Properties

Label 349.2.e.a.123.8
Level 349
Weight 2
Character 349.123
Analytic conductor 2.787
Analytic rank 0
Dimension 58
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 349 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 349.e (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.78677903054\)
Analytic rank: \(0\)
Dimension: \(58\)
Relative dimension: \(29\) over \(\Q(\zeta_{6})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 123.8
Character \(\chi\) = 349.123
Dual form 349.2.e.a.227.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.33595 + 0.771310i) q^{2} +(-0.677977 + 1.17429i) q^{3} +(0.189837 - 0.328808i) q^{4} +(1.91694 - 3.32023i) q^{5} -2.09172i q^{6} +(-1.98739 + 1.14742i) q^{7} -2.49955i q^{8} +(0.580694 + 1.00579i) q^{9} +O(q^{10})\) \(q+(-1.33595 + 0.771310i) q^{2} +(-0.677977 + 1.17429i) q^{3} +(0.189837 - 0.328808i) q^{4} +(1.91694 - 3.32023i) q^{5} -2.09172i q^{6} +(-1.98739 + 1.14742i) q^{7} -2.49955i q^{8} +(0.580694 + 1.00579i) q^{9} +5.91420i q^{10} +4.42226i q^{11} +(0.257411 + 0.445849i) q^{12} +(-2.49246 + 1.43902i) q^{13} +(1.77003 - 3.06579i) q^{14} +(2.59928 + 4.50208i) q^{15} +(2.30760 + 3.99688i) q^{16} +0.781534 q^{17} +(-1.55155 - 0.895789i) q^{18} +(-2.88981 + 5.00531i) q^{19} +(-0.727812 - 1.26061i) q^{20} -3.11170i q^{21} +(-3.41093 - 5.90791i) q^{22} +(0.260901 + 0.451894i) q^{23} +(2.93519 + 1.69463i) q^{24} +(-4.84928 - 8.39921i) q^{25} +(2.21987 - 3.84492i) q^{26} -5.64265 q^{27} +0.871293i q^{28} +(-2.06205 + 3.57157i) q^{29} +(-6.94500 - 4.00970i) q^{30} -1.72475 q^{31} +(-1.83632 - 1.06020i) q^{32} +(-5.19302 - 2.99819i) q^{33} +(-1.04409 + 0.602805i) q^{34} +8.79813i q^{35} +0.440949 q^{36} +8.24916 q^{37} -8.91577i q^{38} -3.90250i q^{39} +(-8.29906 - 4.79147i) q^{40} -7.75381 q^{41} +(2.40009 + 4.15707i) q^{42} +(-4.29240 - 2.47822i) q^{43} +(1.45407 + 0.839510i) q^{44} +4.45261 q^{45} +(-0.697100 - 0.402471i) q^{46} +2.64810i q^{47} -6.25800 q^{48} +(-0.866851 + 1.50143i) q^{49} +(12.9568 + 7.48060i) q^{50} +(-0.529863 + 0.917749i) q^{51} +1.09272i q^{52} +9.61126i q^{53} +(7.53829 - 4.35223i) q^{54} +(14.6829 + 8.47719i) q^{55} +(2.86803 + 4.96757i) q^{56} +(-3.91846 - 6.78697i) q^{57} -6.36191i q^{58} +(11.3861 + 6.57378i) q^{59} +1.97376 q^{60} -3.56819i q^{61} +(2.30417 - 1.33031i) q^{62} +(-2.30813 - 1.33260i) q^{63} -5.95942 q^{64} +11.0341i q^{65} +9.25014 q^{66} +5.40753 q^{67} +(0.148364 - 0.256975i) q^{68} -0.707540 q^{69} +(-6.78608 - 11.7538i) q^{70} +(-2.50000 + 1.44337i) q^{71} +(2.51402 - 1.45147i) q^{72} +(7.13145 - 12.3520i) q^{73} +(-11.0204 + 6.36266i) q^{74} +13.1508 q^{75} +(1.09719 + 1.90039i) q^{76} +(-5.07419 - 8.78876i) q^{77} +(3.01004 + 5.21354i) q^{78} +5.67907i q^{79} +17.6941 q^{80} +(2.08351 - 3.60874i) q^{81} +(10.3587 - 5.98059i) q^{82} +(-6.74336 - 11.6798i) q^{83} +(-1.02315 - 0.590717i) q^{84} +(1.49815 - 2.59487i) q^{85} +7.64589 q^{86} +(-2.79604 - 4.84289i) q^{87} +11.0536 q^{88} +(1.77824 + 1.02667i) q^{89} +(-5.94845 + 3.43434i) q^{90} +(3.30233 - 5.71981i) q^{91} +0.198115 q^{92} +(1.16934 - 2.02536i) q^{93} +(-2.04251 - 3.53773i) q^{94} +(11.0792 + 19.1897i) q^{95} +(2.48997 - 1.43758i) q^{96} +(-12.1182 + 6.99642i) q^{97} -2.67444i q^{98} +(-4.44787 + 2.56798i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 58q - 3q^{2} + 27q^{4} + 2q^{5} - 29q^{9} + O(q^{10}) \) \( 58q - 3q^{2} + 27q^{4} + 2q^{5} - 29q^{9} - q^{12} - 3q^{13} - 10q^{14} + q^{15} - 29q^{16} - 10q^{17} + 15q^{18} - 9q^{19} - 3q^{22} - 17q^{23} - 48q^{24} - 29q^{25} - 4q^{26} + 18q^{27} - 2q^{29} + 9q^{30} + 32q^{31} + 9q^{32} - 12q^{33} - 63q^{34} + 24q^{36} - 16q^{37} + 54q^{40} - 10q^{41} - 15q^{42} - 45q^{43} + 18q^{44} - 2q^{45} + 27q^{46} + 6q^{48} + 35q^{49} + 6q^{50} - 14q^{51} + 27q^{54} + 24q^{55} + 11q^{56} - 29q^{57} - 18q^{59} + 116q^{60} - 9q^{62} - 21q^{63} - 132q^{64} + 130q^{66} + 58q^{67} + 42q^{69} + 40q^{70} - 24q^{71} + 72q^{72} - 6q^{73} + 30q^{74} - 58q^{75} + 37q^{76} - 4q^{77} - 33q^{78} - 40q^{80} - 81q^{81} + 21q^{82} + 12q^{83} + 18q^{84} - 11q^{85} - 126q^{86} - 42q^{87} - 50q^{88} + 3q^{89} - 12q^{90} - 28q^{91} - 120q^{92} + 31q^{93} + 29q^{94} + 60q^{95} - 120q^{96} - 15q^{97} + 39q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/349\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33595 + 0.771310i −0.944658 + 0.545398i −0.891417 0.453183i \(-0.850288\pi\)
−0.0532403 + 0.998582i \(0.516955\pi\)
\(3\) −0.677977 + 1.17429i −0.391430 + 0.677977i −0.992638 0.121115i \(-0.961353\pi\)
0.601208 + 0.799092i \(0.294686\pi\)
\(4\) 0.189837 0.328808i 0.0949187 0.164404i
\(5\) 1.91694 3.32023i 0.857280 1.48485i −0.0172343 0.999851i \(-0.505486\pi\)
0.874514 0.485000i \(-0.161181\pi\)
\(6\) 2.09172i 0.853942i
\(7\) −1.98739 + 1.14742i −0.751163 + 0.433684i −0.826114 0.563503i \(-0.809453\pi\)
0.0749508 + 0.997187i \(0.476120\pi\)
\(8\) 2.49955i 0.883723i
\(9\) 0.580694 + 1.00579i 0.193565 + 0.335264i
\(10\) 5.91420i 1.87024i
\(11\) 4.42226i 1.33336i 0.745344 + 0.666681i \(0.232285\pi\)
−0.745344 + 0.666681i \(0.767715\pi\)
\(12\) 0.257411 + 0.445849i 0.0743081 + 0.128705i
\(13\) −2.49246 + 1.43902i −0.691285 + 0.399114i −0.804093 0.594503i \(-0.797349\pi\)
0.112808 + 0.993617i \(0.464015\pi\)
\(14\) 1.77003 3.06579i 0.473061 0.819366i
\(15\) 2.59928 + 4.50208i 0.671131 + 1.16243i
\(16\) 2.30760 + 3.99688i 0.576900 + 0.999219i
\(17\) 0.781534 0.189550 0.0947750 0.995499i \(-0.469787\pi\)
0.0947750 + 0.995499i \(0.469787\pi\)
\(18\) −1.55155 0.895789i −0.365704 0.211140i
\(19\) −2.88981 + 5.00531i −0.662969 + 1.14830i 0.316863 + 0.948471i \(0.397371\pi\)
−0.979832 + 0.199824i \(0.935963\pi\)
