Properties

Label 35.10.a.c.1.4
Level $35$
Weight $10$
Character 35.1
Self dual yes
Analytic conductor $18.026$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [35,10,Mod(1,35)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("35.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(35, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.0262542657\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 648x^{2} + 6926x - 8308 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(16.7769\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+33.3659 q^{2} -72.5961 q^{3} +601.285 q^{4} -625.000 q^{5} -2422.24 q^{6} -2401.00 q^{7} +2979.08 q^{8} -14412.8 q^{9} -20853.7 q^{10} -31567.7 q^{11} -43651.0 q^{12} +67041.9 q^{13} -80111.6 q^{14} +45372.6 q^{15} -208458. q^{16} -221458. q^{17} -480897. q^{18} -631713. q^{19} -375803. q^{20} +174303. q^{21} -1.05329e6 q^{22} +290099. q^{23} -216270. q^{24} +390625. q^{25} +2.23692e6 q^{26} +2.47522e6 q^{27} -1.44369e6 q^{28} -2.34008e6 q^{29} +1.51390e6 q^{30} +6.68779e6 q^{31} -8.48069e6 q^{32} +2.29170e6 q^{33} -7.38915e6 q^{34} +1.50062e6 q^{35} -8.66620e6 q^{36} -4.33836e6 q^{37} -2.10777e7 q^{38} -4.86698e6 q^{39} -1.86193e6 q^{40} +1.29663e7 q^{41} +5.81579e6 q^{42} -3.85567e7 q^{43} -1.89812e7 q^{44} +9.00800e6 q^{45} +9.67941e6 q^{46} +5.63758e7 q^{47} +1.51333e7 q^{48} +5.76480e6 q^{49} +1.30336e7 q^{50} +1.60770e7 q^{51} +4.03113e7 q^{52} +4.95291e7 q^{53} +8.25881e7 q^{54} +1.97298e7 q^{55} -7.15278e6 q^{56} +4.58599e7 q^{57} -7.80789e7 q^{58} -1.21109e7 q^{59} +2.72819e7 q^{60} -6.35756e7 q^{61} +2.23144e8 q^{62} +3.46051e7 q^{63} -1.76236e8 q^{64} -4.19012e7 q^{65} +7.64645e7 q^{66} +1.35134e8 q^{67} -1.33159e8 q^{68} -2.10600e7 q^{69} +5.00697e7 q^{70} -8.05749e7 q^{71} -4.29369e7 q^{72} +2.43855e6 q^{73} -1.44754e8 q^{74} -2.83579e7 q^{75} -3.79840e8 q^{76} +7.57941e7 q^{77} -1.62391e8 q^{78} -5.06746e8 q^{79} +1.30286e8 q^{80} +1.03996e8 q^{81} +4.32634e8 q^{82} -5.73793e8 q^{83} +1.04806e8 q^{84} +1.38411e8 q^{85} -1.28648e9 q^{86} +1.69881e8 q^{87} -9.40429e7 q^{88} -5.34274e8 q^{89} +3.00560e8 q^{90} -1.60968e8 q^{91} +1.74432e8 q^{92} -4.85508e8 q^{93} +1.88103e9 q^{94} +3.94821e8 q^{95} +6.15665e8 q^{96} -1.27379e9 q^{97} +1.92348e8 q^{98} +4.54980e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 19 q^{2} - 18 q^{3} + 1729 q^{4} - 2500 q^{5} - 144 q^{6} - 9604 q^{7} - 30495 q^{8} + 5382 q^{9} + 11875 q^{10} + 82438 q^{11} + 41328 q^{12} - 72962 q^{13} + 45619 q^{14} + 11250 q^{15} + 64257 q^{16}+ \cdots + 1222369524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 33.3659 1.47458 0.737290 0.675577i \(-0.236105\pi\)
0.737290 + 0.675577i \(0.236105\pi\)
\(3\) −72.5961 −0.517449 −0.258725 0.965951i \(-0.583302\pi\)
−0.258725 + 0.965951i \(0.583302\pi\)
\(4\) 601.285 1.17439
\(5\) −625.000 −0.447214
\(6\) −2422.24 −0.763020
\(7\) −2401.00 −0.377964
\(8\) 2979.08 0.257145
\(9\) −14412.8 −0.732246
\(10\) −20853.7 −0.659452
\(11\) −31567.7 −0.650094 −0.325047 0.945698i \(-0.605380\pi\)
−0.325047 + 0.945698i \(0.605380\pi\)
\(12\) −43651.0 −0.607685
\(13\) 67041.9 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(14\) −80111.6 −0.557339
\(15\) 45372.6 0.231410
\(16\) −208458. −0.795205
\(17\) −221458. −0.643089 −0.321545 0.946894i \(-0.604202\pi\)
−0.321545 + 0.946894i \(0.604202\pi\)
\(18\) −480897. −1.07976
\(19\) −631713. −1.11206 −0.556031 0.831162i \(-0.687676\pi\)
−0.556031 + 0.831162i \(0.687676\pi\)
\(20\) −375803. −0.525201
\(21\) 174303. 0.195577
\(22\) −1.05329e6 −0.958616
\(23\) 290099. 0.216157 0.108079 0.994142i \(-0.465530\pi\)
0.108079 + 0.994142i \(0.465530\pi\)
\(24\) −216270. −0.133059
\(25\) 390625. 0.200000
\(26\) 2.23692e6 0.959996
\(27\) 2.47522e6 0.896350
\(28\) −1.44369e6 −0.443876
\(29\) −2.34008e6 −0.614383 −0.307192 0.951648i \(-0.599389\pi\)
−0.307192 + 0.951648i \(0.599389\pi\)
\(30\) 1.51390e6 0.341233
\(31\) 6.68779e6 1.30063 0.650317 0.759663i \(-0.274636\pi\)
0.650317 + 0.759663i \(0.274636\pi\)
\(32\) −8.48069e6 −1.42974
\(33\) 2.29170e6 0.336391
\(34\) −7.38915e6 −0.948286
\(35\) 1.50062e6 0.169031
\(36\) −8.66620e6 −0.859939
\(37\) −4.33836e6 −0.380556 −0.190278 0.981730i \(-0.560939\pi\)
−0.190278 + 0.981730i \(0.560939\pi\)
\(38\) −2.10777e7 −1.63982
\(39\) −4.86698e6 −0.336875
\(40\) −1.86193e6 −0.114999
\(41\) 1.29663e7 0.716621 0.358311 0.933602i \(-0.383353\pi\)
0.358311 + 0.933602i \(0.383353\pi\)
\(42\) 5.81579e6 0.288395
\(43\) −3.85567e7 −1.71985 −0.859927 0.510416i \(-0.829491\pi\)
−0.859927 + 0.510416i \(0.829491\pi\)
\(44\) −1.89812e7 −0.763461
\(45\) 9.00800e6 0.327470
\(46\) 9.67941e6 0.318741
\(47\) 5.63758e7 1.68520 0.842602 0.538536i \(-0.181022\pi\)
0.842602 + 0.538536i \(0.181022\pi\)
\(48\) 1.51333e7 0.411478
\(49\) 5.76480e6 0.142857
\(50\) 1.30336e7 0.294916
\(51\) 1.60770e7 0.332766
\(52\) 4.03113e7 0.764561
\(53\) 4.95291e7 0.862222 0.431111 0.902299i \(-0.358122\pi\)
0.431111 + 0.902299i \(0.358122\pi\)
\(54\) 8.25881e7 1.32174
\(55\) 1.97298e7 0.290731
\(56\) −7.15278e6 −0.0971916
\(57\) 4.58599e7 0.575435
\(58\) −7.80789e7 −0.905957
\(59\) −1.21109e7 −0.130119 −0.0650597 0.997881i \(-0.520724\pi\)
−0.0650597 + 0.997881i \(0.520724\pi\)
\(60\) 2.72819e7 0.271765
\(61\) −6.35756e7 −0.587904 −0.293952 0.955820i \(-0.594971\pi\)
−0.293952 + 0.955820i \(0.594971\pi\)
\(62\) 2.23144e8 1.91789
\(63\) 3.46051e7 0.276763
\(64\) −1.76236e8 −1.31306
\(65\) −4.19012e7 −0.291150
\(66\) 7.64645e7 0.496035
\(67\) 1.35134e8 0.819270 0.409635 0.912249i \(-0.365656\pi\)
