Properties

Label 349.2.e.a.123.17
Level 349
Weight 2
Character 349.123
Analytic conductor 2.787
Analytic rank 0
Dimension 58
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 349 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 349.e (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.78677903054\)
Analytic rank: \(0\)
Dimension: \(58\)
Relative dimension: \(29\) over \(\Q(\zeta_{6})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 123.17
Character \(\chi\) = 349.123
Dual form 349.2.e.a.227.17

$q$-expansion

\(f(q)\) \(=\) \(q+(0.499056 - 0.288130i) q^{2} +(-0.844268 + 1.46231i) q^{3} +(-0.833962 + 1.44447i) q^{4} +(0.707762 - 1.22588i) q^{5} +0.973035i q^{6} +(1.68926 - 0.975293i) q^{7} +2.11368i q^{8} +(0.0744233 + 0.128905i) q^{9} +O(q^{10})\) \(q+(0.499056 - 0.288130i) q^{2} +(-0.844268 + 1.46231i) q^{3} +(-0.833962 + 1.44447i) q^{4} +(0.707762 - 1.22588i) q^{5} +0.973035i q^{6} +(1.68926 - 0.975293i) q^{7} +2.11368i q^{8} +(0.0744233 + 0.128905i) q^{9} -0.815710i q^{10} +4.02851i q^{11} +(-1.40818 - 2.43903i) q^{12} +(-2.31456 + 1.33631i) q^{13} +(0.562022 - 0.973451i) q^{14} +(1.19508 + 2.06994i) q^{15} +(-1.05891 - 1.83409i) q^{16} -4.81926 q^{17} +(0.0742827 + 0.0428871i) q^{18} +(-0.128339 + 0.222289i) q^{19} +(1.18049 + 2.04467i) q^{20} +3.29363i q^{21} +(1.16073 + 2.01045i) q^{22} +(4.23068 + 7.32776i) q^{23} +(-3.09086 - 1.78451i) q^{24} +(1.49815 + 2.59486i) q^{25} +(-0.770062 + 1.33379i) q^{26} -5.31694 q^{27} +3.25343i q^{28} +(4.16127 - 7.20752i) q^{29} +(1.19282 + 0.688677i) q^{30} -2.97089 q^{31} +(-4.71791 - 2.72389i) q^{32} +(-5.89095 - 3.40114i) q^{33} +(-2.40508 + 1.38857i) q^{34} -2.76110i q^{35} -0.248265 q^{36} +3.32524 q^{37} +0.147913i q^{38} -4.51281i q^{39} +(2.59111 + 1.49598i) q^{40} +8.59566 q^{41} +(0.948994 + 1.64371i) q^{42} +(5.22416 + 3.01617i) q^{43} +(-5.81904 - 3.35962i) q^{44} +0.210696 q^{45} +(4.22269 + 2.43797i) q^{46} -6.48701i q^{47} +3.57602 q^{48} +(-1.59761 + 2.76714i) q^{49} +(1.49532 + 0.863321i) q^{50} +(4.06874 - 7.04727i) q^{51} -4.45773i q^{52} -13.0872i q^{53} +(-2.65345 + 1.53197i) q^{54} +(4.93847 + 2.85122i) q^{55} +(2.06145 + 3.57054i) q^{56} +(-0.216705 - 0.375344i) q^{57} -4.79594i q^{58} +(1.29504 + 0.747694i) q^{59} -3.98661 q^{60} -5.93283i q^{61} +(-1.48264 + 0.856003i) q^{62} +(0.251440 + 0.145169i) q^{63} +1.09631 q^{64} +3.78316i q^{65} -3.91988 q^{66} +16.0507 q^{67} +(4.01908 - 6.96125i) q^{68} -14.2873 q^{69} +(-0.795556 - 1.37794i) q^{70} +(9.23197 - 5.33008i) q^{71} +(-0.272463 + 0.157307i) q^{72} +(-7.92689 + 13.7298i) q^{73} +(1.65948 - 0.958101i) q^{74} -5.05935 q^{75} +(-0.214060 - 0.370762i) q^{76} +(3.92897 + 6.80518i) q^{77} +(-1.30028 - 2.25215i) q^{78} -12.4810i q^{79} -2.99783 q^{80} +(4.26565 - 7.38833i) q^{81} +(4.28971 - 2.47667i) q^{82} +(2.47290 + 4.28318i) q^{83} +(-4.75754 - 2.74677i) q^{84} +(-3.41089 + 5.90783i) q^{85} +3.47620 q^{86} +(7.02645 + 12.1702i) q^{87} -8.51497 q^{88} +(-8.26544 - 4.77205i) q^{89} +(0.105149 - 0.0607078i) q^{90} +(-2.60659 + 4.51474i) q^{91} -14.1129 q^{92} +(2.50823 - 4.34438i) q^{93} +(-1.86910 - 3.23738i) q^{94} +(0.181667 + 0.314656i) q^{95} +(7.96636 - 4.59938i) q^{96} +(-10.9351 + 6.31338i) q^{97} +1.84127i q^{98} +(-0.519294 + 0.299815i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 58q - 3q^{2} + 27q^{4} + 2q^{5} - 29q^{9} + O(q^{10}) \) \( 58q - 3q^{2} + 27q^{4} + 2q^{5} - 29q^{9} - q^{12} - 3q^{13} - 10q^{14} + q^{15} - 29q^{16} - 10q^{17} + 15q^{18} - 9q^{19} - 3q^{22} - 17q^{23} - 48q^{24} - 29q^{25} - 4q^{26} + 18q^{27} - 2q^{29} + 9q^{30} + 32q^{31} + 9q^{32} - 12q^{33} - 63q^{34} + 24q^{36} - 16q^{37} + 54q^{40} - 10q^{41} - 15q^{42} - 45q^{43} + 18q^{44} - 2q^{45} + 27q^{46} + 6q^{48} + 35q^{49} + 6q^{50} - 14q^{51} + 27q^{54} + 24q^{55} + 11q^{56} - 29q^{57} - 18q^{59} + 116q^{60} - 9q^{62} - 21q^{63} - 132q^{64} + 130q^{66} + 58q^{67} + 42q^{69} + 40q^{70} - 24q^{71} + 72q^{72} - 6q^{73} + 30q^{74} - 58q^{75} + 37q^{76} - 4q^{77} - 33q^{78} - 40q^{80} - 81q^{81} + 21q^{82} + 12q^{83} + 18q^{84} - 11q^{85} - 126q^{86} - 42q^{87} - 50q^{88} + 3q^{89} - 12q^{90} - 28q^{91} - 120q^{92} + 31q^{93} + 29q^{94} + 60q^{95} - 120q^{96} - 15q^{97} + 39q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/349\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.499056 0.288130i 0.352886 0.203739i −0.313070 0.949730i \(-0.601357\pi\)