\(20\) −0.727812 1.26061i −0.162744 0.281880i
\(21\) 3.11170i 0.679029i
\(22\) −3.41093 5.90791i −0.727213 1.25957i
\(23\) 0.260901 + 0.451894i 0.0544016 + 0.0942264i 0.891944 0.452146i \(-0.149342\pi\)
−0.837542 + 0.546373i \(0.816008\pi\)
\(24\) 2.93519 + 1.69463i 0.599144 + 0.345916i
\(25\) −4.84928 8.39921i −0.969857 1.67984i
\(26\) 2.21987 3.84492i 0.435352 0.754052i
\(27\) −5.64265 −1.08593
\(28\) 0.871293i 0.164659i
\(29\) −2.06205 + 3.57157i −0.382913 + 0.663225i −0.991477 0.130280i \(-0.958412\pi\)
0.608564 + 0.793505i \(0.291746\pi\)
\(30\) −6.94500 4.00970i −1.26798 0.732067i
\(31\) −1.72475 −0.309774 −0.154887 0.987932i \(-0.549501\pi\)
−0.154887 + 0.987932i \(0.549501\pi\)
\(32\) −1.83632 1.06020i −0.324619 0.187419i
\(33\) −5.19302 2.99819i −0.903989 0.521918i
\(34\) −1.04409 + 0.602805i −0.179060 + 0.103380i
\(35\) 8.79813i 1.48715i
\(36\) 0.440949 0.0734916
\(37\) 8.24916 1.35615 0.678077 0.734991i \(-0.262814\pi\)
0.678077 + 0.734991i \(0.262814\pi\)
\(38\) 8.91577i 1.44633i
\(39\) 3.90250i 0.624901i
\(40\) −8.29906 4.79147i −1.31220 0.757597i
\(41\) −7.75381 −1.21094 −0.605471 0.795867i \(-0.707015\pi\)
−0.605471 + 0.795867i \(0.707015\pi\)
\(42\) 2.40009 + 4.15707i 0.370341 + 0.641450i
\(43\) −4.29240 2.47822i −0.654584 0.377924i 0.135626 0.990760i \(-0.456695\pi\)
−0.790210 + 0.612836i \(0.790029\pi\)
\(44\) 1.45407 + 0.839510i 0.219210 + 0.126561i
\(45\) 4.45261 0.663756
\(46\) −0.697100 0.402471i −0.102782 0.0593411i
\(47\) 2.64810i 0.386266i 0.981173 + 0.193133i \(0.0618648\pi\)
−0.981173 + 0.193133i \(0.938135\pi\)
\(48\) −6.25800 −0.903264
\(49\) −0.866851 + 1.50143i −0.123836 + 0.214490i
\(50\) 12.9568 + 7.48060i 1.83237 + 1.05792i
\(51\) −0.529863 + 0.917749i −0.0741956 + 0.128511i
\(52\) 1.09272i 0.151533i
\(53\) 9.61126i 1.32021i 0.751174 + 0.660104i \(0.229488\pi\)
−0.751174 + 0.660104i \(0.770512\pi\)
\(54\) 7.53829 4.35223i 1.02583 0.592264i
\(55\) 14.6829 + 8.47719i 1.97984 + 1.14306i
\(56\) 2.86803 + 4.96757i 0.383257 + 0.663820i
\(57\) −3.91846 6.78697i −0.519012 0.898956i
\(58\) 6.36191i 0.835360i
\(59\) 11.3861 + 6.57378i 1.48235 + 0.855833i 0.999799 0.0200374i \(-0.00637853\pi\)
0.482547 + 0.875870i \(0.339712\pi\)
\(60\) 1.97376 0.254811
\(61\) 3.56819i 0.456860i −0.973560 0.228430i \(-0.926641\pi\)
0.973560 0.228430i \(-0.0733592\pi\)
\(62\) 2.30417 1.33031i 0.292630 0.168950i
\(63\) −2.30813 1.33260i −0.290797 0.167892i
\(64\) −5.95942 −0.744928
\(65\) 11.0341i 1.36861i
\(66\) 9.25014 1.13861
\(67\) 5.40753 0.660634 0.330317 0.943870i \(-0.392844\pi\)
0.330317 + 0.943870i \(0.392844\pi\)
\(68\) 0.148364 0.256975i 0.0179918 0.0311628i
\(69\) −0.707540 −0.0851778
\(70\) −6.78608 11.7538i −0.811092 1.40485i
\(71\) −2.50000 + 1.44337i −0.296695 + 0.171297i −0.640957 0.767577i \(-0.721462\pi\)
0.344262 + 0.938874i \(0.388129\pi\)
\(72\) 2.51402 1.45147i 0.296280 0.171057i
\(73\) 7.13145 12.3520i 0.834674 1.44570i −0.0596224 0.998221i \(-0.518990\pi\)
0.894296 0.447476i \(-0.147677\pi\)
\(74\) −11.0204 + 6.36266i −1.28110 + 0.739644i
\(75\) 13.1508 1.51853
\(76\) 1.09719 + 1.90039i 0.125856 + 0.217989i
\(77\) −5.07419 8.78876i −0.578258 1.00157i
\(78\) 3.01004 + 5.21354i 0.340820 + 0.590317i
\(79\) 5.67907i 0.638946i 0.947595 + 0.319473i \(0.103506\pi\)
−0.947595 + 0.319473i \(0.896494\pi\)
\(80\) 17.6941 1.97826
\(81\) 2.08351 3.60874i 0.231501 0.400971i
\(82\) 10.3587 5.98059i 1.14393 0.660446i
\(83\) −6.74336 11.6798i −0.740180 1.28203i −0.952413 0.304811i \(-0.901407\pi\)
0.212233 0.977219i \(-0.431926\pi\)
\(84\) −1.02315 0.590717i −0.111635 0.0644525i
\(85\) 1.49815 2.59487i 0.162497 0.281454i
\(86\) 7.64589 0.824477
\(87\) −2.79604 4.84289i −0.299767 0.519212i
\(88\) 11.0536 1.17832
\(89\) 1.77824 + 1.02667i 0.188493 + 0.108827i 0.591277 0.806469i \(-0.298624\pi\)
−0.402784 + 0.915295i \(0.631957\pi\)
\(90\) −5.94845 + 3.43434i −0.627022 + 0.362011i
\(91\) 3.30233 5.71981i 0.346179 0.599599i
\(92\) 0.198115 0.0206549
\(93\) 1.16934 2.02536i 0.121255 0.210020i
\(94\) −2.04251 3.53773i −0.210669 0.364889i
\(95\) 11.0792 + 19.1897i 1.13670 + 1.96882i
\(96\) 2.48997 1.43758i 0.254131 0.146723i
\(97\) −12.1182 + 6.99642i −1.23041 + 0.710379i −0.967116 0.254337i \(-0.918143\pi\)
−0.263296 + 0.964715i \(0.584810\pi\)
\(98\) 2.67444i 0.270159i
\(99\) −4.44787 + 2.56798i −0.447028 + 0.258092i
\(100\) −3.68230 −0.368230
\(101\) 7.47096i 0.743388i 0.928355 + 0.371694i \(0.121223\pi\)
−0.928355 + 0.371694i \(0.878777\pi\)
\(102\) 1.63475i 0.161865i
\(103\) 11.4122i 1.12448i 0.826975 + 0.562239i \(0.190060\pi\)
−0.826975 + 0.562239i \(0.809940\pi\)
\(104\) 3.59691 + 6.23003i 0.352706 + 0.610904i
\(105\) −10.3316 5.96493i −1.00826 0.582118i
\(106\) −7.41326 12.8401i −0.720039 1.24714i
\(107\) 9.18045 5.30034i 0.887508 0.512403i 0.0143812 0.999897i \(-0.495422\pi\)
0.873126 + 0.487494i \(0.162089\pi\)
\(108\) −1.07119 + 1.85535i −0.103075 + 0.178531i
\(109\) 0.0964781 0.167105i 0.00924093 0.0160058i −0.861368 0.507982i \(-0.830392\pi\)
0.870609 + 0.491976i \(0.163725\pi\)
\(110\) −26.1541 −2.49370
\(111\) −5.59274 + 9.68692i −0.530840 + 0.919442i
\(112\) −9.17220 5.29557i −0.866692 0.500385i
\(113\) 17.7587 10.2530i 1.67060 0.964521i 0.703296 0.710897i \(-0.251711\pi\)
0.967303 0.253623i \(-0.0816223\pi\)
\(114\) 10.4697 + 6.04469i 0.980578 + 0.566137i
\(115\) 2.00052 0.186550
\(116\) 0.782908 + 1.35604i 0.0726912 + 0.125905i
\(117\) −2.89472 1.67127i −0.267617 0.154509i
\(118\) −20.2817 −1.86708
\(119\) −1.55321 + 0.896749i −0.142383 + 0.0822048i
\(120\) 11.2532 6.49701i 1.02727 0.593093i
\(121\) −8.55637 −0.777852
\(122\) 2.75218 + 4.76691i 0.249171 + 0.431576i
