Properties

Label 35.10.a.e
Level $35$
Weight $10$
Character orbit 35.a
Self dual yes
Analytic conductor $18.026$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,10,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.0262542657\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 3) q^{2} + (\beta_{2} - \beta_1 - 20) q^{3} + (\beta_{4} - 2 \beta_{2} - 3 \beta_1 + 503) q^{4} + 625 q^{5} + ( - \beta_{5} + 3 \beta_{4} + \cdots + 764) q^{6}+ \cdots + (11 \beta_{5} + 12 \beta_{4} + \cdots + 18652) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 3) q^{2} + (\beta_{2} - \beta_1 - 20) q^{3} + (\beta_{4} - 2 \beta_{2} - 3 \beta_1 + 503) q^{4} + 625 q^{5} + ( - \beta_{5} + 3 \beta_{4} + \cdots + 764) q^{6}+ \cdots + (501636 \beta_{5} - 875024 \beta_{4} + \cdots + 605562664) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 15 q^{2} - 124 q^{3} + 3009 q^{4} + 3750 q^{5} + 4888 q^{6} - 14406 q^{7} + 22041 q^{8} + 111090 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 15 q^{2} - 124 q^{3} + 3009 q^{4} + 3750 q^{5} + 4888 q^{6} - 14406 q^{7} + 22041 q^{8} + 111090 q^{9} + 9375 q^{10} - 47796 q^{11} - 541656 q^{12} + 102168 q^{13} - 36015 q^{14} - 77500 q^{15} + 2371065 q^{16} - 38472 q^{17} + 1837015 q^{18} + 361056 q^{19} + 1880625 q^{20} + 297724 q^{21} + 2068680 q^{22} + 697032 q^{23} + 4828076 q^{24} + 2343750 q^{25} + 10847622 q^{26} + 1653188 q^{27} - 7224609 q^{28} + 16028184 q^{29} + 3055000 q^{30} + 1362912 q^{31} - 1148823 q^{32} + 14059020 q^{33} - 9216294 q^{34} - 9003750 q^{35} + 92319641 q^{36} - 3912924 q^{37} + 39877140 q^{38} - 20341868 q^{39} + 13775625 q^{40} + 22452756 q^{41} - 11736088 q^{42} - 29998992 q^{43} - 94378728 q^{44} + 69431250 q^{45} + 49589520 q^{46} - 121271508 q^{47} - 327116052 q^{48} + 34588806 q^{49} + 5859375 q^{50} - 281338180 q^{51} - 44528550 q^{52} - 20308596 q^{53} - 290104308 q^{54} - 29872500 q^{55} - 52920441 q^{56} + 186940744 q^{57} + 256759494 q^{58} + 120280392 q^{59} - 338535000 q^{60} - 87693540 q^{61} - 344802528 q^{62} - 266727090 q^{63} + 640647105 q^{64} + 63855000 q^{65} - 1393970692 q^{66} + 495050664 q^{67} - 141443706 q^{68} + 1031633640 q^{69} - 22509375 q^{70} + 253762512 q^{71} + 856452205 q^{72} + 187195308 q^{73} - 418806054 q^{74} - 48437500 q^{75} - 584719476 q^{76} + 114758196 q^{77} - 1728062324 q^{78} + 831079500 q^{79} + 1481915625 q^{80} + 1869314710 q^{81} + 2286848814 q^{82} - 767650536 q^{83} + 1300516056 q^{84} - 24045000 q^{85} + 566199948 q^{86} + 1303216852 q^{87} + 2952495444 q^{88} + 582579684 q^{89} + 1148134375 q^{90} - 245305368 q^{91} - 4259382384 q^{92} + 15388800 q^{93} - 1115946660 q^{94} + 225660000 q^{95} + 989345252 q^{96} - 1184506872 q^{97} + 86472015 q^{98} + 3571968784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 3018x^{4} + 3368x^{3} + 2066979x^{2} - 6329061x - 14714266 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 71\nu^{5} - 1106\nu^{4} - 175920\nu^{3} + 1251392\nu^{2} + 92091141\nu + 14392190 ) / 1562184 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -17\nu^{5} + 876\nu^{4} - 26942\nu^{3} - 960318\nu^{2} + 86026127\nu - 215878594 ) / 781092 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 71\nu^{5} - 1106\nu^{4} - 175920\nu^{3} + 2032484\nu^{2} + 89747865\nu - 771386362 ) / 781092 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 121\nu^{5} + 2699\nu^{4} - 427239\nu^{3} - 5165789\nu^{2} + 322723500\nu + 5183590 ) / 390546 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - 2\beta_{2} + 3\beta _1 + 1006 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 6\beta_{4} - 15\beta_{3} - 26\beta_{2} + 1669\beta _1 + 2006 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 113\beta_{5} + 1759\beta_{4} - 417\beta_{3} - 4488\beta_{2} + 15009\beta _1 + 1661740 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4238\beta_{5} + 24642\beta_{4} - 43662\beta_{3} - 77080\beta_{2} + 3019227\beta _1 + 12922358 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
47.1222
29.3435
4.69340
−1.54749
−36.8299
−39.7818
−44.1222 −215.448 1434.77 625.000 9506.03 −2401.00 −40714.7 26734.7 −27576.4
1.2 −26.3435 −1.97103 181.982 625.000 51.9238 −2401.00 8693.85 −19679.1 −16464.7
1.3 −1.69340 266.960 −509.132 625.000 −452.070 −2401.00 1729.19 51584.5 −1058.38
1.4 4.54749 −98.1335 −491.320 625.000 −446.261 −2401.00 −4562.59 −10052.8 2842.18
1.5 39.8299 184.811 1074.42 625.000 7360.99 −2401.00 22401.1 14472.0 24893.7
1.6 42.7818 −260.219 1318.28 625.000 −11132.6 −2401.00 34494.1 48030.7 26738.6
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 35.10.a.e 6
3.b odd 2 1 315.10.a.l 6
5.b even 2 1 175.10.a.g 6
5.c odd 4 2 175.10.b.g 12
7.b odd 2 1 245.10.a.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.10.a.e 6 1.a even 1 1 trivial
175.10.a.g 6 5.b even 2 1
175.10.b.g 12 5.c odd 4 2
245.10.a.g 6 7.b odd 2 1
315.10.a.l 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 15T_{2}^{5} - 2928T_{2}^{4} + 32578T_{2}^{3} + 1934724T_{2}^{2} - 5838048T_{2} - 15252160 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(35))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 15 T^{5} + \cdots - 15252160 \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots + 535011154704 \) Copy content Toggle raw display
$5$ \( (T - 625)^{6} \) Copy content Toggle raw display
$7$ \( (T + 2401)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 78\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 11\!\cdots\!60 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 10\!\cdots\!28 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 52\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 42\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 74\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 56\!\cdots\!80 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 85\!\cdots\!88 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 37\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 52\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 68\!\cdots\!88 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 20\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 49\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 74\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 27\!\cdots\!72 \) Copy content Toggle raw display
show more
show less