0.665955 + 0.745991i \(0.268024\pi\)
\(3\) −0.844268 + 1.46231i −0.487438 + 0.844268i −0.999896 0.0144447i \(-0.995402\pi\)
0.512457 + 0.858713i \(0.328735\pi\)
\(4\) −0.833962 + 1.44447i −0.416981 + 0.722233i
\(5\) 0.707762 1.22588i 0.316521 0.548230i −0.663239 0.748408i \(-0.730819\pi\)
0.979760 + 0.200178i \(0.0641520\pi\)
\(6\) 0.973035i 0.397240i
\(7\) 1.68926 0.975293i 0.638479 0.368626i −0.145549 0.989351i \(-0.546495\pi\)
0.784028 + 0.620725i \(0.213162\pi\)
\(8\) 2.11368i 0.747298i
\(9\) 0.0744233 + 0.128905i 0.0248078 + 0.0429683i
\(10\) 0.815710i 0.257950i
\(11\) 4.02851i 1.21464i 0.794457 + 0.607320i \(0.207756\pi\)
−0.794457 + 0.607320i \(0.792244\pi\)
\(12\) −1.40818 2.43903i −0.406505 0.704088i
\(13\) −2.31456 + 1.33631i −0.641942 + 0.370626i −0.785362 0.619036i \(-0.787523\pi\)
0.143420 + 0.989662i \(0.454190\pi\)
\(14\) 0.562022 0.973451i 0.150207 0.260166i
\(15\) 1.19508 + 2.06994i 0.308569 + 0.534457i
\(16\) −1.05891 1.83409i −0.264728 0.458522i
\(17\) −4.81926 −1.16884 −0.584421 0.811451i \(-0.698678\pi\)
−0.584421 + 0.811451i \(0.698678\pi\)
\(18\) 0.0742827 + 0.0428871i 0.0175086 + 0.0101086i
\(19\) −0.128339 + 0.222289i −0.0294430 + 0.0509967i −0.880371 0.474285i \(-0.842707\pi\)
0.850928 + 0.525282i \(0.176040\pi\)
\(20\) 1.18049 + 2.04467i 0.263966 + 0.457203i
\(21\) 3.29363i 0.718730i
\(22\) 1.16073 + 2.01045i 0.247469 + 0.428629i
\(23\) 4.23068 + 7.32776i 0.882158 + 1.52794i 0.848937 + 0.528495i \(0.177243\pi\)
0.0332215 + 0.999448i \(0.489423\pi\)
\(24\) −3.09086 1.78451i −0.630920 0.364262i
\(25\) 1.49815 + 2.59486i 0.299629 + 0.518973i
\(26\) −0.770062 + 1.33379i −0.151022 + 0.261577i
\(27\) −5.31694 −1.02325
\(28\) 3.25343i 0.614840i
\(29\) 4.16127 7.20752i 0.772728 1.33840i −0.163335 0.986571i \(-0.552225\pi\)
0.936063 0.351833i \(-0.114442\pi\)
\(30\) 1.19282 + 0.688677i 0.217779 + 0.125735i
\(31\) −2.97089 −0.533588 −0.266794 0.963754i \(-0.585964\pi\)
−0.266794 + 0.963754i \(0.585964\pi\)
\(32\) −4.71791 2.72389i −0.834016 0.481519i
\(33\) −5.89095 3.40114i −1.02548 0.592062i
\(34\) −2.40508 + 1.38857i −0.412467 + 0.238138i
\(35\) 2.76110i 0.466711i
\(36\) −0.248265 −0.0413775
\(37\) 3.32524 0.546666 0.273333 0.961919i \(-0.411874\pi\)
0.273333 + 0.961919i \(0.411874\pi\)
\(38\) 0.147913i 0.0239947i
\(39\) 4.51281i 0.722629i
\(40\) 2.59111 + 1.49598i 0.409691 + 0.236535i
\(41\) 8.59566 1.34242 0.671208 0.741269i \(-0.265776\pi\)
0.671208 + 0.741269i \(0.265776\pi\)
\(42\) 0.948994 + 1.64371i 0.146433 + 0.253629i
\(43\) 5.22416 + 3.01617i 0.796677 + 0.459962i 0.842308 0.538997i \(-0.181196\pi\)
−0.0456307 + 0.998958i \(0.514530\pi\)
\(44\) −5.81904 3.35962i −0.877253 0.506482i
\(45\) 0.210696 0.0314087
\(46\) 4.22269 + 2.43797i 0.622602 + 0.359459i
\(47\) 6.48701i 0.946228i −0.881001 0.473114i \(-0.843130\pi\)
0.881001 0.473114i \(-0.156870\pi\)
\(48\) 3.57602 0.516154
\(49\) −1.59761 + 2.76714i −0.228230 + 0.395305i
\(50\) 1.49532 + 0.863321i 0.211470 + 0.122092i
\(51\) 4.06874 7.04727i 0.569738 0.986816i
\(52\) 4.45773i 0.618176i
\(53\) 13.0872i 1.79767i −0.438291 0.898833i \(-0.644416\pi\)
0.438291 0.898833i \(-0.355584\pi\)
\(54\) −2.65345 + 1.53197i −0.361089 + 0.208475i
\(55\) 4.93847 + 2.85122i 0.665903 + 0.384459i
\(56\) 2.06145 + 3.57054i 0.275473 + 0.477134i
\(57\) −0.216705 0.375344i −0.0287032 0.0497155i
\(58\) 4.79594i 0.629738i
\(59\) 1.29504 + 0.747694i 0.168600 + 0.0973414i 0.581926 0.813242i \(-0.302299\pi\)
−0.413325 + 0.910583i \(0.635633\pi\)
\(60\) −3.98661 −0.514669
\(61\) 5.93283i 0.759622i −0.925064 0.379811i \(-0.875989\pi\)
0.925064 0.379811i \(-0.124011\pi\)
\(62\) −1.48264 + 0.856003i −0.188295 + 0.108712i
\(63\) 0.251440 + 0.145169i 0.0316785 + 0.0182896i
\(64\) 1.09631 0.137039
\(65\) 3.78316i 0.469243i
\(66\) −3.91988 −0.482504
\(67\) 16.0507 1.96091 0.980454 0.196748i \(-0.0630380\pi\)
0.980454 + 0.196748i \(0.0630380\pi\)
\(68\) 4.01908 6.96125i 0.487385 0.844175i
\(69\) −14.2873 −1.71999
\(70\) −0.795556 1.37794i −0.0950871 0.164696i
\(71\) 9.23197 5.33008i 1.09563 0.632564i 0.160563 0.987026i \(-0.448669\pi\)