\(123\) 5.25691 9.10523i 0.473999 0.820991i
\(124\) −0.327422 + 0.567111i −0.0294033 + 0.0509280i
\(125\) −18.0137 −1.61119
\(126\) 4.11139 0.366272
\(127\) 5.43341i 0.482137i −0.970508 0.241069i \(-0.922502\pi\)
0.970508 0.241069i \(-0.0774979\pi\)
\(128\) 11.6341 6.71696i 1.02832 0.593701i
\(129\) 5.82029 3.36035i 0.512448 0.295862i
\(130\) −8.51069 14.7409i −0.746437 1.29287i
\(131\) 0.253860i 0.0221798i 0.999939 + 0.0110899i \(0.00353010\pi\)
−0.999939 + 0.0110899i \(0.996470\pi\)
\(132\) −1.97166 + 1.13834i −0.171611 + 0.0990795i
\(133\) 13.2633i 1.15008i
\(134\) −7.22417 + 4.17088i −0.624073 + 0.360309i
\(135\) −10.8166 + 18.7349i −0.930945 + 1.61244i
\(136\) 1.95348i 0.167510i
\(137\) 16.0333 + 9.25685i 1.36982 + 0.790866i 0.990905 0.134565i \(-0.0429636\pi\)
0.378916 + 0.925431i \(0.376297\pi\)
\(138\) 0.945236 0.545732i 0.0804638 0.0464558i
\(139\) −6.90134 −0.585364 −0.292682 0.956210i \(-0.594548\pi\)
−0.292682 + 0.956210i \(0.594548\pi\)
\(140\) 2.89289 + 1.67021i 0.244494 + 0.141159i
\(141\) −3.10964 1.79535i −0.261879 0.151196i
\(142\) 2.22658 3.85655i 0.186850 0.323634i
\(143\) −6.36374 11.0223i −0.532163 0.921733i
\(144\) −2.68002 + 4.64192i −0.223335 + 0.386827i
\(145\) 7.90563 + 13.6930i 0.656527 + 1.13714i
\(146\) 22.0022i 1.82092i
\(147\) −1.17541 2.03587i −0.0969462 0.167916i
\(148\) 1.56600 2.71239i 0.128724 0.222957i
\(149\) 19.3998 11.2005i 1.58930 0.917580i 0.595873 0.803079i \(-0.296806\pi\)
0.993423 0.114502i \(-0.0365271\pi\)
\(150\) −17.5688 + 10.1434i −1.43449 + 0.828201i
\(151\) 3.33112 5.76967i 0.271083 0.469529i −0.698056 0.716043i \(-0.745952\pi\)
0.969139 + 0.246513i \(0.0792849\pi\)
\(152\) 12.5110 + 7.22322i 1.01478 + 0.585881i
\(153\) 0.453832 + 0.786060i 0.0366902 + 0.0635492i
\(154\) 13.5577 + 7.82755i 1.09251 + 0.630762i
\(155\) −3.30623 + 5.72656i −0.265563 + 0.459968i
\(156\) −1.28317 0.740841i −0.102736 0.0593148i
\(157\) −0.922836 + 1.59840i −0.0736504 + 0.127566i −0.900499 0.434859i \(-0.856798\pi\)
0.826848 + 0.562425i \(0.190132\pi\)
\(158\) −4.38032 7.58694i −0.348480 0.603585i
\(159\) −11.2864 6.51621i −0.895071 0.516769i
\(160\) −7.04022 + 4.06467i −0.556578 + 0.321341i
\(161\) −1.03702 0.598726i −0.0817290 0.0471863i
\(162\) 6.42812i 0.505041i
\(163\) 15.4113i 1.20711i −0.797321 0.603555i \(-0.793750\pi\)
0.797321 0.603555i \(-0.206250\pi\)
\(164\) −1.47196 + 2.54951i −0.114941 + 0.199084i
\(165\) −19.9094 + 11.4947i −1.54994 + 0.894859i
\(166\) 18.0176 + 10.4024i 1.39843 + 0.807386i
\(167\) 10.4829i 0.811191i 0.914053 + 0.405596i \(0.132936\pi\)
−0.914053 + 0.405596i \(0.867064\pi\)
\(168\) −7.77784 −0.600073
\(169\) −2.35841 + 4.08489i −0.181417 + 0.314223i
\(170\) 4.62215i 0.354503i
\(171\) −6.71239 −0.513309
\(172\) −1.62971 + 0.940916i −0.124265 + 0.0717442i
\(173\) −19.6822 + 11.3635i −1.49641 + 0.863955i −0.999991 0.00412680i \(-0.998686\pi\)
−0.496422 + 0.868081i \(0.665353\pi\)
\(174\) 7.47074 + 4.31323i 0.566355 + 0.326985i
\(175\) 19.2748 + 11.1283i 1.45704 + 0.841223i
\(176\) −17.6752 + 10.2048i −1.33232 + 0.769216i
\(177\) −15.4391 + 8.91374i −1.16047 + 0.669998i
\(178\) −3.16752 −0.237415
\(179\) 6.09622i 0.455653i −0.973702 0.227826i \(-0.926838\pi\)
0.973702 0.227826i \(-0.0731619\pi\)
\(180\) 0.845272 1.46405i 0.0630028 0.109124i
\(181\) −3.35715 −0.249535 −0.124768 0.992186i \(-0.539819\pi\)
−0.124768 + 0.992186i \(0.539819\pi\)
\(182\) 10.1885i 0.755221i
\(183\) 4.19009 + 2.41915i 0.309741 + 0.178829i
\(184\) 1.12953 0.652134i 0.0832700 0.0480759i
\(185\) 15.8131 27.3891i 1.16260 2.01369i
\(186\) 3.60769i 0.264529i
\(187\) 3.45615i 0.252739i
\(188\) 0.870717 + 0.502709i 0.0635036 + 0.0366638i
\(189\) 11.2142 6.47450i 0.815710 0.470950i
\(190\) −29.6024 17.0910i −2.14758 1.23991i
\(191\) −2.39705 4.15182i −0.173445 0.300415i 0.766177 0.642629i \(-0.222156\pi\)
−0.939622 + 0.342214i \(0.888823\pi\)
\(192\) 4.04035 6.99809i 0.291587 0.505044i
\(193\) −20.8141 12.0170i −1.49823 0.865003i −0.498231 0.867045i \(-0.666017\pi\)
−0.999998 + 0.00204195i \(0.999350\pi\)
\(194\) 10.7928 18.6937i 0.774879 1.34213i
\(195\) −12.9572 7.48085i −0.927885 0.535715i
\(196\) 0.329121 + 0.570055i 0.0235087 + 0.0407182i
\(197\) 12.3743 + 7.14429i 0.881631 + 0.509010i 0.871196 0.490936i \(-0.163345\pi\)
0.0104350 + 0.999946i \(0.496678\pi\)
\(198\) 3.96141 6.86137i 0.281525 0.487616i
\(199\) 9.33402 5.38900i 0.661671 0.382016i −0.131242 0.991350i \(-0.541897\pi\)
0.792913 + 0.609334i \(0.208563\pi\)
\(200\) −20.9942 + 12.1210i −1.48451 + 0.857084i
\(201\) −3.66618 + 6.35001i −0.258592 + 0.447895i
\(202\) −5.76242 9.98081i −0.405443 0.702247i
\(203\) 9.46415i 0.664253i
\(204\) 0.201175 + 0.348446i 0.0140851 + 0.0243961i
\(205\) −14.8636 + 25.7444i −1.03812 + 1.79807i
\(206\) −8.80235 15.2461i −0.613289 1.06225i
\(207\) −0.303007 + 0.524824i −0.0210605 + 0.0364778i
\(208\) −11.5032 6.64138i −0.797604 0.460497i
\(209\) −22.1348 12.7795i −1.53109 0.883977i
\(210\) 18.4032 1.26994
\(211\) 18.3047 10.5682i 1.26015 0.727547i 0.287045 0.957917i \(-0.407327\pi\)
0.973103 + 0.230370i \(0.0739938\pi\)
\(212\) 3.16026 + 1.82458i 0.217047 + 0.125312i
\(213\) 3.91430i 0.268204i
\(214\) −8.17640 + 14.1619i −0.558927 + 0.968090i
\(215\) −16.4565 + 9.50116i −1.12232 + 0.647974i
\(216\) 14.1041i 0.959660i
\(217\) 3.42775 1.97901i 0.232691 0.134344i
\(218\) 0.297658i 0.0201599i
\(219\) 9.66993 + 16.7488i 0.653433 + 1.13178i
\(220\) 5.57473 3.21857i 0.375848 0.216996i
\(221\) −1.94795 + 1.12465i −0.131033 + 0.0756520i
\(222\) 17.2550i 1.15808i
\(223\) −7.59130 −0.508351 −0.254175 0.967158i \(-0.581804\pi\)
−0.254175 + 0.967158i \(0.581804\pi\)
\(224\) 4.86599 0.325122
\(225\) 5.63190 9.75473i 0.375460 0.650315i