0.409635 + 0.912249i \(0.365656\pi\)
\(68\) −1.33159e8 −0.755234
\(69\) −2.10600e7 −0.111851
\(70\) 5.00697e7 0.249249
\(71\) −8.05749e7 −0.376302 −0.188151 0.982140i \(-0.560249\pi\)
−0.188151 + 0.982140i \(0.560249\pi\)
\(72\) −4.29369e7 −0.188293
\(73\) 2.43855e6 0.0100503 0.00502516 0.999987i \(-0.498400\pi\)
0.00502516 + 0.999987i \(0.498400\pi\)
\(74\) −1.44754e8 −0.561160
\(75\) −2.83579e7 −0.103490
\(76\) −3.79840e8 −1.30599
\(77\) 7.57941e7 0.245713
\(78\) −1.62391e8 −0.496749
\(79\) −5.06746e8 −1.46376 −0.731878 0.681436i \(-0.761356\pi\)
−0.731878 + 0.681436i \(0.761356\pi\)
\(80\) 1.30286e8 0.355626
\(81\) 1.03996e8 0.268431
\(82\) 4.32634e8 1.05672
\(83\) −5.73793e8 −1.32710 −0.663550 0.748132i \(-0.730951\pi\)
−0.663550 + 0.748132i \(0.730951\pi\)
\(84\) 1.04806e8 0.229683
\(85\) 1.38411e8 0.287598
\(86\) −1.28648e9 −2.53606
\(87\) 1.69881e8 0.317912
\(88\) −9.40429e7 −0.167168
\(89\) −5.34274e8 −0.902628 −0.451314 0.892365i \(-0.649045\pi\)
−0.451314 + 0.892365i \(0.649045\pi\)
\(90\) 3.00560e8 0.482881
\(91\) −1.60968e8 −0.246066
\(92\) 1.74432e8 0.253852
\(93\) −4.85508e8 −0.673012
\(94\) 1.88103e9 2.48497
\(95\) 3.94821e8 0.497329
\(96\) 6.15665e8 0.739817
\(97\) −1.27379e9 −1.46091 −0.730456 0.682960i \(-0.760692\pi\)
−0.730456 + 0.682960i \(0.760692\pi\)
\(98\) 1.92348e8 0.210654
\(99\) 4.54980e8 0.476029
\(100\) 2.34877e8 0.234877
\(101\) 8.98270e8 0.858936 0.429468 0.903082i \(-0.358701\pi\)
0.429468 + 0.903082i \(0.358701\pi\)
\(102\) 5.36424e8 0.490690
\(103\) 2.71408e8 0.237605 0.118802 0.992918i \(-0.462095\pi\)
0.118802 + 0.992918i \(0.462095\pi\)
\(104\) 1.99724e8 0.167409
\(105\) −1.08940e8 −0.0874649
\(106\) 1.65258e9 1.27141
\(107\) −2.35700e9 −1.73833 −0.869167 0.494519i \(-0.835344\pi\)
−0.869167 + 0.494519i \(0.835344\pi\)
\(108\) 1.48832e9 1.05266
\(109\) 8.33176e7 0.0565350 0.0282675 0.999600i \(-0.491001\pi\)
0.0282675 + 0.999600i \(0.491001\pi\)
\(110\) 6.58304e8 0.428706
\(111\) 3.14948e8 0.196918
\(112\) 5.00508e8 0.300559
\(113\) −2.81122e9 −1.62197 −0.810984 0.585068i \(-0.801068\pi\)
−0.810984 + 0.585068i \(0.801068\pi\)
\(114\) 1.53016e9 0.848525
\(115\) −1.81312e8 −0.0966686
\(116\) −1.40705e9 −0.721523
\(117\) −9.66262e8 −0.476715
\(118\) −4.04091e8 −0.191871
\(119\) 5.31721e8 0.243065
\(120\) 1.35169e8 0.0595060
\(121\) −1.36143e9 −0.577377
\(122\) −2.12126e9 −0.866911
\(123\) −9.41305e8 −0.370815
\(124\) 4.02127e9 1.52745
\(125\) −2.44141e8 −0.0894427
\(126\) 1.15463e9 0.408109
\(127\) 2.64718e9 0.902956 0.451478 0.892282i \(-0.350897\pi\)
0.451478 + 0.892282i \(0.350897\pi\)
\(128\) −1.53815e9 −0.506470
\(129\) 2.79907e9 0.889938
\(130\) −1.39807e9 −0.429323
\(131\) −1.19960e9 −0.355889 −0.177944 0.984041i \(-0.556945\pi\)
−0.177944 + 0.984041i \(0.556945\pi\)
\(132\) 1.37796e9 0.395052
\(133\) 1.51674e9 0.420320
\(134\) 4.50886e9 1.20808
\(135\) −1.54701e9 −0.400860
\(136\) −6.59742e8 −0.165367
\(137\) −5.99431e9 −1.45377 −0.726886 0.686758i \(-0.759033\pi\)
−0.726886 + 0.686758i \(0.759033\pi\)
\(138\) −7.02687e8 −0.164933
\(139\) 2.37734e9 0.540162 0.270081 0.962838i \(-0.412949\pi\)
0.270081 + 0.962838i \(0.412949\pi\)
\(140\) 9.02304e8 0.198507
\(141\) −4.09267e9 −0.872008
\(142\) −2.68845e9 −0.554888
\(143\) −2.11636e9 −0.423231
\(144\) 3.00447e9 0.582286
\(145\) 1.46255e9 0.274761
\(146\) 8.13646e7 0.0148200
\(147\) −4.18502e8 −0.0739213
\(148\) −2.60859e9 −0.446919
\(149\) 9.90778e9 1.64679 0.823395 0.567469i \(-0.192077\pi\)
0.823395 + 0.567469i \(0.192077\pi\)
\(150\) −9.46186e8 −0.152604
\(151\) 1.26968e8 0.0198746 0.00993731 0.999951i \(-0.496837\pi\)
0.00993731 + 0.999951i \(0.496837\pi\)
\(152\) −1.88193e9 −0.285961
\(153\) 3.19183e9 0.470900
\(154\) 2.52894e9 0.362323
\(155\) −4.17987e9 −0.581661
\(156\) −2.92645e9 −0.395621
\(157\) −6.13719e8 −0.0806160 −0.0403080 0.999187i \(-0.512834\pi\)
−0.0403080 + 0.999187i \(0.512834\pi\)
\(158\) −1.69081e10 −2.15842
\(159\) −3.59562e9 −0.446156
\(160\) 5.30043e9 0.639398
\(161\) −6.96527e8 −0.0816999
\(162\) 3.46991e9 0.395823
\(163\) 2.44352e9 0.271126 0.135563 0.990769i \(-0.456716\pi\)
0.135563 + 0.990769i \(0.456716\pi\)
\(164\) 7.79646e9 0.841589
\(165\) −1.43231e9 −0.150439
\(166\) −1.91451e10 −1.95692
\(167\) 4.06048e9 0.403974 0.201987 0.979388i \(-0.435260\pi\)
0.201987 + 0.979388i \(0.435260\pi\)
\(168\) 5.19264e8 0.0502917
\(169\) −6.10988e9 −0.576159
\(170\) 4.61822e9 0.424086
\(171\) 9.10476e9 0.814303
\(172\) −2.31836e10 −2.01977
\(173\) −1.21147e10 −1.02827 −0.514135 0.857710i \(-0.671887\pi\)
−0.514135 + 0.857710i \(0.671887\pi\)
\(174\) 5.66823e9 0.468787
\(175\) −9.37891e8 −0.0755929
\(176\) 6.58055e9 0.516958
\(177\) 8.79204e8 0.0673302
\(178\) −1.78265e10 −1.33100
\(179\) 9.79296e9 0.712977 0.356488 0.934300i \(-0.383974\pi\)
0.356488 + 0.934300i \(0.383974\pi\)
\(180\) 5.41638e9 0.384576
\(181\) 2.76258e9 0.191320 0.0956602 0.995414i \(-0.469504\pi\)
0.0956602 + 0.995414i \(0.469504\pi\)
\(182\) −5.37084e9 −0.362845
\(183\) 4.61534e9 0.304210
\(184\) 8.64228e8 0.0555838
\(185\) 2.71148e9 0.170190
\(186\) −1.61994e10 −0.992410
\(187\) 6.99093e9 0.418069
\(188\) 3.38980e10 1.97908
\(189\) −5.94301e9 −0.338788
\(190\) 1.31736e10 0.733351
\(191\) 2.56580e10 1.39500 0.697498 0.716587i \(-0.254297\pi\)
0.697498 + 0.716587i \(0.254297\pi\)
\(192\) 1.27940e10 0.679440
\(193\) −5.05038e9 −0.262009 −0.131004 0.991382i \(-0.541820\pi\)
−0.131004 + 0.991382i \(0.541820\pi\)
\(194\) −4.25011e10 −2.15423
\(195\) 3.04186e9 0.150655
\(196\) 3.46629e9 0.167769