0.935071 + 0.354461i \(0.115336\pi\)
\(72\) −0.272463 + 0.157307i −0.0321101 + 0.0185388i
\(73\) −7.92689 + 13.7298i −0.927773 + 1.60695i −0.140733 + 0.990048i \(0.544946\pi\)
−0.787040 + 0.616902i \(0.788387\pi\)
\(74\) 1.65948 0.958101i 0.192911 0.111377i
\(75\) −5.05935 −0.584203
\(76\) −0.214060 0.370762i −0.0245543 0.0425293i
\(77\) 3.92897 + 6.80518i 0.447748 + 0.775523i
\(78\) −1.30028 2.25215i −0.147227 0.255005i
\(79\) 12.4810i 1.40422i −0.712068 0.702111i \(-0.752241\pi\)
0.712068 0.702111i \(-0.247759\pi\)
\(80\) −2.99783 −0.335167
\(81\) 4.26565 7.38833i 0.473961 0.820925i
\(82\) 4.28971 2.47667i 0.473720 0.273502i
\(83\) 2.47290 + 4.28318i 0.271436 + 0.470140i 0.969230 0.246158i \(-0.0791683\pi\)
−0.697794 + 0.716298i \(0.745835\pi\)
\(84\) −4.75754 2.74677i −0.519090 0.299697i
\(85\) −3.41089 + 5.90783i −0.369963 + 0.640794i
\(86\) 3.47620 0.374848
\(87\) 7.02645 + 12.1702i 0.753314 + 1.30478i
\(88\) −8.51497 −0.907699
\(89\) −8.26544 4.77205i −0.876135 0.505837i −0.00675292 0.999977i \(-0.502150\pi\)
−0.869382 + 0.494140i \(0.835483\pi\)
\(90\) 0.105149 0.0607078i 0.0110837 0.00639916i
\(91\) −2.60659 + 4.51474i −0.273245 + 0.473273i
\(92\) −14.1129 −1.47137
\(93\) 2.50823 4.34438i 0.260091 0.450491i
\(94\) −1.86910 3.23738i −0.192783 0.333910i
\(95\) 0.181667 + 0.314656i 0.0186386 + 0.0322830i
\(96\) 7.96636 4.59938i 0.813063 0.469422i
\(97\) −10.9351 + 6.31338i −1.11029 + 0.641027i −0.938905 0.344177i \(-0.888158\pi\)
−0.171386 + 0.985204i \(0.554825\pi\)
\(98\) 1.84127i 0.185997i
\(99\) −0.519294 + 0.299815i −0.0521910 + 0.0301325i
\(100\) −4.99759 −0.499759
\(101\) 2.95413i 0.293947i −0.989140 0.146974i \(-0.953047\pi\)
0.989140 0.146974i \(-0.0469533\pi\)
\(102\) 4.68931i 0.464311i
\(103\) 1.12183i 0.110537i −0.998472 0.0552684i \(-0.982399\pi\)
0.998472 0.0552684i \(-0.0176014\pi\)
\(104\) −2.82453 4.89223i −0.276968 0.479722i
\(105\) 4.03760 + 2.33111i 0.394029 + 0.227493i
\(106\) −3.77082 6.53125i −0.366254 0.634371i
\(107\) 13.8900 8.01941i 1.34280 0.775265i 0.355582 0.934645i \(-0.384283\pi\)
0.987217 + 0.159380i \(0.0509495\pi\)
\(108\) 4.43413 7.68013i 0.426674 0.739021i
\(109\) −6.45309 + 11.1771i −0.618094 + 1.07057i 0.371739 + 0.928337i \(0.378762\pi\)
−0.989833 + 0.142233i \(0.954572\pi\)
\(110\) 3.28609 0.313317
\(111\) −2.80739 + 4.86255i −0.266466 + 0.461533i
\(112\) −3.57754 2.06550i −0.338046 0.195171i
\(113\) −12.6399 + 7.29764i −1.18906 + 0.686504i −0.958093 0.286458i \(-0.907522\pi\)
−0.230967 + 0.972962i \(0.574189\pi\)
\(114\) −0.216295 0.124878i −0.0202579 0.0116959i
\(115\) 11.9773 1.11689
\(116\) 6.94068 + 12.0216i 0.644426 + 1.11618i
\(117\) −0.344514 0.198905i −0.0318503 0.0183888i
\(118\) 0.861732 0.0793288
\(119\) −8.14096 + 4.70019i −0.746281 + 0.430865i
\(120\) −4.37519 + 2.52602i −0.399398 + 0.230593i
\(121\) −5.22887 −0.475352
\(122\) −1.70943 2.96081i −0.154764 0.268060i
\(123\) −7.25704 + 12.5696i −0.654345 + 1.13336i
\(124\) 2.47761 4.29135i 0.222496 0.385374i
\(125\) 11.3189 1.01240
\(126\) 0.167310 0.0149052
\(127\) 3.59668i 0.319153i 0.987186 + 0.159577i \(0.0510129\pi\)
−0.987186 + 0.159577i \(0.948987\pi\)
\(128\) 9.98294 5.76365i 0.882375 0.509440i
\(129\) −8.82119 + 5.09291i −0.776662 + 0.448406i
\(130\) 1.09004 + 1.88801i 0.0956029 + 0.165589i
\(131\) 1.37680i 0.120291i −0.998190 0.0601456i \(-0.980843\pi\)
0.998190 0.0601456i \(-0.0191565\pi\)
\(132\) 9.82566 5.67285i 0.855214 0.493758i
\(133\) 0.500672i 0.0434138i
\(134\) 8.01021 4.62469i 0.691976 0.399513i
\(135\) −3.76313 + 6.51793i −0.323879 + 0.560974i
\(136\) 10.1864i 0.873473i
\(137\) −2.07514 1.19808i −0.177291 0.102359i 0.408728 0.912656i \(-0.365972\pi\)
−0.586019 + 0.810297i \(0.699306\pi\)
\(138\) −7.13017 + 4.11660i −0.606960 + 0.350429i
\(139\) 2.64865 0.224655 0.112328 0.993671i \(-0.464169\pi\)
0.112328 + 0.993671i \(0.464169\pi\)
\(140\) 3.98831 + 2.30265i 0.337074 + 0.194610i
\(141\) 9.48605 + 5.47677i 0.798870 + 0.461228i
\(142\) 3.07151 5.32001i 0.257756 0.446446i
\(143\) −5.38333 9.32421i −0.450177 0.779729i
\(144\) 0.157615 0.272998i 0.0131346 0.0227498i
\(145\) −5.89037 10.2024i −0.489169 0.847265i
\(146\) 9.13590i 0.756093i
\(147\) −2.69762 4.67241i −0.222496 0.385374i
\(148\) −2.77313 + 4.80319i −0.227950 + 0.394820i