\(226\) −15.8165 + 27.3949i −1.05210 + 1.82228i
\(227\) −8.43537 14.6105i −0.559875 0.969733i −0.997506 0.0705780i \(-0.977516\pi\)
0.437631 0.899155i \(-0.355818\pi\)
\(228\) −2.97548 −0.197056
\(229\) 12.9545 7.47927i 0.856056 0.494244i −0.00663360 0.999978i \(-0.502112\pi\)
0.862690 + 0.505734i \(0.168778\pi\)
\(230\) −2.67259 + 1.54302i −0.176225 + 0.101744i
\(231\) 13.7607 0.905391
\(232\) 8.92731 + 5.15419i 0.586107 + 0.338389i
\(233\) 4.01704 + 6.95773i 0.263165 + 0.455816i 0.967081 0.254467i \(-0.0819002\pi\)
−0.703916 + 0.710283i \(0.748567\pi\)
\(234\) 5.15625 0.337075
\(235\) 8.79231 + 5.07624i 0.573547 + 0.331138i
\(236\) 4.32302 2.49590i 0.281405 0.162469i
\(237\) −6.66888 3.85028i −0.433191 0.250103i
\(238\) 1.38334 2.39602i 0.0896688 0.155311i
\(239\) 14.9655 0.968036 0.484018 0.875058i \(-0.339177\pi\)
0.484018 + 0.875058i \(0.339177\pi\)
\(240\) −11.9962 + 20.7780i −0.774350 + 1.34121i
\(241\) −5.78054 + 10.0122i −0.372358 + 0.644942i −0.989928 0.141573i \(-0.954784\pi\)
0.617570 + 0.786516i \(0.288117\pi\)
\(242\) 11.4309 6.59962i 0.734804 0.424239i
\(243\) −5.63884 9.76675i −0.361731 0.626537i
\(244\) −1.17325 0.677376i −0.0751096 0.0433645i
\(245\) 3.32339 + 5.75629i 0.212324 + 0.367756i
\(246\) 16.2188i 1.03407i
\(247\) 16.6341i 1.05840i
\(248\) 4.31108i 0.273754i
\(249\) 18.2874 1.15892
\(250\) 24.0654 13.8941i 1.52203 0.878743i
\(251\) 26.6180i 1.68011i −0.542498 0.840057i \(-0.682522\pi\)
0.542498 0.840057i \(-0.317478\pi\)
\(252\) −0.876339 + 0.505955i −0.0552042 + 0.0318721i
\(253\) −1.99839 + 1.15377i −0.125638 + 0.0725370i
\(254\) 4.19084 + 7.25875i 0.262957 + 0.455455i
\(255\) 2.03142 + 3.51853i 0.127213 + 0.220339i
\(256\) −4.40229 + 7.62499i −0.275143 + 0.476562i
\(257\) −5.52057 −0.344364 −0.172182 0.985065i \(-0.555082\pi\)
−0.172182 + 0.985065i \(0.555082\pi\)
\(258\) −5.18374 + 8.97850i −0.322725 + 0.558977i
\(259\) −16.3943 + 9.46526i −1.01869 + 0.588143i
\(260\) 3.62809 + 2.09468i 0.225005 + 0.129906i
\(261\) −4.78968 −0.296473
\(262\) −0.195804 0.339143i −0.0120968 0.0209523i
\(263\) −0.998393 −0.0615636 −0.0307818 0.999526i \(-0.509800\pi\)
−0.0307818 + 0.999526i \(0.509800\pi\)
\(264\) −7.49411 + 12.9802i −0.461231 + 0.798875i
\(265\) 31.9116 + 18.4242i 1.96031 + 1.13179i
\(266\) 10.2301 + 17.7191i 0.627250 + 1.08643i
\(267\) −2.41121 + 1.39212i −0.147564 + 0.0851961i
\(268\) 1.02655 1.77804i 0.0627065 0.108611i
\(269\) 32.1548 1.96051 0.980256 0.197731i \(-0.0633573\pi\)
0.980256 + 0.197731i \(0.0633573\pi\)
\(270\) 33.3718i 2.03094i
\(271\) 14.8165 + 25.6630i 0.900039 + 1.55891i 0.827441 + 0.561552i \(0.189796\pi\)
0.0725978 + 0.997361i \(0.476871\pi\)
\(272\) 1.80347 + 3.12370i 0.109351 + 0.189402i
\(273\) 4.47781 + 7.75580i 0.271010 + 0.469403i
\(274\) −28.5596 −1.72535
\(275\) 37.1435 21.4448i 2.23984 1.29317i
\(276\) −0.134317 + 0.232645i −0.00808496 + 0.0140036i
\(277\) 5.38762 3.11054i 0.323711 0.186894i −0.329335 0.944213i \(-0.606824\pi\)
0.653045 + 0.757319i \(0.273491\pi\)
\(278\) 9.21983 5.32307i 0.552968 0.319256i
\(279\) −1.00155 1.73474i −0.0599612 0.103856i
\(280\) 21.9913 1.31423
\(281\) 9.04824 15.6720i 0.539772 0.934913i −0.459143 0.888362i \(-0.651844\pi\)
0.998916 0.0465512i \(-0.0148231\pi\)
\(282\) 5.53909 0.329848
\(283\) −23.7171 −1.40984 −0.704918 0.709289i \(-0.749016\pi\)
−0.704918 + 0.709289i \(0.749016\pi\)
\(284\) 1.09603i 0.0650372i
\(285\) −30.0457 −1.77975
\(286\) 17.0032 + 9.81683i 1.00542 + 0.580481i
\(287\) 15.4099 8.89689i 0.909615 0.525167i
\(288\) 2.46261i 0.145111i
\(289\) −16.3892 −0.964071
\(290\) −21.1230 12.1954i −1.24039 0.716137i
\(291\) 18.9736i 1.11225i
\(292\) −2.70763 4.68976i −0.158452 0.274447i
\(293\) −0.191321 0.331377i −0.0111771 0.0193593i 0.860383 0.509648i \(-0.170225\pi\)
−0.871560 + 0.490289i \(0.836891\pi\)
\(294\) 3.14057 + 1.81321i 0.183162 + 0.105749i
\(295\) 43.6529 25.2030i 2.54157 1.46738i
\(296\) 20.6192i 1.19846i
\(297\) 24.9533i 1.44794i
\(298\) −17.2781 + 29.9266i −1.00089 + 1.73360i
\(299\) −1.30057 0.750886i −0.0752141 0.0434249i
\(300\) 2.49652 4.32409i 0.144136 0.249652i
\(301\) 11.3742 0.655600
\(302\) 10.2773i 0.591393i
\(303\) −8.77308 5.06514i −0.504000 0.290985i
\(304\) −26.6741 −1.52987
\(305\) −11.8472 6.83999i −0.678369 0.391657i
\(306\) −1.21259 0.700090i −0.0693193 0.0400215i
\(307\) 15.5113 + 26.8664i 0.885278 + 1.53335i 0.845395 + 0.534142i \(0.179365\pi\)
0.0398828 + 0.999204i \(0.487302\pi\)
\(308\) −3.85308 −0.219550
\(309\) −13.4013 7.73722i −0.762371 0.440155i
\(310\) 10.2005i 0.579350i
\(311\) 6.62025i 0.375400i −0.982226 0.187700i \(-0.939897\pi\)
0.982226 0.187700i \(-0.0601033\pi\)
\(312\) −9.75449 −0.552239
\(313\) −5.28869 −0.298935 −0.149467 0.988767i \(-0.547756\pi\)
−0.149467 + 0.988767i \(0.547756\pi\)
\(314\) 2.84717i 0.160675i
\(315\) −8.84908 + 5.10902i −0.498589 + 0.287861i
\(316\) 1.86732 + 1.07810i 0.105045 + 0.0606479i
\(317\) 10.8180 + 6.24578i 0.607600 + 0.350798i 0.772026 0.635591i \(-0.219244\pi\)
−0.164426 + 0.986389i \(0.552577\pi\)
\(318\) 20.1041 1.12738
\(319\) −15.7944 9.11892i −0.884318 0.510561i
\(320\) −11.4238 + 19.7866i −0.638611 + 1.10611i
\(321\) 14.3740i 0.802280i
\(322\) 1.84721 0.102941
\(323\) −2.25849 + 3.91182i −0.125666 + 0.217659i
\(324\) −0.791055 1.37015i −0.0439475 0.0761193i
\(325\) 24.1733 + 13.9565i 1.34090 + 0.774166i
\(326\) 11.8869 + 20.5888i 0.658356 + 1.14031i
\(327\) 0.130820 + 0.226587i 0.00723436 + 0.0125303i
\(328\) 19.3810i 1.07014i
\(329\) −3.03849 5.26282i −0.167517 0.290148i
\(330\) 17.7319 30.7126i 0.976110 1.69067i
\(331\) 10.0495 + 5.80207i 0.552369 + 0.318910i 0.750077 0.661351i \(-0.230016\pi\)
