | ✓ | 68 |
7.b | odd | 2 | 1 | inner | 35.10.f.a | ✓ | 68 |
35.f | even | 4 | 1 | inner | 35.10.f.a | ✓ | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.10.f.a | ✓ | 68 | 1.a | even | 1 | 1 | trivial |
35.10.f.a | ✓ | 68 | 5.c | odd | 4 | 1 | inner |
35.10.f.a | ✓ | 68 | 7.b | odd | 2 | 1 | inner |
35.10.f.a | ✓ | 68 | 35.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(35, [\chi])\).