\(149\) 11.4168 6.59151i 0.935303 0.539997i 0.0468180 0.998903i \(-0.485092\pi\)
0.888485 + 0.458906i \(0.151759\pi\)
\(150\) −2.52490 + 1.45775i −0.206157 + 0.119025i
\(151\) 1.25076 2.16638i 0.101785 0.176297i −0.810635 0.585552i \(-0.800878\pi\)
0.912420 + 0.409254i \(0.134211\pi\)
\(152\) −0.469848 0.271267i −0.0381097 0.0220027i
\(153\) −0.358665 0.621226i −0.0289963 0.0502231i
\(154\) 3.92155 + 2.26411i 0.316008 + 0.182447i
\(155\) −2.10268 + 3.64195i −0.168892 + 0.292529i
\(156\) 6.51860 + 3.76352i 0.521906 + 0.301322i
\(157\) 2.02878 3.51395i 0.161914 0.280444i −0.773641 0.633624i \(-0.781567\pi\)
0.935555 + 0.353180i \(0.114900\pi\)
\(158\) −3.59615 6.22871i −0.286094 0.495530i
\(159\) 19.1376 + 11.0491i 1.51771 + 0.876252i
\(160\) −6.67831 + 3.85573i −0.527967 + 0.304822i
\(161\) 14.2934 + 8.25231i 1.12648 + 0.650373i
\(162\) 4.91625i 0.386257i
\(163\) 4.94137i 0.387038i −0.981096 0.193519i \(-0.938010\pi\)
0.981096 0.193519i \(-0.0619902\pi\)
\(164\) −7.16846 + 12.4161i −0.559763 + 0.969537i
\(165\) −8.33878 + 4.81440i −0.649173 + 0.374800i
\(166\) 2.46823 + 1.42503i 0.191571 + 0.110604i
\(167\) 11.8533i 0.917236i 0.888634 + 0.458618i \(0.151655\pi\)
−0.888634 + 0.458618i \(0.848345\pi\)
\(168\) −6.96168 −0.537105
\(169\) −2.92855 + 5.07240i −0.225273 + 0.390185i
\(170\) 3.93111i 0.301503i
\(171\) −0.0382056 −0.00292165
\(172\) −8.71351 + 5.03075i −0.664399 + 0.383591i
\(173\) 9.82778 5.67407i 0.747192 0.431392i −0.0774862 0.996993i \(-0.524689\pi\)
0.824679 + 0.565602i \(0.191356\pi\)
\(174\) 7.01318 + 4.04906i 0.531668 + 0.306958i
\(175\) 5.06151 + 2.92226i 0.382614 + 0.220902i
\(176\) 7.38864 4.26583i 0.556939 0.321549i
\(177\) −2.18673 + 1.26251i −0.164364 + 0.0948959i
\(178\) −5.49989 −0.412234
\(179\) 9.79201i 0.731889i −0.930637 0.365945i \(-0.880746\pi\)
0.930637 0.365945i \(-0.119254\pi\)
\(180\) −0.175712 + 0.304343i −0.0130968 + 0.0226844i
\(181\) 7.31572 0.543773 0.271886 0.962329i \(-0.412352\pi\)
0.271886 + 0.962329i \(0.412352\pi\)
\(182\) 3.00414i 0.222682i
\(183\) 8.67567 + 5.00890i 0.641324 + 0.370269i
\(184\) −15.4885 + 8.94230i −1.14183 + 0.659235i
\(185\) 2.35348 4.07635i 0.173031 0.299699i
\(186\) 2.89078i 0.211962i
\(187\) 19.4144i 1.41972i
\(188\) 9.37026 + 5.40992i 0.683396 + 0.394559i
\(189\) −8.98168 + 5.18557i −0.653321 + 0.377195i
\(190\) 0.181324 + 0.104687i 0.0131546 + 0.00759481i
\(191\) 5.34207 + 9.25275i 0.386539 + 0.669505i 0.991981 0.126384i \(-0.0403371\pi\)
−0.605442 + 0.795889i \(0.707004\pi\)
\(192\) −0.925581 + 1.60315i −0.0667981 + 0.115698i
\(193\) −11.4598 6.61631i −0.824894 0.476253i 0.0272073 0.999630i \(-0.491339\pi\)
−0.852101 + 0.523377i \(0.824672\pi\)
\(194\) −3.63815 + 6.30146i −0.261204 + 0.452418i
\(195\) −5.53217 3.19400i −0.396167 0.228727i
\(196\) −2.66469 4.61538i −0.190335 0.329670i
\(197\) −11.8354 6.83315i −0.843234 0.486841i 0.0151281 0.999886i \(-0.495184\pi\)
−0.858362 + 0.513044i \(0.828518\pi\)
\(198\) −0.172771 + 0.299248i −0.0122783 + 0.0212667i
\(199\) 7.35407 4.24587i 0.521316 0.300982i −0.216157 0.976359i \(-0.569352\pi\)
0.737473 + 0.675377i \(0.236019\pi\)
\(200\) −5.48471 + 3.16660i −0.387827 + 0.223912i
\(201\) −13.5511 + 23.4712i −0.955822 + 1.65553i
\(202\) −0.851174 1.47428i −0.0598884 0.103730i
\(203\) 16.2338i 1.13939i
\(204\) 6.78636 + 11.7543i 0.475140 + 0.822967i
\(205\) 6.08368 10.5372i 0.424903 0.735953i
\(206\) −0.323231 0.559853i −0.0225206 0.0390068i
\(207\) −0.629722 + 1.09071i −0.0437687 + 0.0758097i
\(208\) 4.90182 + 2.83007i 0.339880 + 0.196230i
\(209\) −0.895495 0.517014i −0.0619427 0.0357626i
\(210\) 2.68665 0.185396
\(211\) −16.0097 + 9.24319i −1.10215 + 0.636327i −0.936785 0.349905i \(-0.886214\pi\)
−0.165366 + 0.986232i \(0.552881\pi\)
\(212\) 18.9040 + 10.9142i 1.29833 + 0.749593i
\(213\) 18.0001i 1.23334i
\(214\) 4.62126 8.00426i 0.315903 0.547160i
\(215\) 7.39493 4.26946i 0.504330 0.291175i
\(216\) 11.2383i 0.764669i
\(217\) −5.01860 + 2.89749i −0.340685 + 0.196694i
\(218\) 7.43732i 0.503719i
\(219\) −13.3848 23.1832i −0.904464 1.56658i
\(220\) −8.23699 + 4.75563i −0.555338 + 0.320624i
\(221\) 11.1544 6.44002i 0.750329 0.433203i
\(222\) 3.23558i 0.217158i
\(223\) −20.7005 −1.38621 −0.693103 0.720838i \(-0.743757\pi\)