−0.197708 + 0.980261i \(0.563350\pi\)
\(332\) −5.12057 −0.281028
\(333\) 4.79024 + 8.29693i 0.262503 + 0.454669i
\(334\) −8.08556 14.0046i −0.442422 0.766298i
\(335\) 10.3659 17.9542i 0.566348 0.980944i
\(336\) 12.4371 7.18056i 0.678499 0.391731i
\(337\) 5.10214 + 8.83717i 0.277931 + 0.481391i 0.970870 0.239605i \(-0.0770179\pi\)
−0.692939 + 0.720996i \(0.743685\pi\)
\(338\) 7.27627i 0.395777i
\(339\) 27.8052i 1.51017i
\(340\) −0.568810 0.985208i −0.0308481 0.0534304i
\(341\) 7.62728i 0.413040i
\(342\) 8.96740 5.17733i 0.484901 0.279958i
\(343\) 20.0425i 1.08219i
\(344\) −6.19441 + 10.7290i −0.333980 + 0.578471i
\(345\) −1.35631 + 2.34919i −0.0730212 + 0.126476i
\(346\) 17.5296 30.3622i 0.942399 1.63228i
\(347\) −25.0292 + 14.4506i −1.34364 + 0.775748i −0.987339 0.158625i \(-0.949294\pi\)
−0.356296 + 0.934373i \(0.615961\pi\)
\(348\) −2.12317 −0.113814
\(349\) −13.7967 + 12.5956i −0.738522 + 0.674230i
\(350\) −34.3336 −1.83521
\(351\) 14.0641 8.11992i 0.750687 0.433409i
\(352\) 4.68848 8.12069i 0.249897 0.432834i
\(353\) −8.81937 + 15.2756i −0.469408 + 0.813038i −0.999388 0.0349720i \(-0.988866\pi\)
0.529981 + 0.848010i \(0.322199\pi\)
\(354\) 13.7505 23.8166i 0.730831 1.26584i
\(355\) 11.0674i 0.587398i
\(356\) 0.675153 0.389800i 0.0357830 0.0206594i
\(357\) 2.43190i 0.128710i
\(358\) 4.70207 + 8.14423i 0.248512 + 0.430436i
\(359\) 14.6783i 0.774693i 0.921934 + 0.387346i \(0.126608\pi\)
−0.921934 + 0.387346i \(0.873392\pi\)
\(360\) 11.1295i 0.586576i
\(361\) −7.20206 12.4743i −0.379056 0.656544i
\(362\) 4.48498 2.58941i 0.235725 0.136096i
\(363\) 5.80103 10.0477i 0.304475 0.527366i
\(364\) −1.25381 2.17167i −0.0657176 0.113826i
\(365\) −27.3411 47.3561i −1.43110 2.47873i
\(366\) −7.46366 −0.390132
\(367\) 23.6274 + 13.6413i 1.23334 + 0.712070i 0.967725 0.252009i \(-0.0810912\pi\)
0.265617 + 0.964079i \(0.414424\pi\)
\(368\) −1.20411 + 2.08558i −0.0627685 + 0.108718i
\(369\) −4.50259 7.79871i −0.234395 0.405985i
\(370\) 48.7872i 2.53633i
\(371\) −11.0282 19.1013i −0.572553 0.991692i
\(372\) −0.443969 0.768976i −0.0230187 0.0398696i
\(373\) 10.0904 + 5.82570i 0.522461 + 0.301643i 0.737941 0.674865i \(-0.235798\pi\)
−0.215480 + 0.976508i \(0.569132\pi\)
\(374\) −2.66576 4.61723i −0.137843 0.238751i
\(375\) 12.2129 21.1533i 0.630670 1.09235i
\(376\) 6.61905 0.341352
\(377\) 11.8694i 0.611303i
\(378\) −9.98768 + 17.2992i −0.513711 + 0.889774i
\(379\) 29.6002 + 17.0897i 1.52046 + 0.877838i 0.999709 + 0.0241293i \(0.00768135\pi\)
0.520751 + 0.853709i \(0.325652\pi\)
\(380\) 8.41297 0.431576
\(381\) 6.38041 + 3.68373i 0.326878 + 0.188723i
\(382\) 6.40467 + 3.69774i 0.327692 + 0.189193i
\(383\) −31.4641 + 18.1658i −1.60774 + 0.928230i −0.617867 + 0.786283i \(0.712003\pi\)
−0.989874 + 0.141947i \(0.954664\pi\)
\(384\) 18.2158i 0.929570i
\(385\) −38.9076 −1.98291
\(386\) 37.0753 1.88708
\(387\) 5.75634i 0.292611i
\(388\) 5.31273i 0.269713i
\(389\) 1.50664 + 0.869856i 0.0763894 + 0.0441035i 0.537708 0.843131i \(-0.319290\pi\)
−0.461319 + 0.887234i \(0.652624\pi\)
\(390\) 23.0802 1.16871
\(391\) 0.203903 + 0.353171i 0.0103118 + 0.0178606i
\(392\) 3.75289 + 2.16673i 0.189550 + 0.109437i
\(393\) −0.298105 0.172111i −0.0150374 0.00868185i
\(394\) −22.0418 −1.11045
\(395\) 18.8558 + 10.8864i 0.948740 + 0.547755i
\(396\) 1.94999i 0.0979908i
\(397\) −21.9355 −1.10091 −0.550455 0.834865i \(-0.685546\pi\)
−0.550455 + 0.834865i \(0.685546\pi\)
\(398\) −8.31317 + 14.3988i −0.416702 + 0.721749i
\(399\) 15.5750 + 8.99224i 0.779726 + 0.450175i
\(400\) 22.3804 38.7640i 1.11902 1.93820i
\(401\) 36.1062i 1.80306i 0.432721 + 0.901528i \(0.357554\pi\)
−0.432721 + 0.901528i \(0.642446\pi\)
\(402\) 11.3110i 0.564143i
\(403\) 4.29887 2.48195i 0.214142 0.123635i
\(404\) 2.45651 + 1.41827i 0.122216 + 0.0705614i
\(405\) −7.98790 13.8355i −0.396922 0.687489i
\(406\) 7.29979 + 12.6436i 0.362283 + 0.627492i
\(407\) 36.4799i 1.80824i
\(408\) 2.29395 + 1.32442i 0.113568 + 0.0655683i
\(409\) −20.9532 −1.03607 −0.518034 0.855360i \(-0.673336\pi\)
−0.518034 + 0.855360i \(0.673336\pi\)
\(410\) 45.8576i 2.26475i
\(411\) −21.7405 + 12.5519i −1.07238 + 0.619138i
\(412\) 3.75242 + 2.16646i 0.184869 + 0.106734i
\(413\) −30.1716 −1.48465
\(414\) 0.934849i 0.0459453i
\(415\) −51.7064 −2.53817
\(416\) 6.10262 0.299206
\(417\) 4.67895 8.10418i 0.229129 0.396863i
\(418\) 39.4278 1.92848
\(419\) −4.19287 7.26227i −0.204835 0.354785i 0.745245 0.666791i \(-0.232333\pi\)
−0.950080 + 0.312006i \(0.898999\pi\)
\(420\) −3.92263 + 2.26473i −0.191405 + 0.110508i
\(421\) −6.06534 + 3.50182i −0.295607 + 0.170668i −0.640468 0.767985i \(-0.721259\pi\)
0.344861 + 0.938654i \(0.387926\pi\)
\(422\) −16.3028 + 28.2372i −0.793606 + 1.37457i
\(423\) −2.66344 + 1.53774i −0.129501 + 0.0747673i
\(424\) 24.0238 1.16670
\(425\) −3.78988 6.56427i −0.183836 0.318414i
\(426\) 3.01914 + 5.22930i 0.146278 + 0.253360i
\(427\) 4.09422 + 7.09139i 0.198133 + 0.343176i
\(428\) 4.02481i 0.194546i
\(429\) 17.2579 0.833219
\(430\) 14.6567 25.3861i 0.706808 1.22423i
\(431\) −3.86176 + 2.22959i −0.186015 + 0.107396i −0.590115 0.807319i \(-0.700918\pi\)
0.404101 + 0.914714i \(0.367584\pi\)
\(432\) −13.0210 22.5530i −0.626472 1.08508i
\(433\) −27.8176 16.0605i −1.33683 0.771818i −0.350492 0.936566i \(-0.613986\pi\)
−0.986336 + 0.164748i \(0.947319\pi\)
\(434\) −3.05286 + 5.28771i −0.146542 + 0.253818i
\(435\) −21.4393 −1.02794
\(436\) −0.0366303 0.0634455i −0.00175427 0.00303849i
\(437\) −3.01582 −0.144266
\(438\) −25.8370 14.9170i −1.23454 0.712763i
\(439\) −14.6823 + 8.47684i −0.700749 + 0.404578i −0.807626 0.589695i \(-0.799248\pi\)
0.106877 + 0.994272i \(0.465915\pi\)
\(440\) 21.1891 36.7006i 1.01015 1.74963i
