Properties

Label 35.10.f
Level $35$
Weight $10$
Character orbit 35.f
Rep. character $\chi_{35}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $68$
Newform subspaces $1$
Sturm bound $40$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(40\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(35, [\chi])\).

Total New Old
Modular forms 76 76 0
Cusp forms 68 68 0
Eisenstein series 8 8 0

Trace form

\( 68 q - 4 q^{2} - 5946 q^{7} + 3472 q^{8} - 83032 q^{11} + 318860 q^{15} - 4744440 q^{16} + 357128 q^{18} + 999732 q^{21} - 4174596 q^{22} - 5819092 q^{23} - 38300 q^{25} + 17370560 q^{28} + 20856500 q^{30}+ \cdots + 8347561548 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(35, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
35.10.f.a 35.f 35.f $68$ $18.026$ None 35.10.f.a \(-4\) \(0\) \(0\) \(-5946\) $\mathrm{SU}(2)[C_{4}]$