\(197\) 3.28142e10 1.55226 0.776130 0.630573i \(-0.217180\pi\)
0.776130 + 0.630573i \(0.217180\pi\)
\(198\) 1.51808e10 0.701943
\(199\) 8.62788e9 0.390000 0.195000 0.980803i \(-0.437529\pi\)
0.195000 + 0.980803i \(0.437529\pi\)
\(200\) 1.16370e9 0.0514290
\(201\) −9.81019e9 −0.423931
\(202\) 2.99716e10 1.26657
\(203\) 5.61853e9 0.232215
\(204\) 9.66686e9 0.390795
\(205\) −8.10396e9 −0.320483
\(206\) 9.05578e9 0.350367
\(207\) −4.18113e9 −0.158281
\(208\) −1.39754e10 −0.517703
\(209\) 1.99418e10 0.722945
\(210\) −3.63487e9 −0.128974
\(211\) 4.74503e10 1.64804 0.824021 0.566560i \(-0.191726\pi\)
0.824021 + 0.566560i \(0.191726\pi\)
\(212\) 2.97811e10 1.01258
\(213\) 5.84942e9 0.194717
\(214\) −7.86436e10 −2.56331
\(215\) 2.40979e10 0.769142
\(216\) 7.37390e9 0.230492
\(217\) −1.60574e10 −0.491594
\(218\) 2.77997e9 0.0833654
\(219\) −1.77030e8 −0.00520053
\(220\) 1.18633e10 0.341430
\(221\) −1.48470e10 −0.418671
\(222\) 1.05085e10 0.290372
\(223\) −3.36546e10 −0.911323 −0.455662 0.890153i \(-0.650597\pi\)
−0.455662 + 0.890153i \(0.650597\pi\)
\(224\) 2.03621e10 0.540390
\(225\) −5.63000e9 −0.146449
\(226\) −9.37991e10 −2.39172
\(227\) −1.07110e10 −0.267739 −0.133870 0.990999i \(-0.542740\pi\)
−0.133870 + 0.990999i \(0.542740\pi\)
\(228\) 2.75749e10 0.675783
\(229\) −7.75472e10 −1.86340 −0.931701 0.363227i \(-0.881675\pi\)
−0.931701 + 0.363227i \(0.881675\pi\)
\(230\) −6.04963e9 −0.142546
\(231\) −5.50236e9 −0.127144
\(232\) −6.97129e9 −0.157986
\(233\) −3.86201e10 −0.858443 −0.429221 0.903199i \(-0.641212\pi\)
−0.429221 + 0.903199i \(0.641212\pi\)
\(234\) −3.22402e10 −0.702954
\(235\) −3.52349e10 −0.753647
\(236\) −7.28210e9 −0.152810
\(237\) 3.67878e10 0.757419
\(238\) 1.77414e10 0.358418
\(239\) −2.14449e10 −0.425141 −0.212570 0.977146i \(-0.568183\pi\)
−0.212570 + 0.977146i \(0.568183\pi\)
\(240\) −9.45828e9 −0.184019
\(241\) −4.13579e9 −0.0789735 −0.0394867 0.999220i \(-0.512572\pi\)
−0.0394867 + 0.999220i \(0.512572\pi\)
\(242\) −4.54252e10 −0.851389
\(243\) −5.62695e10 −1.03525
\(244\) −3.82271e10 −0.690425
\(245\) −3.60300e9 −0.0638877
\(246\) −3.14075e10 −0.546797
\(247\) −4.23513e10 −0.723986
\(248\) 1.99235e10 0.334451
\(249\) 4.16552e10 0.686707
\(250\) −8.14598e9 −0.131890
\(251\) −3.40309e9 −0.0541179 −0.0270590 0.999634i \(-0.508614\pi\)
−0.0270590 + 0.999634i \(0.508614\pi\)
\(252\) 2.08076e10 0.325026
\(253\) −9.15776e9 −0.140523
\(254\) 8.83256e10 1.33148
\(255\) −1.00481e10 −0.148817
\(256\) 3.89108e10 0.566227
\(257\) 1.21780e11 1.74131 0.870656 0.491892i \(-0.163695\pi\)
0.870656 + 0.491892i \(0.163695\pi\)
\(258\) 9.33935e10 1.31228
\(259\) 1.04164e10 0.143837
\(260\) −2.51946e10 −0.341922
\(261\) 3.37271e10 0.449880
\(262\) −4.00256e10 −0.524786
\(263\) −3.31945e9 −0.0427824 −0.0213912 0.999771i \(-0.506810\pi\)
−0.0213912 + 0.999771i \(0.506810\pi\)
\(264\) 6.82715e9 0.0865012
\(265\) −3.09557e10 −0.385597
\(266\) 5.06075e10 0.619795
\(267\) 3.87862e10 0.467064
\(268\) 8.12539e10 0.962139
\(269\) 1.58296e11 1.84326 0.921628 0.388074i \(-0.126859\pi\)
0.921628 + 0.388074i \(0.126859\pi\)
\(270\) −5.16176e10 −0.591100
\(271\) 1.48795e11 1.67581 0.837907 0.545813i \(-0.183779\pi\)
0.837907 + 0.545813i \(0.183779\pi\)
\(272\) 4.61647e10 0.511387
\(273\) 1.16856e10 0.127327
\(274\) −2.00006e11 −2.14370
\(275\) −1.23311e10 −0.130019
\(276\) −1.26631e10 −0.131356
\(277\) −1.35981e11 −1.38777 −0.693886 0.720085i \(-0.744103\pi\)
−0.693886 + 0.720085i \(0.744103\pi\)
\(278\) 7.93221e10 0.796512
\(279\) −9.63899e10 −0.952385
\(280\) 4.47049e9 0.0434654
\(281\) 4.38976e10 0.420012 0.210006 0.977700i \(-0.432652\pi\)
0.210006 + 0.977700i \(0.432652\pi\)
\(282\) −1.36556e11 −1.28585
\(283\) 9.75168e10 0.903734 0.451867 0.892085i \(-0.350758\pi\)
0.451867 + 0.892085i \(0.350758\pi\)
\(284\) −4.84485e10 −0.441924
\(285\) −2.86625e10 −0.257342
\(286\) −7.06144e10 −0.624088
\(287\) −3.11322e10 −0.270857
\(288\) 1.22231e11 1.04692
\(289\) −6.95442e10 −0.586436
\(290\) 4.87993e10 0.405156
\(291\) 9.24720e10 0.755948
\(292\) 1.46627e9 0.0118029
\(293\) −1.09292e11 −0.866334 −0.433167 0.901314i \(-0.642604\pi\)
−0.433167 + 0.901314i \(0.642604\pi\)
\(294\) −1.39637e10 −0.109003
\(295\) 7.56931e9 0.0581912
\(296\) −1.29244e10 −0.0978579
\(297\) −7.81372e10 −0.582712
\(298\) 3.30582e11 2.42832
\(299\) 1.94488e10 0.140725
\(300\) −1.70512e10 −0.121537
\(301\) 9.25746e10 0.650044
\(302\) 4.23641e9 0.0293067
\(303\) −6.52110e10 −0.444456
\(304\) 1.31686e11 0.884316
\(305\) 3.97347e10 0.262918
\(306\) 1.06498e11 0.694379
\(307\) −2.13340e11 −1.37072 −0.685361 0.728204i \(-0.740356\pi\)
−0.685361 + 0.728204i \(0.740356\pi\)
\(308\) 4.55739e10 0.288561
\(309\) −1.97032e10 −0.122948
\(310\) −1.39465e11 −0.857706
\(311\) 1.99732e11 1.21067 0.605334 0.795972i \(-0.293040\pi\)
0.605334 + 0.795972i \(0.293040\pi\)
\(312\) −1.44992e10 −0.0866257
\(313\) −1.43229e11 −0.843493 −0.421747 0.906714i \(-0.638583\pi\)
−0.421747 + 0.906714i \(0.638583\pi\)
\(314\) −2.04773e10 −0.118875
\(315\) −2.16282e10 −0.123772
\(316\) −3.04699e11 −1.71901
\(317\) −5.09593e10 −0.283437 −0.141719 0.989907i \(-0.545263\pi\)
−0.141719 + 0.989907i \(0.545263\pi\)
\(318\) −1.19971e11 −0.657892
\(319\) 7.38710e10 0.399407
\(320\) 1.10147e11 0.587217
\(321\) 1.71109e11 0.899499
\(322\) −2.32403e10 −0.120473
\(323\) 1.39898e11 0.715155
\(324\) 6.25310e10 0.315241
\(325\) 2.61883e10 0.130206
\(326\) 8.15304e10 0.399798
\(327\) −6.04854e9 −0.0292540
\(328\) 3.86278e10 0.184275
\(329\) −1.35358e11 −0.636948