−0.693103 + 0.720838i \(0.743757\pi\)
\(224\) −10.6263 −0.710002
\(225\) −0.222994 + 0.386237i −0.0148663 + 0.0257491i
\(226\) −4.20534 + 7.28385i −0.279735 + 0.484515i
\(227\) 10.7133 + 18.5559i 0.711063 + 1.23160i 0.964458 + 0.264235i \(0.0851195\pi\)
−0.253395 + 0.967363i \(0.581547\pi\)
\(228\) 0.722894 0.0478749
\(229\) −1.48595 + 0.857915i −0.0981945 + 0.0566926i −0.548293 0.836286i \(-0.684722\pi\)
0.450099 + 0.892979i \(0.351389\pi\)
\(230\) 5.97732 3.45101i 0.394133 0.227553i
\(231\) −13.2684 −0.872999
\(232\) 15.2344 + 8.79558i 1.00019 + 0.577458i
\(233\) −4.87292 8.44015i −0.319236 0.552932i 0.661093 0.750304i \(-0.270093\pi\)
−0.980329 + 0.197372i \(0.936759\pi\)
\(234\) −0.229242 −0.0149860
\(235\) −7.95229 4.59126i −0.518750 0.299501i
\(236\) −2.16003 + 1.24710i −0.140606 + 0.0811791i
\(237\) 18.2511 + 10.5373i 1.18554 + 0.684472i
\(238\) −2.70853 + 4.69131i −0.175568 + 0.304092i
\(239\) 11.6262 0.752033 0.376017 0.926613i \(-0.377294\pi\)
0.376017 + 0.926613i \(0.377294\pi\)
\(240\) 2.53097 4.38377i 0.163373 0.282971i
\(241\) 6.62998 11.4835i 0.427075 0.739715i −0.569537 0.821966i \(-0.692878\pi\)
0.996612 + 0.0822508i \(0.0262109\pi\)
\(242\) −2.60950 + 1.50660i −0.167745 + 0.0968476i
\(243\) −0.772703 1.33836i −0.0495689 0.0858559i
\(244\) 8.56977 + 4.94776i 0.548623 + 0.316748i
\(245\) 2.26145 + 3.91695i 0.144479 + 0.250245i
\(246\) 8.36388i 0.533262i
\(247\) 0.686002i 0.0436493i
\(248\) 6.27951i 0.398749i
\(249\) −8.35115 −0.529232
\(250\) 5.64878 3.26133i 0.357260 0.206264i
\(251\) 13.3054i 0.839827i 0.907564 + 0.419913i \(0.137940\pi\)
−0.907564 + 0.419913i \(0.862060\pi\)
\(252\) −0.419383 + 0.242131i −0.0264186 + 0.0152528i
\(253\) −29.5199 + 17.0433i −1.85590 + 1.07151i
\(254\) 1.03631 + 1.79494i 0.0650239 + 0.112625i
\(255\) −5.75941 9.97558i −0.360668 0.624695i
\(256\) 2.22505 3.85390i 0.139066 0.240869i
\(257\) −20.3861 −1.27165 −0.635824 0.771834i \(-0.719340\pi\)
−0.635824 + 0.771834i \(0.719340\pi\)
\(258\) −2.93484 + 5.08329i −0.182715 + 0.316472i
\(259\) 5.61719 3.24308i 0.349035 0.201515i
\(260\) −5.46464 3.15501i −0.338902 0.195665i
\(261\) 1.23878 0.0766786
\(262\) −0.396696 0.687098i −0.0245080 0.0424491i
\(263\) −2.81765 −0.173744 −0.0868718 0.996220i \(-0.527687\pi\)
−0.0868718 + 0.996220i \(0.527687\pi\)
\(264\) 7.18891 12.4516i 0.442447 0.766341i
\(265\) −16.0433 9.26263i −0.985535 0.568999i
\(266\) 0.144259 + 0.249863i 0.00884506 + 0.0153201i
\(267\) 13.9565 8.05779i 0.854124 0.493128i
\(268\) −13.3857 + 23.1847i −0.817662 + 1.41623i
\(269\) 27.4597 1.67425 0.837123 0.547014i \(-0.184236\pi\)
0.837123 + 0.547014i \(0.184236\pi\)
\(270\) 4.33708i 0.263946i
\(271\) 1.89034 + 3.27416i 0.114830 + 0.198891i 0.917712 0.397247i \(-0.130034\pi\)
−0.802882 + 0.596138i \(0.796701\pi\)
\(272\) 5.10316 + 8.83894i 0.309425 + 0.535939i
\(273\) −4.40132 7.62330i −0.266380 0.461383i
\(274\) −1.38081 −0.0834180
\(275\) −10.4534 + 6.03529i −0.630366 + 0.363942i
\(276\) 11.9151 20.6375i 0.717204 1.24223i
\(277\) −14.3536 + 8.28705i −0.862423 + 0.497920i −0.864823 0.502077i \(-0.832570\pi\)
0.00239964 + 0.999997i \(0.499236\pi\)
\(278\) 1.32182 0.763154i 0.0792776 0.0457709i
\(279\) −0.221103 0.382962i −0.0132371 0.0229274i
\(280\) 5.83608 0.348772
\(281\) 12.5280 21.6990i 0.747355 1.29446i −0.201732 0.979441i \(-0.564657\pi\)
0.949086 0.315016i \(-0.102010\pi\)
\(282\) 6.31209 0.375879
\(283\) 12.3301 0.732947 0.366473 0.930428i \(-0.380565\pi\)
0.366473 + 0.930428i \(0.380565\pi\)
\(284\) 17.7803i 1.05507i
\(285\) −0.613502 −0.0363407
\(286\) −5.37317 3.10220i −0.317722 0.183437i
\(287\) 14.5203 8.38329i 0.857105 0.494850i
\(288\) 0.810882i 0.0477817i
\(289\) 6.22524 0.366191
\(290\) −5.87925 3.39438i −0.345241 0.199325i
\(291\) 21.3207i 1.24984i
\(292\) −13.2215 22.9002i −0.773728 1.34014i
\(293\) −12.9886 22.4970i −0.758803 1.31429i −0.943461 0.331483i \(-0.892451\pi\)
0.184658 0.982803i \(-0.440882\pi\)
\(294\) −2.69252 1.55453i −0.157031 0.0906620i
\(295\) 1.83316 1.05838i 0.106731 0.0616212i
\(296\) 7.02849i 0.408523i
\(297\) 21.4193i 1.24288i
\(298\) 3.79842 6.57906i 0.220037 0.381115i
\(299\) −19.5843 11.3070i −1.13259 0.653901i
\(300\) 4.21930 7.30805i 0.243602 0.421930i
\(301\) 11.7666 0.678216
