Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [35,10,Mod(11,35)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(35, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("35.11");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.0262542657\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Relative dimension: | \(13\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −22.5253 | − | 39.0149i | −82.8695 | + | 143.534i | −758.777 | + | 1314.24i | −312.500 | − | 541.266i | 7466.64 | −974.948 | + | 6277.19i | 45300.8 | −3893.21 | − | 6743.23i | −14078.3 | + | 24384.3i | ||||
11.2 | −17.9712 | − | 31.1270i | 48.7106 | − | 84.3693i | −389.927 | + | 675.374i | −312.500 | − | 541.266i | −3501.55 | −2294.91 | − | 5923.43i | 9627.32 | 5096.05 | + | 8826.62i | −11232.0 | + | 19454.4i | ||||
11.3 | −13.4978 | − | 23.3789i | −20.4858 | + | 35.4825i | −108.381 | + | 187.722i | −312.500 | − | 541.266i | 1106.05 | 5969.00 | + | 2173.62i | −7970.10 | 9002.16 | + | 15592.2i | −8436.13 | + | 14611.8i | ||||
11.4 | −12.0438 | − | 20.8604i | −128.396 | + | 222.388i | −34.1047 | + | 59.0710i | −312.500 | − | 541.266i | 6185.48 | −2990.00 | − | 5604.77i | −10689.8 | −23129.5 | − | 40061.5i | −7527.35 | + | 13037.8i | ||||
11.5 | −7.72146 | − | 13.3740i | 23.1625 | − | 40.1186i | 136.758 | − | 236.872i | −312.500 | − | 541.266i | −715.393 | −6025.47 | + | 2011.79i | −12130.7 | 8768.50 | + | 15187.5i | −4825.91 | + | 8358.72i | ||||
11.6 | −6.99651 | − | 12.1183i | 127.747 | − | 221.265i | 158.098 | − | 273.833i | −312.500 | − | 541.266i | −3575.14 | −4480.30 | + | 4503.39i | −11589.0 | −22797.3 | − | 39486.1i | −4372.82 | + | 7573.94i | ||||
11.7 | 1.28068 | + | 2.21821i | −88.7779 | + | 153.768i | 252.720 | − | 437.723i | −312.500 | − | 541.266i | −454.786 | 3039.46 | + | 5578.11i | 2606.03 | −5921.54 | − | 10256.4i | 800.427 | − | 1386.38i | ||||
11.8 | 4.76014 | + | 8.24481i | 87.7485 | − | 151.985i | 210.682 | − | 364.912i | −312.500 | − | 541.266i | 1670.78 | 6348.81 | − | 214.845i | 8885.89 | −5558.10 | − | 9626.90i | 2975.09 | − | 5153.00i | ||||
11.9 | 7.58976 | + | 13.1459i | −22.9573 | + | 39.7632i | 140.791 | − | 243.857i | −312.500 | − | 541.266i | −696.962 | −6215.41 | + | 1312.34i | 12046.2 | 8787.43 | + | 15220.3i | 4743.60 | − | 8216.16i | ||||
11.10 | 10.6621 | + | 18.4672i | −95.0320 | + | 164.600i | 28.6405 | − | 49.6068i | −312.500 | − | 541.266i | −4052.95 | −374.098 | − | 6341.42i | 12139.4 | −8220.66 | − | 14238.6i | 6663.79 | − | 11542.0i | ||||
11.11 | 17.0642 | + | 29.5561i | 64.1727 | − | 111.150i | −326.375 | + | 565.298i | −312.500 | − | 541.266i | 4380.23 | −1287.99 | − | 6220.51i | −4803.59 | 1605.23 | + | 2780.35i | 10665.1 | − | 18472.6i | ||||
11.12 | 18.2405 | + | 31.5936i | 51.0946 | − | 88.4984i | −409.435 | + | 709.163i | −312.500 | − | 541.266i | 3727.97 | −772.002 | + | 6305.36i | −11195.0 | 4620.19 | + | 8002.40i | 11400.3 | − | 19746.0i | ||||
11.13 | 21.6586 | + | 37.5138i | −98.1178 | + | 169.945i | −682.188 | + | 1181.59i | −312.500 | − | 541.266i | −8500.37 | 5826.86 | − | 2530.08i | −36922.6 | −9412.70 | − | 16303.3i | 13536.6 | − | 23446.1i | ||||
16.1 | −22.5253 | + | 39.0149i | −82.8695 | − | 143.534i | −758.777 | − | 1314.24i | −312.500 | + | 541.266i | 7466.64 | −974.948 | − | 6277.19i | 45300.8 | −3893.21 | + | 6743.23i | −14078.3 | − | 24384.3i | ||||
16.2 | −17.9712 | + | 31.1270i | 48.7106 | + | 84.3693i | −389.927 | − | 675.374i | −312.500 | + | 541.266i | −3501.55 | −2294.91 | + | 5923.43i | 9627.32 | 5096.05 | − | 8826.62i | −11232.0 | − | 19454.4i | ||||
16.3 | −13.4978 | + | 23.3789i | −20.4858 | − | 35.4825i | −108.381 | − | 187.722i | −312.500 | + | 541.266i | 1106.05 | 5969.00 | − | 2173.62i | −7970.10 | 9002.16 | − | 15592.2i | −8436.13 | − | 14611.8i | ||||
16.4 | −12.0438 | + | 20.8604i | −128.396 | − | 222.388i | −34.1047 | − | 59.0710i | −312.500 | + | 541.266i | 6185.48 | −2990.00 | + | 5604.77i | −10689.8 | −23129.5 | + | 40061.5i | −7527.35 | − | 13037.8i | ||||
16.5 | −7.72146 | + | 13.3740i | 23.1625 | + | 40.1186i | 136.758 | + | 236.872i | −312.500 | + | 541.266i | −715.393 | −6025.47 | − | 2011.79i | −12130.7 | 8768.50 | − | 15187.5i | −4825.91 | − | 8358.72i | ||||
16.6 | −6.99651 | + | 12.1183i | 127.747 | + | 221.265i | 158.098 | + | 273.833i | −312.500 | + | 541.266i | −3575.14 | −4480.30 | − | 4503.39i | −11589.0 | −22797.3 | + | 39486.1i | −4372.82 | − | 7573.94i | ||||
16.7 | 1.28068 | − | 2.21821i | −88.7779 | − | 153.768i | 252.720 | + | 437.723i | −312.500 | + | 541.266i | −454.786 | 3039.46 | − | 5578.11i | 2606.03 | −5921.54 | + | 10256.4i | 800.427 | + | 1386.38i | ||||
See all 26 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 35.10.e.b | ✓ | 26 |
7.c | even | 3 | 1 | inner | 35.10.e.b | ✓ | 26 |
7.c | even | 3 | 1 | 245.10.a.m | 13 | ||
7.d | odd | 6 | 1 | 245.10.a.l | 13 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.10.e.b | ✓ | 26 | 1.a | even | 1 | 1 | trivial |
35.10.e.b | ✓ | 26 | 7.c | even | 3 | 1 | inner |
245.10.a.l | 13 | 7.d | odd | 6 | 1 | ||
245.10.a.m | 13 | 7.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{26} - T_{2}^{25} + 5110 T_{2}^{24} - 1297 T_{2}^{23} + 16469162 T_{2}^{22} + \cdots + 93\!\cdots\!04 \)
acting on \(S_{10}^{\mathrm{new}}(35, [\chi])\).