\(330\) −4.77903e10 −0.221834
\(331\) −2.98793e11 −1.36819 −0.684093 0.729395i \(-0.739802\pi\)
−0.684093 + 0.729395i \(0.739802\pi\)
\(332\) −3.45013e11 −1.55853
\(333\) 6.25280e10 0.278660
\(334\) 1.35482e11 0.595692
\(335\) −8.44586e10 −0.366389
\(336\) −3.63349e10 −0.155524
\(337\) 2.23348e11 0.943293 0.471647 0.881788i \(-0.343660\pi\)
0.471647 + 0.881788i \(0.343660\pi\)
\(338\) −2.03862e11 −0.849593
\(339\) 2.04084e11 0.839286
\(340\) 8.32246e10 0.337751
\(341\) −2.11119e11 −0.845535
\(342\) 3.03789e11 1.20075
\(343\) −1.38413e10 −0.0539949
\(344\) −1.14864e11 −0.442252
\(345\) 1.31625e10 0.0500211
\(346\) −4.04220e11 −1.51626
\(347\) 2.51012e11 0.929420 0.464710 0.885463i \(-0.346159\pi\)
0.464710 + 0.885463i \(0.346159\pi\)
\(348\) 1.02147e11 0.373351
\(349\) −4.70348e11 −1.69709 −0.848546 0.529122i \(-0.822521\pi\)
−0.848546 + 0.529122i \(0.822521\pi\)
\(350\) −3.12936e10 −0.111468
\(351\) 1.65944e11 0.583551
\(352\) 2.67716e11 0.929464
\(353\) −4.00610e11 −1.37321 −0.686603 0.727033i \(-0.740899\pi\)
−0.686603 + 0.727033i \(0.740899\pi\)
\(354\) 2.93355e10 0.0992837
\(355\) 5.03593e10 0.168288
\(356\) −3.21251e11 −1.06003
\(357\) −3.86009e10 −0.125774
\(358\) 3.26751e11 1.05134
\(359\) 3.52353e11 1.11957 0.559787 0.828636i \(-0.310883\pi\)
0.559787 + 0.828636i \(0.310883\pi\)
\(360\) 2.68356e10 0.0842073
\(361\) 7.63738e10 0.236680
\(362\) 9.21761e10 0.282117
\(363\) 9.88342e10 0.298763
\(364\) −9.67875e10 −0.288977
\(365\) −1.52410e9 −0.00449464
\(366\) 1.53995e11 0.448582
\(367\) 1.75971e11 0.506341 0.253170 0.967422i \(-0.418527\pi\)
0.253170 + 0.967422i \(0.418527\pi\)
\(368\) −6.04734e10 −0.171889
\(369\) −1.86881e11 −0.524743
\(370\) 9.04710e10 0.250958
\(371\) −1.18919e11 −0.325889
\(372\) −2.91929e11 −0.790376
\(373\) −3.80474e11 −1.01774 −0.508868 0.860844i \(-0.669936\pi\)
−0.508868 + 0.860844i \(0.669936\pi\)
\(374\) 2.33259e11 0.616475
\(375\) 1.77237e10 0.0462821
\(376\) 1.67948e11 0.433342
\(377\) −1.56883e11 −0.399982
\(378\) −1.98294e11 −0.499570
\(379\) −5.66093e11 −1.40933 −0.704663 0.709542i \(-0.748902\pi\)
−0.704663 + 0.709542i \(0.748902\pi\)
\(380\) 2.37400e11 0.584056
\(381\) −1.92175e11 −0.467234
\(382\) 8.56103e11 2.05703
\(383\) −7.72152e11 −1.83362 −0.916808 0.399328i \(-0.869243\pi\)
−0.916808 + 0.399328i \(0.869243\pi\)
\(384\) 1.11664e11 0.262072
\(385\) −4.73713e10 −0.109886
\(386\) −1.68511e11 −0.386353
\(387\) 5.55710e11 1.25936
\(388\) −7.65909e11 −1.71567
\(389\) −7.13084e11 −1.57895 −0.789473 0.613785i \(-0.789646\pi\)
−0.789473 + 0.613785i \(0.789646\pi\)
\(390\) 1.01495e11 0.222153
\(391\) −6.42446e10 −0.139009
\(392\) 1.71738e10 0.0367350
\(393\) 8.70860e10 0.184154
\(394\) 1.09488e12 2.28893
\(395\) 3.16716e11 0.654611
\(396\) 2.73572e11 0.559042
\(397\) −2.69598e11 −0.544703 −0.272351 0.962198i \(-0.587801\pi\)
−0.272351 + 0.962198i \(0.587801\pi\)
\(398\) 2.87877e11 0.575087
\(399\) −1.10110e11 −0.217494
\(400\) −8.14290e10 −0.159041
\(401\) −2.29145e11 −0.442549 −0.221275 0.975212i \(-0.571022\pi\)
−0.221275 + 0.975212i \(0.571022\pi\)
\(402\) −3.27326e11 −0.625120
\(403\) 4.48363e11 0.846753
\(404\) 5.40117e11 1.00872
\(405\) −6.49972e10 −0.120046
\(406\) 1.87467e11 0.342420
\(407\) 1.36952e11 0.247397
\(408\) 4.78947e10 0.0855691
\(409\) 1.84171e11 0.325437 0.162719 0.986673i \(-0.447974\pi\)
0.162719 + 0.986673i \(0.447974\pi\)
\(410\) −2.70396e11 −0.472577
\(411\) 4.35163e11 0.752253
\(412\) 1.63194e11 0.279039
\(413\) 2.90783e10 0.0491805
\(414\) −1.39507e11 −0.233397
\(415\) 3.58621e11 0.593498
\(416\) −5.68562e11 −0.930803
\(417\) −1.72586e11 −0.279507
\(418\) 6.65375e11 1.06604
\(419\) 3.95084e11 0.626219 0.313109 0.949717i \(-0.398629\pi\)
0.313109 + 0.949717i \(0.398629\pi\)
\(420\) −6.55037e10 −0.102717
\(421\) 6.68894e11 1.03774 0.518870 0.854853i \(-0.326353\pi\)
0.518870 + 0.854853i \(0.326353\pi\)
\(422\) 1.58322e12 2.43017
\(423\) −8.12534e11 −1.23398
\(424\) 1.47551e11 0.221716
\(425\) −8.65070e10 −0.128618
\(426\) 1.95171e11 0.287126
\(427\) 1.52645e11 0.222207
\(428\) −1.41723e12 −2.04147
\(429\) 1.53640e11 0.219001
\(430\) 8.04050e11 1.13416
\(431\) 1.14002e12 1.59134 0.795672 0.605728i \(-0.207118\pi\)
0.795672 + 0.605728i \(0.207118\pi\)
\(432\) −5.15980e11 −0.712781
\(433\) 2.51421e11 0.343721 0.171860 0.985121i \(-0.445022\pi\)
0.171860 + 0.985121i \(0.445022\pi\)
\(434\) −5.35770e11 −0.724894
\(435\) −1.06175e11 −0.142175
\(436\) 5.00977e10 0.0663939
\(437\) −1.83259e11 −0.240380
\(438\) −5.90676e9 −0.00766859
\(439\) 1.30274e12 1.67405 0.837026 0.547163i \(-0.184292\pi\)
0.837026 + 0.547163i \(0.184292\pi\)
\(440\) 5.87768e10 0.0747600
\(441\) −8.30869e10 −0.104607
\(442\) −4.95383e11 −0.617363
\(443\) −5.90185e10 −0.0728067 −0.0364033 0.999337i \(-0.511590\pi\)
−0.0364033 + 0.999337i \(0.511590\pi\)
\(444\) 1.89374e11 0.231258
\(445\) 3.33921e11 0.403668
\(446\) −1.12292e12 −1.34382
\(447\) −7.19267e11 −0.852130
\(448\) 4.23142e11 0.496289
\(449\) 7.84371e11 0.910779 0.455389 0.890292i \(-0.349500\pi\)
0.455389 + 0.890292i \(0.349500\pi\)
\(450\) −1.87850e11 −0.215951
\(451\) −4.09318e11 −0.465871
\(452\) −1.69035e12 −1.90482
\(453\) −9.21740e9 −0.0102841
\(454\) −3.57381e11 −0.394803
\(455\) 1.00605e11 0.110044
\(456\) 1.36621e11 0.147970
\(457\) −1.36032e12 −1.45887 −0.729437 0.684048i \(-0.760218\pi\)
−0.729437 + 0.684048i \(0.760218\pi\)
\(458\) −2.58743e12 −2.74773
\(459\) −5.48158e11 −0.576433
\(460\) −1.09020e11 −0.113526
\(461\) −5.75808e11 −0.593777 −0.296888 0.954912i \(-0.595949\pi\)