\(441\) −2.01350 −0.0958809
\(442\) 1.73490 3.00494i 0.0825209 0.142930i
\(443\) −13.6129 23.5782i −0.646767 1.12023i −0.983890 0.178773i \(-0.942787\pi\)
0.337123 0.941460i \(-0.390546\pi\)
\(444\) 2.12342 + 3.67788i 0.100773 + 0.174544i
\(445\) 6.81755 3.93611i 0.323183 0.186590i
\(446\) 10.1416 5.85524i 0.480218 0.277254i
\(447\) 30.3747i 1.43668i
\(448\) 11.8437 6.83796i 0.559562 0.323063i
\(449\) 0.221195 0.0104388 0.00521942 0.999986i \(-0.498339\pi\)
0.00521942 + 0.999986i \(0.498339\pi\)
\(450\) 17.3757i 0.819101i
\(451\) 34.2894i 1.61462i
\(452\) 7.78561i 0.366204i
\(453\) 4.51685 + 7.82342i 0.212220 + 0.367576i
\(454\) 22.5384 + 13.0126i 1.05778 + 0.610710i
\(455\) −12.6607 21.9290i −0.593544 1.02805i
\(456\) −16.9643 + 9.79436i −0.794428 + 0.458663i
\(457\) 5.43113 9.40700i 0.254058 0.440041i −0.710582 0.703615i \(-0.751568\pi\)
0.964639 + 0.263574i \(0.0849014\pi\)
\(458\) −11.5377 + 19.9838i −0.539120 + 0.933783i
\(459\) −4.40993 −0.205838
\(460\) 0.379774 0.657787i 0.0177070 0.0306695i
\(461\) 9.21706 + 5.32147i 0.429281 + 0.247846i 0.699040 0.715082i \(-0.253611\pi\)
−0.269759 + 0.962928i \(0.586944\pi\)
\(462\) −18.3836 + 10.6138i −0.855284 + 0.493799i
\(463\) −6.31638 3.64676i −0.293547 0.169479i 0.345993 0.938237i \(-0.387542\pi\)
−0.639540 + 0.768758i \(0.720875\pi\)
\(464\) −19.0335 −0.883609
\(465\) −4.48310 7.76495i −0.207899 0.360091i
\(466\) −10.7331 6.19677i −0.497202 0.287060i
\(467\) 14.0560 0.650434 0.325217 0.945639i \(-0.394563\pi\)
0.325217 + 0.945639i \(0.394563\pi\)
\(468\) −1.09905 + 0.634537i −0.0508036 + 0.0293315i
\(469\) −10.7469 + 6.20471i −0.496244 + 0.286507i
\(470\) −15.6614 −0.722408
\(471\) −1.25132 2.16736i −0.0576580 0.0998665i
\(472\) 16.4315 28.4601i 0.756319 1.30998i
\(473\) 10.9593 18.9821i 0.503910 0.872797i
\(474\) 11.8790 0.545622
\(475\) 56.0541 2.57194
\(476\) 0.680946i 0.0312111i
\(477\) −9.66692 + 5.58120i −0.442618 + 0.255545i
\(478\) −19.9931 + 11.5430i −0.914463 + 0.527965i
\(479\) 14.8364 + 25.6973i 0.677891 + 1.17414i 0.975615 + 0.219490i \(0.0704392\pi\)
−0.297724 + 0.954652i \(0.596227\pi\)
\(480\) 11.0230i 0.503130i
\(481\) −20.5607 + 11.8708i −0.937489 + 0.541260i
\(482\) 17.8344i 0.812333i
\(483\) 1.40616 0.811846i 0.0639824 0.0369403i
\(484\) −1.62432 + 2.81340i −0.0738327 + 0.127882i
\(485\) 53.6467i 2.43597i
\(486\) 15.0664 + 8.69858i 0.683425 + 0.394575i
\(487\) −35.5837 + 20.5443i −1.61245 + 0.930950i −0.623653 + 0.781701i \(0.714352\pi\)
−0.988800 + 0.149249i \(0.952315\pi\)
\(488\) −8.91885 −0.403737
\(489\) 18.0974 + 10.4485i 0.818393 + 0.472499i
\(490\) −8.87976 5.12673i −0.401147 0.231602i
\(491\) 1.02974 1.78356i 0.0464715 0.0804910i −0.841854 0.539705i \(-0.818536\pi\)
0.888326 + 0.459214i \(0.151869\pi\)
\(492\) −1.99591 3.45703i −0.0899828 0.155855i
\(493\) −1.61156 + 2.79131i −0.0725811 + 0.125714i
\(494\) 12.8300 + 22.2222i 0.577250 + 0.999826i
\(495\) 19.6906i 0.885026i
\(496\) −3.98002 6.89361i −0.178708 0.309532i
\(497\) 3.31232 5.73710i 0.148578 0.257344i
\(498\) −24.4310 + 14.1052i −1.09478 + 0.632071i
\(499\) −9.71012 + 5.60614i −0.434685 + 0.250965i −0.701340 0.712827i \(-0.747415\pi\)
0.266656 + 0.963792i \(0.414081\pi\)
\(500\) −3.41967 + 5.92305i −0.152932 + 0.264887i
\(501\) −12.3100 7.10717i −0.549969 0.317525i
\(502\) 20.5307 + 35.5603i 0.916331 + 1.58713i
\(503\) −3.43061 1.98067i −0.152964 0.0883135i 0.421565 0.906798i \(-0.361481\pi\)
−0.574528 + 0.818485i \(0.694814\pi\)
\(504\) −3.33089 + 5.76928i −0.148370 + 0.256984i
\(505\) 24.8053 + 14.3213i 1.10382 + 0.637291i
\(506\) 1.77983 3.08276i 0.0791231 0.137045i
\(507\) −3.19790 5.53893i −0.142024 0.245993i
\(508\) −1.78655 1.03146i −0.0792653 0.0457638i
\(509\) 31.1846 18.0044i 1.38223 0.798032i 0.389808 0.920896i \(-0.372541\pi\)
0.992423 + 0.122864i \(0.0392080\pi\)
\(510\) −5.42775 3.13372i −0.240345 0.138763i
\(511\) 32.7311i 1.44794i
\(512\) 13.2857i 0.587151i
\(513\) 16.3062 28.2432i 0.719937 1.24697i
\(514\) 7.37519 4.25807i 0.325306 0.187815i
\(515\) 37.8912 + 21.8765i 1.66968 + 0.963992i
\(516\) 2.55168i 0.112331i
\(517\) −11.7106 −0.515032
\(518\) 14.6013 25.2902i 0.641544 1.11119i
\(519\) 30.8169i 1.35271i
\(520\) 27.5802 1.20947
\(521\) −12.5660 + 7.25496i −0.550525 + 0.317846i −0.749334 0.662193i \(-0.769626\pi\)
0.198809 + 0.980038i \(0.436293\pi\)
\(522\) 6.39876 3.69432i 0.280066 0.161696i
\(523\) 11.0735 + 6.39327i 0.484209 + 0.279558i 0.722169 0.691717i \(-0.243145\pi\)
−0.237960 + 0.971275i \(0.576479\pi\)
\(524\) 0.0834711 + 0.0481920i 0.00364645 + 0.00210528i
\(525\) −26.1358 + 15.0895i −1.14066 + 0.658561i
\(526\) 1.33380 0.770070i 0.0581565 0.0335767i
\(527\) −1.34795 −0.0587176
\(528\) 27.6745i 1.20438i
\(529\) 11.3639 19.6828i 0.494081 0.855773i
\(530\) −56.8429 −2.46910
\(531\) 15.2694i 0.662636i
\(532\) −4.36109 2.51788i −0.189077 0.109164i
\(533\) 19.3261 11.1579i 0.837106 0.483304i
\(534\) 2.14750 3.71959i 0.0929316 0.160962i
\(535\) 40.6416i 1.75709i
\(536\) 13.5164i 0.583818i
\(537\) 7.15874 + 4.13310i 0.308922 + 0.178356i
\(538\) −42.9571 + 24.8013i −1.85201 + 1.06926i
\(539\) −6.63971 3.83344i −0.285993 0.165118i
\(540\) 4.10679 + 7.11317i 0.176728 + 0.306102i
\(541\) 5.60681 9.71128i 0.241056 0.417521i −0.719960 0.694016i \(-0.755840\pi\)
0.961015 + 0.276495i \(0.0891731\pi\)
\(542\) −39.5882 22.8562i −1.70046 0.981760i
\(543\) 2.27607 3.94228i 0.0976757 0.169179i
\(544\) −1.43515 0.828583i −0.0615315 0.0355252i
\(545\) −0.369885 0.640659i −0.0158441 0.0274428i
\(546\) −11.9643 6.90756i −0.512023 0.295616i
\(547\) −15.8710 + 27.4894i −0.678594 + 1.17536i 0.296810 + 0.954937i \(0.404077\pi\)