\(302\) 1.44153i 0.0829505i
\(303\) 4.31987 + 2.49408i 0.248170 + 0.143281i
\(304\) 0.543598 0.0311775
\(305\) −7.27294 4.19903i −0.416447 0.240436i
\(306\) −0.357988 0.206684i −0.0204648 0.0118153i
\(307\) 12.6705 + 21.9459i 0.723142 + 1.25252i 0.959734 + 0.280910i \(0.0906362\pi\)
−0.236592 + 0.971609i \(0.576030\pi\)
\(308\) −13.1065 −0.746810
\(309\) 1.64046 + 0.947121i 0.0933226 + 0.0538798i
\(310\) 2.42338i 0.137639i
\(311\) 9.19891i 0.521622i −0.965390 0.260811i \(-0.916010\pi\)
0.965390 0.260811i \(-0.0839900\pi\)
\(312\) 9.53863 0.540019
\(313\) −4.53967 −0.256597 −0.128299 0.991736i \(-0.540952\pi\)
−0.128299 + 0.991736i \(0.540952\pi\)
\(314\) 2.33821i 0.131953i
\(315\) 0.355919 0.205490i 0.0200538 0.0115781i
\(316\) 18.0284 + 10.4087i 1.01417 + 0.585534i
\(317\) −15.6334 9.02593i −0.878057 0.506947i −0.00803990 0.999968i \(-0.502559\pi\)
−0.870017 + 0.493021i \(0.835893\pi\)
\(318\) 12.7343 0.714105
\(319\) 29.0356 + 16.7637i 1.62568 + 0.938587i
\(320\) 0.775928 1.34395i 0.0433757 0.0751289i
\(321\) 27.0821i 1.51158i
\(322\) 9.51095 0.530024
\(323\) 0.618498 1.07127i 0.0344141 0.0596071i
\(324\) 7.11479 + 12.3232i 0.395266 + 0.684621i
\(325\) −6.93509 4.00397i −0.384689 0.222101i
\(326\) −1.42376 2.46602i −0.0788546 0.136580i
\(327\) −10.8963 18.8729i −0.602566 1.04367i
\(328\) 18.1685i 1.00319i
\(329\) −6.32673 10.9582i −0.348804 0.604146i
\(330\) −2.77434 + 4.80530i −0.152723 + 0.264523i
\(331\) 8.32482 + 4.80634i 0.457574 + 0.264180i 0.711023 0.703168i \(-0.248232\pi\)
−0.253450 + 0.967349i \(0.581565\pi\)
\(332\) −8.24921 −0.452734
\(333\) 0.247475 + 0.428640i 0.0135616 + 0.0234893i
\(334\) 3.41529 + 5.91545i 0.186876 + 0.323679i
\(335\) 11.3601 19.6763i 0.620668 1.07503i
\(336\) 6.04081 3.48766i 0.329553 0.190268i
\(337\) 5.84682 + 10.1270i 0.318497 + 0.551652i 0.980175 0.198136i \(-0.0634888\pi\)
−0.661678 + 0.749788i \(0.730155\pi\)
\(338\) 3.37521i 0.183587i
\(339\) 24.6446i 1.33851i
\(340\) −5.68910 9.85382i −0.308535 0.534398i
\(341\) 11.9683i 0.648117i
\(342\) −0.0190667 + 0.0110082i −0.00103101 + 0.000595254i
\(343\) 19.8866i 1.07378i
\(344\) −6.37521 + 11.0422i −0.343729 + 0.595355i
\(345\) −10.1120 + 17.5145i −0.544413 + 0.942951i
\(346\) 3.26974 5.66336i 0.175782 0.304464i
\(347\) −9.41790 + 5.43743i −0.505579 + 0.291896i −0.731015 0.682362i \(-0.760953\pi\)
0.225435 + 0.974258i \(0.427620\pi\)
\(348\) −23.4392 −1.25647
\(349\) −17.8224 5.60021i −0.954011 0.299772i
\(350\) 3.36796 0.180025
\(351\) 12.3064 7.10508i 0.656865 0.379241i
\(352\) 10.9732 19.0061i 0.584873 1.01303i
\(353\) 4.82782 8.36204i 0.256959 0.445066i −0.708467 0.705744i \(-0.750613\pi\)
0.965426 + 0.260678i \(0.0839461\pi\)
\(354\) −0.727532 + 1.26012i −0.0386679 + 0.0669748i
\(355\) 15.0897i 0.800879i
\(356\) 13.7861 7.95943i 0.730664 0.421849i
\(357\) 15.8729i 0.840081i
\(358\) −2.82137 4.88676i −0.149114 0.258273i
\(359\) 9.93353i 0.524272i −0.965031 0.262136i \(-0.915573\pi\)
0.965031 0.262136i \(-0.0844268\pi\)
\(360\) 0.445343i 0.0234716i
\(361\) 9.46706 + 16.3974i 0.498266 + 0.863022i
\(362\) 3.65095 2.10788i 0.191890 0.110788i
\(363\) 4.41457 7.64626i 0.231705 0.401325i
\(364\) −4.34759 7.53025i −0.227876 0.394692i
\(365\) 11.2207 + 19.4348i 0.587319 + 1.01727i
\(366\) 5.77286 0.301752
\(367\) −31.9069 18.4215i −1.66553 0.961593i −0.970004 0.243090i \(-0.921839\pi\)
−0.695524 0.718503i \(-0.744828\pi\)
\(368\) 8.95983 15.5189i 0.467063 0.808978i
\(369\) 0.639717 + 1.10802i 0.0333024 + 0.0576814i
\(370\) 2.71243i 0.141013i
\(371\) −12.7639 22.1077i −0.662667 1.14777i
\(372\) 4.18354 + 7.24610i 0.216906 + 0.375693i
\(373\) 15.2388 + 8.79812i 0.789035 + 0.455549i 0.839623 0.543170i \(-0.182776\pi\)
−0.0505880 + 0.998720i \(0.516110\pi\)
\(374\) −5.59387 9.68887i −0.289252 0.501000i
\(375\) −9.55622 + 16.5519i −0.493481 + 0.854734i
\(376\) 13.7114 0.707114
\(377\) 22.2430i 1.14557i
\(378\) −2.98824 + 5.17578i −0.153698 + 0.266213i
\(379\) −5.62025 3.24485i −0.288693 0.166677i 0.348659 0.937250i \(-0.386637\pi\)
−0.637352 + 0.770573i \(0.719970\pi\)
\(380\) −0.606013 −0.0310878
\(381\) −5.25947 3.03656i −0.269451 0.155568i
\(382\) 5.33199 + 3.07842i 0.272808 + 0.157506i
\(383\) −26.3436 + 15.2095i −1.34609 + 0.777168i −0.987694 0.156400i \(-0.950011\pi\)