−0.296888 + 0.954912i \(0.595949\pi\)
\(462\) −1.83591e11 −0.187484
\(463\) 1.45879e12 1.47530 0.737648 0.675185i \(-0.235936\pi\)
0.737648 + 0.675185i \(0.235936\pi\)
\(464\) 4.87808e11 0.488561
\(465\) 3.03442e11 0.300980
\(466\) −1.28859e12 −1.26584
\(467\) −1.19325e12 −1.16093 −0.580466 0.814284i \(-0.697130\pi\)
−0.580466 + 0.814284i \(0.697130\pi\)
\(468\) −5.80999e11 −0.559847
\(469\) −3.24456e11 −0.309655
\(470\) −1.17565e12 −1.11131
\(471\) 4.45536e10 0.0417147
\(472\) −3.60794e10 −0.0334595
\(473\) 1.21715e12 1.11807
\(474\) 1.22746e12 1.11688
\(475\) −2.46763e11 −0.222412
\(476\) 3.19716e11 0.285452
\(477\) −7.13853e11 −0.631358
\(478\) −7.15528e11 −0.626904
\(479\) 2.14005e12 1.85743 0.928717 0.370789i \(-0.120913\pi\)
0.928717 + 0.370789i \(0.120913\pi\)
\(480\) −3.84791e11 −0.330856
\(481\) −2.90852e11 −0.247753
\(482\) −1.37994e11 −0.116453
\(483\) 5.05651e10 0.0422755
\(484\) −8.18605e11 −0.678063
\(485\) 7.96117e11 0.653339
\(486\) −1.87748e12 −1.52656
\(487\) 1.92789e12 1.55311 0.776554 0.630050i \(-0.216966\pi\)
0.776554 + 0.630050i \(0.216966\pi\)
\(488\) −1.89397e11 −0.151176
\(489\) −1.77390e11 −0.140294
\(490\) −1.20217e11 −0.0942074
\(491\) 2.41513e12 1.87531 0.937655 0.347567i \(-0.112992\pi\)
0.937655 + 0.347567i \(0.112992\pi\)
\(492\) −5.65993e11 −0.435480
\(493\) 5.18229e11 0.395103
\(494\) −1.41309e12 −1.06757
\(495\) −2.84362e11 −0.212887
\(496\) −1.39413e12 −1.03427
\(497\) 1.93460e11 0.142229
\(498\) 1.38986e12 1.01260
\(499\) −1.81213e12 −1.30839 −0.654194 0.756327i \(-0.726992\pi\)
−0.654194 + 0.756327i \(0.726992\pi\)
\(500\) −1.46798e11 −0.105040
\(501\) −2.94775e11 −0.209036
\(502\) −1.13547e11 −0.0798012
\(503\) 2.71747e12 1.89282 0.946408 0.322973i \(-0.104682\pi\)
0.946408 + 0.322973i \(0.104682\pi\)
\(504\) 1.03092e11 0.0711682
\(505\) −5.61419e11 −0.384128
\(506\) −3.05557e11 −0.207212
\(507\) 4.43554e11 0.298133
\(508\) 1.59171e12 1.06042
\(509\) −1.70246e11 −0.112421 −0.0562104 0.998419i \(-0.517902\pi\)
−0.0562104 + 0.998419i \(0.517902\pi\)
\(510\) −3.35265e11 −0.219443
\(511\) −5.85497e9 −0.00379866
\(512\) 2.08583e12 1.34142
\(513\) −1.56363e12 −0.996796
\(514\) 4.06330e12 2.56770
\(515\) −1.69630e11 −0.106260
\(516\) 1.68304e12 1.04513
\(517\) −1.77966e12 −1.09554
\(518\) 3.47553e11 0.212098
\(519\) 8.79483e11 0.532077
\(520\) −1.24827e11 −0.0748676
\(521\) 1.97927e12 1.17689 0.588446 0.808537i \(-0.299740\pi\)
0.588446 + 0.808537i \(0.299740\pi\)
\(522\) 1.12534e12 0.663384
\(523\) 5.37017e11 0.313856 0.156928 0.987610i \(-0.449841\pi\)
0.156928 + 0.987610i \(0.449841\pi\)
\(524\) −7.21299e11 −0.417950
\(525\) 6.80872e10 0.0391155
\(526\) −1.10756e11 −0.0630860
\(527\) −1.48107e12 −0.836424
\(528\) −4.77723e11 −0.267500
\(529\) −1.71700e12 −0.953276
\(530\) −1.03286e12 −0.568594
\(531\) 1.74552e11 0.0952795
\(532\) 9.11995e11 0.493617
\(533\) 8.69288e11 0.466542
\(534\) 1.29414e12 0.688724
\(535\) 1.47313e12 0.777406
\(536\) 4.02575e11 0.210671
\(537\) −7.10931e11 −0.368929
\(538\) 5.28171e12 2.71803
\(539\) −1.81982e11 −0.0928706
\(540\) −9.30197e11 −0.470764
\(541\) −2.85545e12 −1.43313 −0.716567 0.697518i \(-0.754288\pi\)
−0.716567 + 0.697518i \(0.754288\pi\)
\(542\) 4.96468e12 2.47112
\(543\) −2.00553e11 −0.0989986
\(544\) 1.87812e12 0.919449
\(545\) −5.20735e10 −0.0252832
\(546\) 3.89902e11 0.187754
\(547\) −2.23707e12 −1.06841 −0.534203 0.845356i \(-0.679388\pi\)
−0.534203 + 0.845356i \(0.679388\pi\)
\(548\) −3.60429e12 −1.70729
\(549\) 9.16302e11 0.430490
\(550\) −4.11440e11 −0.191723
\(551\) 1.47826e12 0.683232
\(552\) −6.27396e10 −0.0287618
\(553\) 1.21670e12 0.553248
\(554\) −4.53712e12 −2.04638
\(555\) −1.96843e11 −0.0880645
\(556\) 1.42946e12 0.634359
\(557\) −1.45892e11 −0.0642220 −0.0321110 0.999484i \(-0.510223\pi\)
−0.0321110 + 0.999484i \(0.510223\pi\)
\(558\) −3.21614e12 −1.40437
\(559\) −2.58492e12 −1.11968
\(560\) −3.12817e11 −0.134414
\(561\) −5.07514e11 −0.216329
\(562\) 1.46468e12 0.619341
\(563\) 6.26127e11 0.262648 0.131324 0.991339i \(-0.458077\pi\)
0.131324 + 0.991339i \(0.458077\pi\)
\(564\) −2.46086e12 −1.02407
\(565\) 1.75701e12 0.725366
\(566\) 3.25374e12 1.33263
\(567\) −2.49693e11 −0.101457
\(568\) −2.40039e11 −0.0967642
\(569\) −1.79174e12 −0.716590 −0.358295 0.933608i \(-0.616642\pi\)
−0.358295 + 0.933608i \(0.616642\pi\)
\(570\) −9.56349e11 −0.379472
\(571\) −8.46019e11 −0.333056 −0.166528 0.986037i \(-0.553256\pi\)
−0.166528 + 0.986037i \(0.553256\pi\)
\(572\) −1.27254e12 −0.497037
\(573\) −1.86267e12 −0.721839
\(574\) −1.03875e12 −0.399401
\(575\) 1.13320e11 0.0432315
\(576\) 2.54005e12 0.961481
\(577\) −4.84713e12 −1.82051 −0.910256 0.414045i \(-0.864115\pi\)
−0.910256 + 0.414045i \(0.864115\pi\)
\(578\) −2.32041e12 −0.864747
\(579\) 3.66638e11 0.135576
\(580\) 8.79409e11 0.322675
\(581\) 1.37768e12 0.501597
\(582\) 3.08541e12 1.11470
\(583\) −1.56352e12 −0.560525
\(584\) 7.26466e9 0.00258439
\(585\) 6.03914e11 0.213193
\(586\) −3.64664e12 −1.27748
\(587\) 6.75571e11 0.234855 0.117427 0.993081i \(-0.462535\pi\)
0.117427 + 0.993081i \(0.462535\pi\)
\(588\) −2.51639e11 −0.0868121
\(589\) −4.22477e12 −1.44639
\(590\) 2.52557e11 0.0858075
\(591\) −2.38219e12 −0.803216
\(592\) 9.04367e11 0.302620
\(593\) 1.54901e12 0.514407 0.257204 0.966357i \(-0.417199\pi\)
0.257204 + 0.966357i \(0.417199\pi\)
\(594\) −2.60712e12 −0.859255
\(595\) −3.32325e11 −0.108702
\(596\) 5.95740e12 1.93397
\(597\) −6.26350e11 −0.201805
\(598\) 6.48926e11 0.207510
\(599\) −5.20525e12 −1.65204 −0.826021 0.563639i \(-0.809401\pi\)