−0.975404 + 0.220424i \(0.929256\pi\)
\(548\) 6.08745 3.51459i 0.260043 0.150136i
\(549\) 3.58885 2.07203i 0.153169 0.0884319i
\(550\) −33.0811 + 57.2982i −1.41058 + 2.44320i
\(551\) −11.9179 20.6424i −0.507719 0.879395i
\(552\) 1.76853i 0.0752735i
\(553\) −6.51629 11.2865i −0.277101 0.479952i
\(554\) −4.79839 + 8.31105i −0.203864 + 0.353103i
\(555\) 21.4419 + 37.1384i 0.910156 + 1.57644i
\(556\) −1.31013 + 2.26921i −0.0555620 + 0.0962361i
\(557\) 33.8817 + 19.5616i 1.43561 + 0.828852i 0.997541 0.0700877i \(-0.0223279\pi\)
0.438073 + 0.898940i \(0.355661\pi\)
\(558\) 2.67604 + 1.54501i 0.113286 + 0.0654055i
\(559\) 14.2649 0.603339
\(560\) −35.1650 + 20.3025i −1.48599 + 0.857939i
\(561\) −4.05852 2.34319i −0.171351 0.0989295i
\(562\) 27.9160i 1.17756i
\(563\) 1.88462 3.26426i 0.0794274 0.137572i −0.823576 0.567206i \(-0.808024\pi\)
0.903003 + 0.429634i \(0.141357\pi\)
\(564\) −1.18065 + 0.681650i −0.0497145 + 0.0287027i
\(565\) 78.6173i 3.30746i
\(566\) 31.6848 18.2932i 1.33181 0.768922i
\(567\) 9.56264i 0.401593i
\(568\) 3.60778 + 6.24886i 0.151379 + 0.262196i
\(569\) −2.63250 + 1.51988i −0.110360 + 0.0637166i −0.554164 0.832407i \(-0.686962\pi\)
0.443804 + 0.896124i \(0.353629\pi\)
\(570\) 40.1395 23.1746i 1.68126 0.970675i
\(571\) 11.2026i 0.468814i −0.972139 0.234407i \(-0.924685\pi\)
0.972139 0.234407i \(-0.0753149\pi\)
\(572\) −4.83230 −0.202049
\(573\) 6.50059 0.271566
\(574\) −13.7245 + 23.7715i −0.572850 + 0.992205i
\(575\) 2.53037 4.38272i 0.105524 0.182772i
\(576\) −3.46060 5.99393i −0.144192 0.249747i
\(577\) −20.1057 −0.837010 −0.418505 0.908215i \(-0.637446\pi\)
−0.418505 + 0.908215i \(0.637446\pi\)
\(578\) 21.8951 12.6412i 0.910717 0.525803i
\(579\) 28.2229 16.2945i 1.17290 0.677177i
\(580\) 6.00314 0.249267
\(581\) 26.8034 + 15.4749i 1.11199 + 0.642009i
\(582\) 14.6346 + 25.3478i 0.606622 + 1.05070i
\(583\) −42.5035 −1.76031
\(584\) −30.8745 17.8254i −1.27760 0.737620i
\(585\) −11.0980 + 6.40742i −0.458845 + 0.264914i
\(586\) 0.511189 + 0.295135i 0.0211170 + 0.0121919i
\(587\) 9.39689 16.2759i 0.387851 0.671778i −0.604309 0.796750i \(-0.706551\pi\)
0.992160 + 0.124972i \(0.0398841\pi\)
\(588\) −0.892547 −0.0368080
\(589\) 4.98420 8.63289i 0.205370 0.355712i
\(590\) −38.8787 + 67.3398i −1.60061 + 2.77234i
\(591\) −16.7790 + 9.68734i −0.690194 + 0.398484i
\(592\) 19.0358 + 32.9709i 0.782365 + 1.35510i
\(593\) 24.5941 + 14.1994i 1.00996 + 0.583099i 0.911179 0.412010i \(-0.135173\pi\)
0.0987782 + 0.995109i \(0.468507\pi\)
\(594\) 19.2467 + 33.3363i 0.789702 + 1.36780i
\(595\) 6.87604i 0.281890i
\(596\) 8.50509i 0.348382i
\(597\) 14.6145i 0.598131i
\(598\) 2.31666 0.0947354
\(599\) 9.52376 5.49854i 0.389130 0.224664i −0.292653 0.956219i \(-0.594538\pi\)
0.681783 + 0.731554i \(0.261205\pi\)
\(600\) 32.8711i 1.34196i
\(601\) 8.58109 4.95430i 0.350030 0.202090i −0.314668 0.949202i \(-0.601893\pi\)
0.664699 + 0.747112i \(0.268560\pi\)
\(602\) −15.1954 + 8.77305i −0.619317 + 0.357563i
\(603\) 3.14012 + 5.43884i 0.127875 + 0.221487i
\(604\) −1.26474 2.19060i −0.0514617 0.0891342i
\(605\) −16.4020 + 28.4091i −0.666837 + 1.15500i
\(606\) 15.6272 0.634810
\(607\) 4.22926 7.32529i 0.171660 0.297324i −0.767340 0.641240i \(-0.778420\pi\)
0.939000 + 0.343916i \(0.111754\pi\)
\(608\) 10.6133 6.12757i 0.430424 0.248506i
\(609\) 11.1137 + 6.41648i 0.450349 + 0.260009i
\(610\) 21.1030 0.854436
\(611\) −3.81069 6.60030i −0.154164 0.267020i
\(612\) 0.344617 0.0139303
\(613\) 18.0523 31.2675i 0.729125 1.26288i −0.228128 0.973631i \(-0.573260\pi\)
0.957253 0.289251i \(-0.0934063\pi\)
\(614\) −41.4446 23.9281i −1.67257 0.965658i
\(615\) −20.1543 34.9083i −0.812700 1.40764i
\(616\) −21.9679 + 12.6832i −0.885112 + 0.511020i
\(617\) −13.3566 + 23.1344i −0.537718 + 0.931355i 0.461308 + 0.887240i \(0.347380\pi\)
−0.999026 + 0.0441153i \(0.985953\pi\)
\(618\) 23.8712 0.960239
\(619\) 39.6504i 1.59368i −0.604187 0.796842i \(-0.706502\pi\)
0.604187 0.796842i \(-0.293498\pi\)
\(620\) 1.25529 + 2.17423i 0.0504137 + 0.0873192i
\(621\) −1.47217 2.54988i −0.0590763 0.102323i
\(622\) 5.10626 + 8.84431i 0.204743 + 0.354624i
\(623\) −4.71208 −0.188786
\(624\) 15.5978 9.00541i 0.624413 0.360505i
\(625\) −10.2847 + 17.8136i −0.411387 + 0.712544i
\(626\) 7.06542 4.07922i 0.282391 0.163038i
\(627\) 30.0137 17.3284i 1.19863 0.692031i
\(628\) 0.350378 + 0.606872i 0.0139816 + 0.0242168i
\(629\) 6.44700 0.257059
\(630\) 7.88127 13.6508i 0.313997 0.543859i
\(631\) 5.44631 0.216814 0.108407 0.994107i \(-0.465425\pi\)
0.108407 + 0.994107i \(0.465425\pi\)
\(632\) 14.1951 0.564651
\(633\) 28.6601i 1.13914i
\(634\) −19.2697 −0.765299
\(635\) −18.0402 10.4155i −0.715903 0.413327i
\(636\) −4.28517 + 2.47404i −0.169918 + 0.0981021i
\(637\) 4.98968i 0.197698i
\(638\) 28.1340 1.11384
\(639\) −2.90347 1.67632i −0.114859 0.0663141i
\(640\) 51.5039i 2.03587i
\(641\) 10.3694 + 17.9603i 0.409567 + 0.709390i 0.994841 0.101445i \(-0.0323466\pi\)
−0.585274 + 0.810835i \(0.699013\pi\)
\(642\) −11.0868 19.2029i −0.437562 0.757880i
\(643\) 30.0638 + 17.3573i 1.18560 + 0.684506i 0.957303 0.289085i \(-0.0933511\pi\)
0.228297 + 0.973592i \(0.426684\pi\)
\(644\) −0.393732 + 0.227321i −0.0155152 + 0.00895771i
\(645\) 25.7663i 1.01455i
\(646\) 6.96798i 0.274151i
\(647\) −19.6993 + 34.1203i −0.774461 + 1.34141i 0.160636 + 0.987014i \(0.448646\pi\)
−0.935097 + 0.354392i \(0.884688\pi\)
\(648\) −9.02022 5.20782i −0.354348 0.204583i
\(649\) −29.0709 + 50.3524i −1.14113 + 1.97650i
\(650\) −43.0591 −1.68892
\(651\) 5.36690i 0.210345i
\(652\) −5.06737 2.92565i −0.198454 0.114577i
\(653\) −4.02509 −0.157514 −0.0787570 0.996894i \(-0.525095\pi\)
−0.0787570 + 0.996894i \(0.525095\pi\)