−0.358401 + 0.933568i \(0.616678\pi\)
\(384\) 19.4643i 0.993282i
\(385\) 11.1231 0.566886
\(386\) −7.62543 −0.388124
\(387\) 0.897893i 0.0456425i
\(388\) 21.0605i 1.06918i
\(389\) 7.38536 + 4.26394i 0.374453 + 0.216190i 0.675402 0.737450i \(-0.263970\pi\)
−0.300949 + 0.953640i \(0.597303\pi\)
\(390\) −3.68115 −0.186402
\(391\) −20.3887 35.3143i −1.03110 1.78592i
\(392\) −5.84884 3.37683i −0.295411 0.170556i
\(393\) 2.01331 + 1.16238i 0.101558 + 0.0586346i
\(394\) −7.87533 −0.396754
\(395\) −15.3002 8.83357i −0.769837 0.444465i
\(396\) 1.00014i 0.0502588i
\(397\) −3.60957 −0.181159 −0.0905796 0.995889i \(-0.528872\pi\)
−0.0905796 + 0.995889i \(0.528872\pi\)
\(398\) 2.44673 4.23785i 0.122643 0.212424i
\(399\) −0.732140 0.422701i −0.0366528 0.0211615i
\(400\) 3.17281 5.49546i 0.158640 0.274773i
\(401\) 18.3471i 0.916209i 0.888898 + 0.458104i \(0.151471\pi\)
−0.888898 + 0.458104i \(0.848529\pi\)
\(402\) 15.6179i 0.778951i
\(403\) 6.87629 3.97003i 0.342533 0.197761i
\(404\) 4.26714 + 2.46364i 0.212298 + 0.122570i
\(405\) −6.03813 10.4584i −0.300037 0.519680i
\(406\) −4.67745 8.10158i −0.232138 0.402074i
\(407\) 13.3958i 0.664003i
\(408\) 14.8957 + 8.60001i 0.737445 + 0.425764i
\(409\) 10.2445 0.506558 0.253279 0.967393i \(-0.418491\pi\)
0.253279 + 0.967393i \(0.418491\pi\)
\(410\) 7.01156i 0.346276i
\(411\) 3.50395 2.02301i 0.172837 0.0997875i
\(412\) 1.62044 + 0.935560i 0.0798332 + 0.0460917i
\(413\) 2.91688 0.143530
\(414\) 0.725767i 0.0356695i
\(415\) 7.00089 0.343660
\(416\) 14.5598 0.713854
\(417\) −2.23617 + 3.87315i −0.109506 + 0.189669i
\(418\) −0.595869 −0.0291449
\(419\) −4.46258 7.72942i −0.218012 0.377607i 0.736188 0.676777i \(-0.236624\pi\)
−0.954200 + 0.299170i \(0.903290\pi\)
\(420\) −6.73441 + 3.88811i −0.328606 + 0.189721i
\(421\) 16.0408 9.26119i 0.781783 0.451363i −0.0552788 0.998471i \(-0.517605\pi\)
0.837062 + 0.547108i \(0.184271\pi\)
\(422\) −5.32648 + 9.22573i −0.259289 + 0.449102i
\(423\) 0.836207 0.482785i 0.0406578 0.0234738i
\(424\) 27.6621 1.34339
\(425\) −7.21995 12.5053i −0.350219 0.606597i
\(426\) 5.18636 + 8.98304i 0.251280 + 0.435229i
\(427\) −5.78625 10.0221i −0.280016 0.485002i
\(428\) 26.7515i 1.29308i
\(429\) 18.1799 0.877734
\(430\) 2.46032 4.26140i 0.118647 0.205503i
\(431\) 17.0111 9.82134i 0.819394 0.473077i −0.0308137 0.999525i \(-0.509810\pi\)
0.850207 + 0.526448i \(0.176477\pi\)
\(432\) 5.63017 + 9.75173i 0.270881 + 0.469180i
\(433\) 30.2573 + 17.4691i 1.45407 + 0.839509i 0.998709 0.0507960i \(-0.0161758\pi\)
0.455364 + 0.890305i \(0.349509\pi\)
\(434\) −1.66971 + 2.89202i −0.0801485 + 0.138821i
\(435\) 19.8922 0.953758
\(436\) −10.7633 18.6425i −0.515467 0.892816i
\(437\) −2.17184 −0.103893
\(438\) −13.3596 7.71315i −0.638345 0.368549i
\(439\) 6.36277 3.67355i 0.303679 0.175329i −0.340416 0.940275i \(-0.610568\pi\)
0.644094 + 0.764946i \(0.277234\pi\)
\(440\) −6.02657 + 10.4383i −0.287305 + 0.497628i
\(441\) −0.475597 −0.0226475
\(442\) 3.71113 6.42786i 0.176520 0.305742i
\(443\) 9.44486 + 16.3590i 0.448739 + 0.777239i 0.998304 0.0582122i \(-0.0185400\pi\)
−0.549565 + 0.835451i \(0.685207\pi\)
\(444\) −4.68252 8.11037i −0.222223 0.384901i
\(445\) −11.6999 + 6.75496i −0.554630 + 0.320216i
\(446\) −10.3307 + 5.96443i −0.489172 + 0.282424i
\(447\) 22.2600i 1.05286i
\(448\) 1.85195 1.06923i 0.0874965 0.0505161i
\(449\) −9.26949 −0.437454 −0.218727 0.975786i \(-0.570190\pi\)
−0.218727 + 0.975786i \(0.570190\pi\)
\(450\) 0.257005i 0.0121153i
\(451\) 34.6277i 1.63055i
\(452\) 24.3438i 1.14504i
\(453\) 2.11195 + 3.65801i 0.0992282 + 0.171868i
\(454\) 10.6930 + 6.17362i 0.501848 + 0.289742i
\(455\) 3.68969 + 6.39072i 0.172975 + 0.299602i
\(456\) 0.793355 0.458044i 0.0371523 0.0214499i
\(457\) −0.445695 + 0.771966i −0.0208487 + 0.0361111i −0.876262 0.481836i \(-0.839970\pi\)
0.855413 + 0.517947i \(0.173304\pi\)
\(458\) −0.494382 + 0.856295i −0.0231010 + 0.0400120i
\(459\) 25.6237 1.19601
\(460\) −9.98859 + 17.3007i −0.465720 + 0.806651i
\(461\) −22.3995 12.9323i −1.04325 0.602319i −0.122496 0.992469i \(-0.539090\pi\)
−0.920751 + 0.390150i \(0.872423\pi\)
\(462\) −6.62169 + 3.82303i −0.308069 + 0.177864i
\(463\) −21.7375 12.5501i −1.01023 0.583254i −0.0989675 0.995091i \(-0.531554\pi\)