−0.826021 + 0.563639i \(0.809401\pi\)
\(600\) −8.44804e10 −0.0266119
\(601\) 2.91496e11 0.0911377 0.0455689 0.998961i \(-0.485490\pi\)
0.0455689 + 0.998961i \(0.485490\pi\)
\(602\) 3.08884e12 0.958542
\(603\) −1.94766e12 −0.599908
\(604\) 7.63441e10 0.0233405
\(605\) 8.50891e11 0.258211
\(606\) −2.17582e12 −0.655386
\(607\) 1.54113e12 0.460776 0.230388 0.973099i \(-0.426000\pi\)
0.230388 + 0.973099i \(0.426000\pi\)
\(608\) 5.35736e12 1.58996
\(609\) −4.07883e11 −0.120160
\(610\) 1.32579e12 0.387694
\(611\) 3.77955e12 1.09712
\(612\) 1.91920e12 0.553017
\(613\) 5.24345e12 1.49984 0.749920 0.661529i \(-0.230092\pi\)
0.749920 + 0.661529i \(0.230092\pi\)
\(614\) −7.11828e12 −2.02124
\(615\) 5.88316e11 0.165834
\(616\) 2.25797e11 0.0631837
\(617\) 2.49183e11 0.0692205 0.0346102 0.999401i \(-0.488981\pi\)
0.0346102 + 0.999401i \(0.488981\pi\)
\(618\) −6.57414e11 −0.181297
\(619\) 3.16237e12 0.865774 0.432887 0.901448i \(-0.357495\pi\)
0.432887 + 0.901448i \(0.357495\pi\)
\(620\) −2.51329e12 −0.683095
\(621\) 7.18059e11 0.193753
\(622\) 6.66423e12 1.78523
\(623\) 1.28279e12 0.341161
\(624\) 1.01456e12 0.267885
\(625\) 1.52588e11 0.0400000
\(626\) −4.77897e12 −1.24380
\(627\) −1.44769e12 −0.374087
\(628\) −3.69020e11 −0.0946742
\(629\) 9.60765e11 0.244731
\(630\) −7.21645e11 −0.182512
\(631\) −2.39534e12 −0.601499 −0.300749 0.953703i \(-0.597237\pi\)
−0.300749 + 0.953703i \(0.597237\pi\)
\(632\) −1.50964e12 −0.376397
\(633\) −3.44471e12 −0.852778
\(634\) −1.70031e12 −0.417951
\(635\) −1.65449e12 −0.403814
\(636\) −2.16199e12 −0.523959
\(637\) 3.86483e11 0.0930044
\(638\) 2.46477e12 0.588958
\(639\) 1.16131e12 0.275546
\(640\) 9.61343e11 0.226500
\(641\) −1.65554e12 −0.387329 −0.193664 0.981068i \(-0.562037\pi\)
−0.193664 + 0.981068i \(0.562037\pi\)
\(642\) 5.70922e12 1.32638
\(643\) −1.41071e12 −0.325454 −0.162727 0.986671i \(-0.552029\pi\)
−0.162727 + 0.986671i \(0.552029\pi\)
\(644\) −4.18811e11 −0.0959471
\(645\) −1.74942e12 −0.397992
\(646\) 4.66782e12 1.05455
\(647\) −2.43561e11 −0.0546435 −0.0273217 0.999627i \(-0.508698\pi\)
−0.0273217 + 0.999627i \(0.508698\pi\)
\(648\) 3.09812e11 0.0690256
\(649\) 3.82314e11 0.0845899
\(650\) 8.73795e11 0.191999
\(651\) 1.16570e12 0.254375
\(652\) 1.46925e12 0.318407
\(653\) −3.12403e12 −0.672365 −0.336183 0.941797i \(-0.609136\pi\)
−0.336183 + 0.941797i \(0.609136\pi\)
\(654\) −2.01815e11 −0.0431374
\(655\) 7.49747e11 0.159158
\(656\) −2.70294e12 −0.569861
\(657\) −3.51464e10 −0.00735931
\(658\) −4.51636e12 −0.939230
\(659\) −5.83093e12 −1.20435 −0.602176 0.798364i \(-0.705699\pi\)
−0.602176 + 0.798364i \(0.705699\pi\)
\(660\) −8.61227e11 −0.176673
\(661\) −4.44177e12 −0.905002 −0.452501 0.891764i \(-0.649468\pi\)
−0.452501 + 0.891764i \(0.649468\pi\)
\(662\) −9.96952e12 −2.01750
\(663\) 1.07783e12 0.216641
\(664\) −1.70938e12 −0.341257
\(665\) −9.47965e11 −0.187973
\(666\) 2.08630e12 0.410907
\(667\) −6.78853e11 −0.132804
\(668\) 2.44151e12 0.474421
\(669\) 2.44319e12 0.471564
\(670\) −2.81804e12 −0.540270
\(671\) 2.00694e12 0.382193
\(672\) −1.47821e12 −0.279624
\(673\) 6.48698e12 1.21892 0.609460 0.792817i \(-0.291386\pi\)
0.609460 + 0.792817i \(0.291386\pi\)
\(674\) 7.45220e12 1.39096
\(675\) 9.66884e11 0.179270
\(676\) −3.67378e12 −0.676633
\(677\) 4.52781e12 0.828399 0.414199 0.910186i \(-0.364062\pi\)
0.414199 + 0.910186i \(0.364062\pi\)
\(678\) 6.80945e12 1.23759
\(679\) 3.05836e12 0.552173
\(680\) 4.12339e11 0.0739544
\(681\) 7.77574e11 0.138541
\(682\) −7.04417e12 −1.24681
\(683\) −2.60741e12 −0.458476 −0.229238 0.973370i \(-0.573623\pi\)
−0.229238 + 0.973370i \(0.573623\pi\)
\(684\) 5.47456e12 0.956305
\(685\) 3.74644e12 0.650147
\(686\) −4.61827e11 −0.0796198
\(687\) 5.62963e12 0.964216
\(688\) 8.03746e12 1.36764
\(689\) 3.32052e12 0.561333
\(690\) 4.39180e11 0.0737601
\(691\) −5.31067e12 −0.886131 −0.443066 0.896489i \(-0.646109\pi\)
−0.443066 + 0.896489i \(0.646109\pi\)
\(692\) −7.28442e12 −1.20758
\(693\) −1.09241e12 −0.179922
\(694\) 8.37525e12 1.37050
\(695\) −1.48584e12 −0.241568
\(696\) 5.06089e11 0.0817495
\(697\) −2.87150e12 −0.460851
\(698\) −1.56936e13 −2.50250
\(699\) 2.80367e12 0.444201
\(700\) −5.63940e11 −0.0887752
\(701\) 3.37189e12 0.527403 0.263702 0.964604i \(-0.415057\pi\)
0.263702 + 0.964604i \(0.415057\pi\)
\(702\) 5.53687e12 0.860492
\(703\) 2.74060e12 0.423201
\(704\) 5.56336e12 0.853611
\(705\) 2.55792e12 0.389974
\(706\) −1.33667e13 −2.02490
\(707\) −2.15675e12 −0.324647
\(708\) 5.28652e11 0.0790716
\(709\) 7.95694e12 1.18260 0.591300 0.806451i \(-0.298615\pi\)
0.591300 + 0.806451i \(0.298615\pi\)
\(710\) 1.68028e12 0.248153
\(711\) 7.30363e12 1.07183
\(712\) −1.59165e12 −0.232106
\(713\) 1.94012e12 0.281142
\(714\) −1.28795e12 −0.185463
\(715\) 1.32273e12 0.189275
\(716\) 5.88836e12 0.837309
\(717\) 1.55681e12 0.219989
\(718\) 1.17566e13 1.65090
\(719\) −4.47402e12 −0.624335 −0.312167 0.950027i \(-0.601055\pi\)
−0.312167 + 0.950027i \(0.601055\pi\)
\(720\) −1.87779e12 −0.260406
\(721\) −6.51651e11 −0.0898061
\(722\) 2.54828e12 0.349004
\(723\) 3.00242e11 0.0408648
\(724\) 1.66110e12 0.224684
\(725\) −9.14093e11 −0.122877
\(726\) 3.29770e12 0.440551
\(727\) −1.21244e13 −1.60974 −0.804870 0.593452i \(-0.797765\pi\)
−0.804870 + 0.593452i \(0.797765\pi\)
\(728\) −4.79536e11 −0.0632747
\(729\) 2.03800e12 0.267258
\(730\) −5.08529e10 −0.00662770
\(731\) 8.53869e12 1.10602
\(732\) 2.77514e12 0.357260
\(733\) −7.66177e12 −0.980305 −0.490153 0.871637i \(-0.663059\pi\)
−0.490153 + 0.871637i \(0.663059\pi\)