\(654\) −0.349537 0.201805i −0.0136680 0.00789122i
\(655\) 0.842872 + 0.486633i 0.0329337 + 0.0190143i
\(656\) −17.8927 30.9910i −0.698592 1.21000i
\(657\) 16.5648 0.646253
\(658\) 8.11852 + 4.68723i 0.316493 + 0.182727i
\(659\) 39.6989i 1.54645i 0.634132 + 0.773225i \(0.281358\pi\)
−0.634132 + 0.773225i \(0.718642\pi\)
\(660\) 8.72848i 0.339755i
\(661\) −6.32135 −0.245872 −0.122936 0.992415i \(-0.539231\pi\)
−0.122936 + 0.992415i \(0.539231\pi\)
\(662\) −17.9008 −0.695733
\(663\) 3.04994i 0.118450i
\(664\) −29.1943 + 16.8553i −1.13296 + 0.654114i
\(665\) −44.0373 25.4250i −1.70769 0.985938i
\(666\) −12.7990 7.38951i −0.495952 0.286338i
\(667\) −2.15196 −0.0833243
\(668\) 3.44686 + 1.99005i 0.133363 + 0.0769972i
\(669\) 5.14673 8.91439i 0.198984 0.344650i
\(670\) 31.9812i 1.23554i
\(671\) 15.7795 0.609159
\(672\) −3.29903 + 5.71408i −0.127263 + 0.220426i
\(673\) −0.158321 0.274221i −0.00610284 0.0105704i 0.862958 0.505276i \(-0.168609\pi\)
−0.869061 + 0.494705i \(0.835276\pi\)
\(674\) −13.6324 7.87066i −0.525100 0.303167i
\(675\) 27.3628 + 47.3938i 1.05320 + 1.82419i
\(676\) 0.895430 + 1.55093i 0.0344396 + 0.0596512i
\(677\) 0.0901525i 0.00346484i −0.999998 0.00173242i \(-0.999449\pi\)
0.999998 0.00173242i \(-0.000551447\pi\)
\(678\) −21.4464 37.1463i −0.823645 1.42659i
\(679\) 16.0557 27.8092i 0.616160 1.06722i
\(680\) −6.48600 3.74470i −0.248727 0.143603i
\(681\) 22.8760 0.876609
\(682\) 5.88300 + 10.1896i 0.225272 + 0.390182i
\(683\) −7.91333 13.7063i −0.302795 0.524456i 0.673973 0.738756i \(-0.264586\pi\)
−0.976768 + 0.214300i \(0.931253\pi\)
\(684\) −1.27426 + 2.20709i −0.0487226 + 0.0843901i
\(685\) 61.4698 35.4896i 2.34864 1.35599i
\(686\) 15.4589 + 26.7757i 0.590225 + 1.02230i
\(687\) 20.2831i 0.773849i
\(688\) 22.8749i 0.872098i
\(689\) −13.8308 23.9557i −0.526913 0.912640i
\(690\) 4.18453i 0.159302i
\(691\) 12.0784 6.97347i 0.459484 0.265283i −0.252343 0.967638i \(-0.581201\pi\)
0.711827 + 0.702355i \(0.247868\pi\)
\(692\) 8.62890i 0.328022i
\(693\) 5.89310 10.2072i 0.223860 0.387738i
\(694\) 22.2918 38.6105i 0.846184 1.46563i
\(695\) −13.2294 + 22.9140i −0.501821 + 0.869179i
\(696\) −12.1050 + 6.98884i −0.458840 + 0.264911i
\(697\) −6.05987 −0.229534
\(698\) 8.71655 27.4687i 0.329926 1.03970i
\(699\) −10.8939 −0.412044
\(700\) 7.31817 4.22515i 0.276601 0.159696i
\(701\) 17.3651 30.0772i 0.655869 1.13600i −0.325806 0.945437i \(-0.605636\pi\)
0.981675 0.190562i \(-0.0610310\pi\)
\(702\) −12.5259 + 21.6956i −0.472761 + 0.818846i
\(703\) −23.8386 + 41.2896i −0.899088 + 1.55727i
\(704\) 26.3541i 0.993258i
\(705\) −11.9220 + 6.88315i −0.449007 + 0.259235i
\(706\) 27.2099i 1.02406i
\(707\) −8.57233 14.8477i −0.322396 0.558406i
\(708\) 6.76864i 0.254381i
\(709\) 33.5970i 1.26176i 0.775880 + 0.630881i \(0.217306\pi\)
−0.775880 + 0.630881i \(0.782694\pi\)
\(710\) −8.53641 14.7855i −0.320366 0.554890i
\(711\) −5.71196 + 3.29780i −0.214215 + 0.123677i
\(712\) 2.56620 4.44479i 0.0961725 0.166576i
\(713\) −0.449988 0.779403i −0.0168522 0.0291889i
\(714\) 1.87575 + 3.24889i 0.0701981 + 0.121587i
\(715\) −48.7955 −1.82485
\(716\) −2.00449 1.15729i −0.0749111 0.0432500i
\(717\) −10.1463 + 17.5738i −0.378919 + 0.656306i
\(718\) −11.3215 19.6095i −0.422516 0.731820i
\(719\) 32.4770i 1.21119i −0.795774 0.605593i \(-0.792936\pi\)
0.795774 0.605593i \(-0.207064\pi\)
\(720\) 10.2748 + 17.7965i 0.382920 + 0.663238i
\(721\) −13.0946 22.6805i −0.487669 0.844667i
\(722\) 19.2431 + 11.1100i 0.716156 + 0.413473i
\(723\) −7.83816 13.5761i −0.291504 0.504900i
\(724\) −0.637313 + 1.10386i −0.0236856 + 0.0410246i
\(725\) 39.9978 1.48548
\(726\) 17.8976i 0.664241i
\(727\) 19.9239 34.5092i 0.738937 1.27988i −0.214037 0.976826i \(-0.568661\pi\)
0.952974 0.303051i \(-0.0980053\pi\)
\(728\) −14.2969 8.25433i −0.529879 0.305926i
\(729\) 27.7931 1.02937
\(730\) 73.0525 + 42.1769i 2.70379 + 1.56104i
\(731\) −3.35466 1.93681i −0.124076 0.0716355i
\(732\) 1.59087 0.918491i 0.0588003 0.0339484i
\(733\) 15.1347i 0.559013i 0.960144 + 0.279507i \(0.0901709\pi\)
−0.960144 + 0.279507i \(0.909829\pi\)
\(734\) −42.0867 −1.55345
\(735\) −9.01274 −0.332440
\(736\) 1.10643i 0.0407835i
\(737\) 23.9135i 0.880864i
\(738\) 12.0304 + 6.94578i 0.442847 + 0.255678i
\(739\) −18.8494 −0.693388 −0.346694 0.937978i \(-0.612696\pi\)
−0.346694 + 0.937978i \(0.612696\pi\)
\(740\) −6.00384 10.3990i −0.220706 0.382273i
\(741\) 19.5332 + 11.2775i 0.717571 + 0.414290i
\(742\) 29.4661 + 17.0123i 1.08173 + 0.624539i
\(743\) −23.9464 −0.878508 −0.439254 0.898363i \(-0.644757\pi\)
−0.439254 + 0.898363i \(0.644757\pi\)
\(744\) −5.06247 2.92282i −0.185599 0.107156i
\(745\) 85.8825i 3.14649i
\(746\) −17.9737 −0.658062
\(747\) 7.83166 13.5648i 0.286545 0.496311i
\(748\) 1.13641 + 0.656106i 0.0415512 + 0.0239896i
\(749\) −12.1634 + 21.0677i −0.444442 + 0.769796i
\(750\) 37.6797i 1.37587i
\(751\) 19.9244i 0.727053i 0.931584 + 0.363526i \(0.118427\pi\)
−0.931584 + 0.363526i \(0.881573\pi\)
\(752\) −10.5841 + 6.11076i −0.385964 + 0.222836i
\(753\) 31.2573 + 18.0464i 1.13908 + 0.657647i
\(754\) 9.15495 + 15.8568i 0.333404 + 0.577472i
\(755\) −12.7711 22.1202i −0.464788 0.805036i
\(756\) 4.91640i 0.178808i
\(757\) −26.3405 15.2077i −0.957361 0.552733i −0.0620011 0.998076i \(-0.519748\pi\)
−0.895360 + 0.445344i \(0.853082\pi\)
\(758\) −52.7257 −1.91509
\(759\) 3.12892i 0.113573i
\(760\) 47.9655 27.6929i 1.73989 1.00453i
\(761\) 19.9378 + 11.5111i 0.722744 + 0.417276i 0.815762 0.578388i \(-0.196318\pi\)
−0.0930181 + 0.995664i \(0.529651\pi\)
\(762\) −11.3652 −0.411717
\(763\) 0.442804i 0.0160306i
\(764\) −1.82020 −0.0658525
\(765\) 3.47987 0.125815
\(766\) 28.0229 48.5372i 1.01251 1.75372i