Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [35,10,Mod(29,35)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(35, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("35.29");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 35 = 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 35.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(18.0262542657\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | − | 41.1148i | 238.422i | −1178.43 | −1364.57 | − | 301.785i | 9802.66 | 2401.00i | 27400.1i | −37161.8 | −12407.8 | + | 56104.1i | |||||||||||||
29.2 | − | 39.5568i | − | 124.465i | −1052.74 | −391.953 | + | 1341.45i | −4923.44 | 2401.00i | 21389.9i | 4191.43 | 53063.6 | + | 15504.4i | ||||||||||||
29.3 | − | 36.3540i | − | 180.517i | −809.610 | −1083.80 | − | 882.324i | −6562.51 | − | 2401.00i | 10819.3i | −12903.4 | −32076.0 | + | 39400.5i | |||||||||||
29.4 | − | 34.7267i | 125.299i | −693.945 | 182.264 | + | 1385.61i | 4351.22 | − | 2401.00i | 6318.35i | 3983.15 | 48117.6 | − | 6329.44i | ||||||||||||
29.5 | − | 27.4175i | − | 243.480i | −239.721 | 1314.36 | − | 474.963i | −6675.61 | 2401.00i | − | 7465.23i | −39599.4 | −13022.3 | − | 36036.4i | |||||||||||
29.6 | − | 25.4620i | 111.752i | −136.314 | −1350.26 | − | 360.442i | 2845.44 | − | 2401.00i | − | 9565.72i | 7194.45 | −9177.58 | + | 34380.4i | |||||||||||
29.7 | − | 24.6718i | 212.283i | −96.6987 | 1243.25 | + | 638.325i | 5237.41 | 2401.00i | − | 10246.2i | −25381.1 | 15748.6 | − | 30673.2i | ||||||||||||
29.8 | − | 24.6549i | 17.6734i | −95.8645 | −12.5812 | − | 1397.49i | 435.737 | 2401.00i | − | 10259.8i | 19370.6 | −34454.9 | + | 310.189i | ||||||||||||
29.9 | − | 21.7968i | − | 114.276i | 36.8999 | 1092.36 | + | 871.709i | −2490.84 | − | 2401.00i | − | 11964.3i | 6624.06 | 19000.4 | − | 23809.9i | ||||||||||
29.10 | − | 16.1576i | − | 17.2974i | 250.933 | −1196.41 | + | 722.315i | −279.484 | 2401.00i | − | 12327.1i | 19383.8 | 11670.9 | + | 19331.0i | |||||||||||
29.11 | − | 13.6862i | 223.464i | 324.689 | 603.501 | − | 1260.52i | 3058.37 | − | 2401.00i | − | 11451.1i | −30253.3 | −17251.7 | − | 8259.61i | |||||||||||
29.12 | − | 7.74202i | − | 216.721i | 452.061 | −1016.98 | + | 958.582i | −1677.86 | − | 2401.00i | − | 7463.78i | −27284.9 | 7421.36 | + | 7873.47i | ||||||||||
29.13 | − | 1.80576i | − | 23.8664i | 508.739 | 1123.82 | − | 830.751i | −43.0971 | − | 2401.00i | − | 1843.21i | 19113.4 | −1500.14 | − | 2029.36i | ||||||||||
29.14 | 1.80576i | 23.8664i | 508.739 | 1123.82 | + | 830.751i | −43.0971 | 2401.00i | 1843.21i | 19113.4 | −1500.14 | + | 2029.36i | ||||||||||||||
29.15 | 7.74202i | 216.721i | 452.061 | −1016.98 | − | 958.582i | −1677.86 | 2401.00i | 7463.78i | −27284.9 | 7421.36 | − | 7873.47i | ||||||||||||||
29.16 | 13.6862i | − | 223.464i | 324.689 | 603.501 | + | 1260.52i | 3058.37 | 2401.00i | 11451.1i | −30253.3 | −17251.7 | + | 8259.61i | |||||||||||||
29.17 | 16.1576i | 17.2974i | 250.933 | −1196.41 | − | 722.315i | −279.484 | − | 2401.00i | 12327.1i | 19383.8 | 11670.9 | − | 19331.0i | |||||||||||||
29.18 | 21.7968i | 114.276i | 36.8999 | 1092.36 | − | 871.709i | −2490.84 | 2401.00i | 11964.3i | 6624.06 | 19000.4 | + | 23809.9i | ||||||||||||||
29.19 | 24.6549i | − | 17.6734i | −95.8645 | −12.5812 | + | 1397.49i | 435.737 | − | 2401.00i | 10259.8i | 19370.6 | −34454.9 | − | 310.189i | ||||||||||||
29.20 | 24.6718i | − | 212.283i | −96.6987 | 1243.25 | − | 638.325i | 5237.41 | − | 2401.00i | 10246.2i | −25381.1 | 15748.6 | + | 30673.2i | ||||||||||||
See all 26 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 35.10.b.a | ✓ | 26 |
5.b | even | 2 | 1 | inner | 35.10.b.a | ✓ | 26 |
5.c | odd | 4 | 1 | 175.10.a.l | 13 | ||
5.c | odd | 4 | 1 | 175.10.a.m | 13 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.10.b.a | ✓ | 26 | 1.a | even | 1 | 1 | trivial |
35.10.b.a | ✓ | 26 | 5.b | even | 2 | 1 | inner |
175.10.a.l | 13 | 5.c | odd | 4 | 1 | ||
175.10.a.m | 13 | 5.c | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(35, [\chi])\).