\(734\) 5.87142e12 0.746640
\(735\) 2.61564e11 0.0330586
\(736\) −2.46024e12 −0.309048
\(737\) −4.26587e12 −0.532603
\(738\) −6.23546e12 −0.773776
\(739\) 9.14837e10 0.0112835 0.00564175 0.999984i \(-0.498204\pi\)
0.00564175 + 0.999984i \(0.498204\pi\)
\(740\) 1.63037e12 0.199868
\(741\) 3.07454e12 0.374626
\(742\) −3.96785e12 −0.480549
\(743\) −1.22270e13 −1.47188 −0.735938 0.677049i \(-0.763259\pi\)
−0.735938 + 0.677049i \(0.763259\pi\)
\(744\) −1.44637e12 −0.173062
\(745\) −6.19236e12 −0.736467
\(746\) −1.26949e13 −1.50073
\(747\) 8.26997e12 0.971765
\(748\) 4.20354e12 0.490974
\(749\) 5.65916e12 0.657028
\(750\) 5.91366e11 0.0682466
\(751\) 1.22305e13 1.40302 0.701512 0.712658i \(-0.252509\pi\)
0.701512 + 0.712658i \(0.252509\pi\)
\(752\) −1.17520e13 −1.34008
\(753\) 2.47051e11 0.0280033
\(754\) −5.23456e12 −0.589806
\(755\) −7.93551e10 −0.00888820
\(756\) −3.57344e12 −0.397868
\(757\) −1.56839e13 −1.73590 −0.867948 0.496655i \(-0.834561\pi\)
−0.867948 + 0.496655i \(0.834561\pi\)
\(758\) −1.88882e13 −2.07816
\(759\) 6.64818e11 0.0727134
\(760\) 1.17620e12 0.127886
\(761\) 1.62151e13 1.75262 0.876312 0.481745i \(-0.159997\pi\)
0.876312 + 0.481745i \(0.159997\pi\)
\(762\) −6.41210e12 −0.688974
\(763\) −2.00046e11 −0.0213682
\(764\) 1.54278e13 1.63826
\(765\) −1.99489e12 −0.210593
\(766\) −2.57636e13 −2.70381
\(767\) −8.11938e11 −0.0847117
\(768\) −2.82477e12 −0.292994
\(769\) −5.71613e12 −0.589432 −0.294716 0.955585i \(-0.595225\pi\)
−0.294716 + 0.955585i \(0.595225\pi\)
\(770\) −1.58059e12 −0.162036
\(771\) −8.84075e12 −0.901041
\(772\) −3.03672e12 −0.307699
\(773\) 1.06739e13 1.07527 0.537634 0.843178i \(-0.319318\pi\)
0.537634 + 0.843178i \(0.319318\pi\)
\(774\) 1.85418e13 1.85702
\(775\) 2.61242e12 0.260127
\(776\) −3.79472e12 −0.375666
\(777\) −7.56191e11 −0.0744281
\(778\) −2.37927e13 −2.32828
\(779\) −8.19100e12 −0.796927
\(780\) 1.82903e12 0.176927
\(781\) 2.54357e12 0.244632
\(782\) −2.14358e12 −0.204979
\(783\) −5.79222e12 −0.550702
\(784\) −1.20172e12 −0.113601
\(785\) 3.83574e11 0.0360526
\(786\) 2.90570e12 0.271550
\(787\) 4.23924e12 0.393914 0.196957 0.980412i \(-0.436894\pi\)
0.196957 + 0.980412i \(0.436894\pi\)
\(788\) 1.97307e13 1.82295
\(789\) 2.40979e11 0.0221377
\(790\) 1.05675e13 0.965277
\(791\) 6.74975e12 0.613046
\(792\) 1.35542e12 0.122408
\(793\) −4.26223e12 −0.382743
\(794\) −8.99539e12 −0.803207
\(795\) 2.24726e12 0.199527
\(796\) 5.18782e12 0.458011
\(797\) 1.03352e13 0.907308 0.453654 0.891178i \(-0.350120\pi\)
0.453654 + 0.891178i \(0.350120\pi\)
\(798\) −3.67391e12 −0.320712
\(799\) −1.24849e13 −1.08374
\(800\) −3.31277e12 −0.285947
\(801\) 7.70039e12 0.660946
\(802\) −7.64565e12 −0.652574
\(803\) −7.69797e10 −0.00653365
\(804\) −5.89872e12 −0.497858
\(805\) 4.35329e11 0.0365373
\(806\) 1.49600e13 1.24860
\(807\) −1.14917e13 −0.953792
\(808\) 2.67602e12 0.220871
\(809\) 1.00952e13 0.828601 0.414300 0.910140i \(-0.364026\pi\)
0.414300 + 0.910140i \(0.364026\pi\)
\(810\) −2.16869e12 −0.177017
\(811\) −1.46569e13 −1.18973 −0.594865 0.803825i \(-0.702795\pi\)
−0.594865 + 0.803825i \(0.702795\pi\)
\(812\) 3.37834e12 0.272710
\(813\) −1.08019e13 −0.867149
\(814\) 4.56954e12 0.364807
\(815\) −1.52720e12 −0.121251
\(816\) −3.35138e12 −0.264617
\(817\) 2.43568e13 1.91258
\(818\) 6.14505e12 0.479883
\(819\) 2.32000e12 0.180181
\(820\) −4.87279e12 −0.376370
\(821\) −1.37332e13 −1.05494 −0.527471 0.849573i \(-0.676860\pi\)
−0.527471 + 0.849573i \(0.676860\pi\)
\(822\) 1.45196e13 1.10926
\(823\) −6.38239e12 −0.484936 −0.242468 0.970159i \(-0.577957\pi\)
−0.242468 + 0.970159i \(0.577957\pi\)
\(824\) 8.08547e11 0.0610988
\(825\) 8.95194e11 0.0672782
\(826\) 9.70223e11 0.0725206
\(827\) −1.00483e12 −0.0746993 −0.0373496 0.999302i \(-0.511892\pi\)
−0.0373496 + 0.999302i \(0.511892\pi\)
\(828\) −2.51405e12 −0.185882
\(829\) −1.62815e13 −1.19729 −0.598645 0.801014i \(-0.704294\pi\)
−0.598645 + 0.801014i \(0.704294\pi\)
\(830\) 1.19657e13 0.875159
\(831\) 9.87166e12 0.718101
\(832\) −1.18152e13 −0.854840
\(833\) −1.27666e12 −0.0918699
\(834\) −5.75848e12 −0.412155
\(835\) −2.53780e12 −0.180663
\(836\) 1.19907e13 0.849016
\(837\) 1.65538e13 1.16582
\(838\) 1.31823e13 0.923410
\(839\) 1.00724e13 0.701786 0.350893 0.936416i \(-0.385878\pi\)
0.350893 + 0.936416i \(0.385878\pi\)
\(840\) −3.24540e11 −0.0224911
\(841\) −9.03118e12 −0.622533
\(842\) 2.23183e13 1.53023
\(843\) −3.18679e12 −0.217335
\(844\) 2.85312e13 1.93544
\(845\) 3.81868e12 0.257666
\(846\) −2.71110e13 −1.81961
\(847\) 3.26878e12 0.218228
\(848\) −1.03247e13 −0.685643
\(849\) −7.07934e12 −0.467637
\(850\) −2.88639e12 −0.189657
\(851\) −1.25855e12 −0.0822600
\(852\) 3.51717e12 0.228673
\(853\) 1.88184e13 1.21706 0.608530 0.793531i \(-0.291760\pi\)
0.608530 + 0.793531i \(0.291760\pi\)
\(854\) 5.09314e12 0.327661
\(855\) −5.69047e12 −0.364167
\(856\) −7.02171e12 −0.447003
\(857\) 1.09505e13 0.693461 0.346730 0.937965i \(-0.387292\pi\)
0.346730 + 0.937965i \(0.387292\pi\)
\(858\) 5.12633e12 0.322934
\(859\) 1.73683e13 1.08840 0.544198 0.838957i \(-0.316834\pi\)
0.544198 + 0.838957i \(0.316834\pi\)
\(860\) 1.44897e13 0.903269
\(861\) 2.26007e12 0.140155
\(862\) 3.80378e13 2.34656
\(863\) −1.20253e13 −0.737988 −0.368994 0.929432i \(-0.620298\pi\)
−0.368994 + 0.929432i \(0.620298\pi\)
\(864\) −2.09916e13 −1.28154
\(865\) 7.57172e12 0.459856
\(866\) 8.38889e12 0.506844
\(867\) 5.04864e12 0.303451
\(868\) −9.65507e12 −0.577320
\(869\) 1.59968e13 0.951579
\(870\) −3.54264e12 −0.209648
\(871\) 9.05963e12 0.533370
\(872\) 2.48210e11 0.0145377
\(873\) 1.83588e13 1.06975
\(874\) −6.11461e12 −0.354460
\(875\) 5.86182e11 0.0338062
\(876\) −1.06445e11 −0.00610742
\(877\) 1.17519e13 0.670826 0.335413 0.942071i \(-0.391124\pi\)
0.335413 + 0.942071i \(0.391124\pi\)
\(878\) 4.34673e13 2.46852
\(879\) 7.93420e12 0.448284
\(880\) −4.11284e12 −0.231191
\(881\) −2.81040e13 −1.57172 −0.785862 0.618402i \(-0.787781\pi\)
−0.785862 + 0.618402i \(0.787781\pi\)
\(882\) −2.77227e12 −0.154251
\(883\) −3.35502e13 −1.85726 −0.928629 0.371010i \(-0.879011\pi\)
−0.928629 + 0.371010i \(0.879011\pi\)
\(884\) −8.92726e12 −0.491681
\(885\) −5.49502e11 −0.0301110
\(886\) −1.96921e12 −0.107359
\(887\) −3.39815e12 −0.184326 −0.0921628 0.995744i \(-0.529378\pi\)
−0.0921628 + 0.995744i \(0.529378\pi\)
\(888\) 9.38258e11 0.0506365
\(889\) −6.35588e12 −0.341285
\(890\) 1.11416e13 0.595240
\(891\) −3.28291e12 −0.174505
\(892\) −2.02360e13 −1.07024
\(893\) −3.56134e13 −1.87405
\(894\) −2.39990e13 −1.25653
\(895\) −6.12060e12 −0.318853
\(896\) 3.69310e12 0.191428
\(897\) −1.41190e12 −0.0728181
\(898\) 2.61713e13 1.34302
\(899\) −1.56500e13 −0.799088
\(900\) −3.38524e12 −0.171988
\(901\) −1.09686e13 −0.554485
\(902\) −1.36573e13 −0.686965
\(903\) −6.72056e12 −0.336365
\(904\) −8.37487e12 −0.417081
\(905\) −1.72661e12 −0.0855611
\(906\) −3.07547e11 −0.0151647
\(907\) 9.35897e12 0.459193 0.229596 0.973286i \(-0.426259\pi\)
0.229596 + 0.973286i \(0.426259\pi\)
\(908\) −6.44034e12 −0.314429
\(909\) −1.29466e13 −0.628953
\(910\) 3.35677e12 0.162269
\(911\) 1.34819e13 0.648512 0.324256 0.945969i \(-0.394886\pi\)
0.324256 + 0.945969i \(0.394886\pi\)
\(912\) −9.55987e12 −0.457589
\(913\) 1.81134e13 0.862741
\(914\) −4.53883e13 −2.15123
\(915\) −2.88459e12 −0.136047
\(916\) −4.66280e13 −2.18835
\(917\) 2.88023e12 0.134513
\(918\) −1.82898e13 −0.849996
\(919\) −2.27543e13 −1.05231 −0.526155 0.850389i \(-0.676367\pi\)
−0.526155 + 0.850389i \(0.676367\pi\)
\(920\) −5.40142e11 −0.0248578
\(921\) 1.54876e13 0.709279
\(922\) −1.92124e13 −0.875571
\(923\) −5.40189e12 −0.244984
\(924\) −3.30849e12 −0.149316
\(925\) −1.69467e12 −0.0761111
\(926\) 4.86740e13 2.17544
\(927\) −3.91175e12 −0.173985
\(928\) 1.98455e13 0.878407
\(929\) 1.07501e13 0.473523 0.236761 0.971568i \(-0.423914\pi\)
0.236761 + 0.971568i \(0.423914\pi\)
\(930\) 1.01246e13 0.443819
\(931\) −3.64170e12 −0.158866
\(932\) −2.32217e13 −1.00814
\(933\) −1.44997e13 −0.626459
\(934\) −3.98140e13 −1.71189
\(935\) −4.36933e12 −0.186966
\(936\) −2.87858e12 −0.122585
\(937\) 1.23702e11 0.00524264 0.00262132 0.999997i \(-0.499166\pi\)
0.00262132 + 0.999997i \(0.499166\pi\)
\(938\) −1.08258e13 −0.456611
\(939\) 1.03979e13 0.436465
\(940\) −2.11862e13 −0.885071
\(941\) 2.86225e13 1.19002 0.595011 0.803718i \(-0.297148\pi\)
0.595011 + 0.803718i \(0.297148\pi\)
\(942\) 1.48657e12 0.0615116
\(943\) 3.76151e12 0.154903
\(944\) 2.52461e12 0.103472
\(945\) 3.71438e12 0.151511
\(946\) 4.06113e13 1.64868
\(947\) −8.05243e12 −0.325351 −0.162676 0.986680i \(-0.552012\pi\)
−0.162676 + 0.986680i \(0.552012\pi\)
\(948\) 2.21200e13 0.889502
\(949\) 1.63485e11 0.00654306
\(950\) −8.23347e12 −0.327965
\(951\) 3.69945e12 0.146664
\(952\) 1.58404e12 0.0625029
\(953\) 1.69087e13 0.664039 0.332019 0.943273i \(-0.392270\pi\)
0.332019 + 0.943273i \(0.392270\pi\)
\(954\) −2.38184e13 −0.930988
\(955\) −1.60363e13 −0.623861
\(956\) −1.28945e13 −0.499279
\(957\) −5.36275e12 −0.206673
\(958\) 7.14047e13 2.73893
\(959\) 1.43923e13 0.549474
\(960\) −7.99626e12 −0.303855
\(961\) 1.82870e13 0.691650
\(962\) −9.70456e12 −0.365332
\(963\) 3.39710e13 1.27289
\(964\) −2.48679e12 −0.0927453
\(965\) 3.15649e12 0.117174
\(966\) 1.68715e12 0.0623386
\(967\) 9.86586e12 0.362840 0.181420 0.983406i \(-0.441931\pi\)
0.181420 + 0.983406i \(0.441931\pi\)
\(968\) −4.05580e12 −0.148470
\(969\) −1.01560e13 −0.370056
\(970\) 2.65632e13 0.963401
\(971\) −2.67844e13 −0.966932 −0.483466 0.875363i \(-0.660622\pi\)
−0.483466 + 0.875363i \(0.660622\pi\)
\(972\) −3.38340e13 −1.21578
\(973\) −5.70799e12 −0.204162
\(974\) 6.43258e13 2.29018
\(975\) −1.90117e12 −0.0673751
\(976\) 1.32528e13 0.467504
\(977\) −3.66357e13 −1.28641 −0.643205 0.765694i \(-0.722396\pi\)
−0.643205 + 0.765694i \(0.722396\pi\)
\(978\) −5.91879e12 −0.206875
\(979\) 1.68658e13 0.586794
\(980\) −2.16643e12 −0.0750287
\(981\) −1.20084e12 −0.0413976
\(982\) 8.05829e13 2.76529
\(983\) 2.13833e13 0.730438 0.365219 0.930922i \(-0.380994\pi\)
0.365219 + 0.930922i \(0.380994\pi\)
\(984\) −2.80423e12 −0.0953532
\(985\) −2.05089e13 −0.694192
\(986\) 1.72912e13 0.582611
\(987\) 9.82650e12 0.329588
\(988\) −2.54652e13 −0.850238
\(989\) −1.11852e13 −0.371759
\(990\) −9.48801e12 −0.313918
\(991\) −2.42716e13 −0.799405 −0.399702 0.916645i \(-0.630887\pi\)
−0.399702 + 0.916645i \(0.630887\pi\)
\(992\) −5.67171e13 −1.85957
\(993\) 2.16912e13 0.707967
\(994\) 6.45498e12 0.209728
\(995\) −5.39242e12 −0.174414
\(996\) 2.50466e13 0.806459
\(997\) −2.60119e13 −0.833765 −0.416882 0.908960i \(-0.636877\pi\)
−0.416882 + 0.908960i \(0.636877\pi\)
\(998\) −6.04633e13 −1.92932
\(999\) −1.07384e13 −0.341111
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.10.a.c.1.4 4
3.2 odd 2 315.10.a.g.1.1 4
5.2 odd 4 175.10.b.e.99.7 8
5.3 odd 4 175.10.b.e.99.2 8
5.4 even 2 175.10.a.e.1.1 4
7.6 odd 2 245.10.a.e.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.c.1.4 4 1.1 even 1 trivial
175.10.a.e.1.1 4 5.4 even 2
175.10.b.e.99.2 8 5.3 odd 4
175.10.b.e.99.7 8 5.2 odd 4
245.10.a.e.1.4 4 7.6 odd 2
315.10.a.g.1.1 4 3.2 odd 2