−0.911258 + 0.411837i \(0.864887\pi\)
\(464\) −17.6256 −0.818250
\(465\) −3.55046 6.14957i −0.164648 0.285180i
\(466\) −4.86372 2.80807i −0.225307 0.130081i
\(467\) 0.452095 0.0209204 0.0104602 0.999945i \(-0.496670\pi\)
0.0104602 + 0.999945i \(0.496670\pi\)
\(468\) 0.574623 0.331759i 0.0265620 0.0153356i
\(469\) 27.1138 15.6542i 1.25200 0.722842i
\(470\) −5.29152 −0.244079
\(471\) 3.42567 + 5.93343i 0.157847 + 0.273398i
\(472\) −1.58038 + 2.73730i −0.0727430 + 0.125995i
\(473\) −12.1507 + 21.0456i −0.558688 + 0.967677i
\(474\) 12.1445 0.557813
\(475\) −0.769081 −0.0352879
\(476\) 15.6791i 0.718651i
\(477\) 1.68701 0.973993i 0.0772427 0.0445961i
\(478\) 5.80210 3.34984i 0.265382 0.153218i
\(479\) 2.09749 + 3.63296i 0.0958368 + 0.165994i 0.909958 0.414701i \(-0.136114\pi\)
−0.814121 + 0.580696i \(0.802781\pi\)
\(480\) 13.0211i 0.594327i
\(481\) −7.69646 + 4.44355i −0.350928 + 0.202609i
\(482\) 7.64118i 0.348046i
\(483\) −24.1349 + 13.9343i −1.09818 + 0.634033i
\(484\) 4.36068 7.55293i 0.198213 0.343315i
\(485\) 17.8735i 0.811593i
\(486\) −0.771244 0.445278i −0.0349843 0.0201982i
\(487\) −26.2925 + 15.1800i −1.19143 + 0.687872i −0.958631 0.284653i \(-0.908122\pi\)
−0.232798 + 0.972525i \(0.574788\pi\)
\(488\) 12.5401 0.567664
\(489\) 7.22585 + 4.17184i 0.326764 + 0.188657i
\(490\) 2.25718 + 1.30318i 0.101969 + 0.0588718i
\(491\) −0.349992 + 0.606203i −0.0157949 + 0.0273576i −0.873815 0.486259i \(-0.838361\pi\)
0.858020 + 0.513616i \(0.171695\pi\)
\(492\) −12.1042 20.9651i −0.545699 0.945179i
\(493\) −20.0542 + 34.7349i −0.903196 + 1.56438i
\(494\) −0.197658 0.342353i −0.00889304 0.0154032i
\(495\) 0.848790i 0.0381503i
\(496\) 3.14591 + 5.44887i 0.141255 + 0.244662i
\(497\) 10.3968 18.0078i 0.466359 0.807758i
\(498\) −4.16769 + 2.40622i −0.186759 + 0.107825i
\(499\) −34.1555 + 19.7197i −1.52901 + 0.882774i −0.529605 + 0.848244i \(0.677660\pi\)
−0.999404 + 0.0345293i \(0.989007\pi\)
\(500\) −9.43957 + 16.3498i −0.422150 + 0.731186i
\(501\) −17.3333 10.0074i −0.774393 0.447096i
\(502\) 3.83367 + 6.64012i 0.171105 + 0.296363i
\(503\) 17.5955 + 10.1587i 0.784542 + 0.452956i 0.838038 0.545612i \(-0.183703\pi\)
−0.0534953 + 0.998568i \(0.517036\pi\)
\(504\) −0.306840 + 0.531463i −0.0136678 + 0.0236733i
\(505\) −3.62141 2.09082i −0.161151 0.0930404i
\(506\) −9.82139 + 17.0111i −0.436614 + 0.756238i
\(507\) −4.94497 8.56493i −0.219614 0.380382i
\(508\) −5.19527 2.99949i −0.230503 0.133081i
\(509\) −15.9740 + 9.22261i −0.708037 + 0.408785i −0.810334 0.585969i \(-0.800714\pi\)
0.102297 + 0.994754i \(0.467381\pi\)
\(510\) −5.74853 3.31891i −0.254549 0.146964i
\(511\) 30.9242i 1.36800i
\(512\) 20.4902i 0.905547i
\(513\) 0.682370 1.18190i 0.0301274 0.0521821i
\(514\) −10.1738 + 5.87384i −0.448747 + 0.259084i
\(515\) −1.37522 0.793985i −0.0605996 0.0349872i
\(516\) 16.9892i 0.747907i
\(517\) 26.1330 1.14933
\(518\) 1.86886 3.23696i 0.0821129 0.142224i
\(519\) 19.1617i 0.841107i
\(520\) −7.99637 −0.350664
\(521\) −12.6823 + 7.32212i −0.555621 + 0.320788i −0.751386 0.659863i \(-0.770614\pi\)
0.195765 + 0.980651i \(0.437281\pi\)
\(522\) 0.618220 0.356930i 0.0270588 0.0156224i
\(523\) −24.9662 14.4143i −1.09170 0.630292i −0.157669 0.987492i \(-0.550398\pi\)
−0.934028 + 0.357200i \(0.883731\pi\)
\(524\) 1.98873 + 1.14820i 0.0868783 + 0.0501592i
\(525\) −8.54654 + 4.93434i −0.373001 + 0.215352i
\(526\) −1.40616 + 0.811848i −0.0613116 + 0.0353983i
\(527\) 14.3175 0.623680
\(528\) 14.4060i 0.626941i
\(529\) −24.2973 + 42.0842i −1.05641 + 1.82975i
\(530\) −10.6754 −0.463708
\(531\) 0.222583i 0.00965929i
\(532\) −0.723203 0.417541i −0.0313548 0.0181027i
\(533\) −19.8951 + 11.4865i −0.861754 + 0.497534i
\(534\) 4.64338 8.04257i 0.200939 0.348036i
\(535\) 22.7033i 0.981550i
\(536\) 33.9261i 1.46538i
\(537\) 14.3190 + 8.26708i 0.617911 + 0.356751i
\(538\) 13.7039 7.91196i 0.590818 0.341109i
\(539\) −11.1474 6.43598i −0.480154 0.277217i
\(540\) −6.27661 10.8714i −0.270102 0.467831i
\(541\) 11.2969 19.5668i 0.485692 0.841243i −0.514173 0.857687i \(-0.671901\pi\)
0.999865 + 0.0164433i \(0.00523431\pi\)
\(542\) 1.88677 + 1.08933i 0.0810436 + 0.0467905i
\(543\) −6.17642 + 10.6979i −0.265056 + 0.459090i
\(544\) 22.7368 + 13.1271i 0.974833 + 0.562820i
\(545\) 9.13451 + 15.8214i 0.391279 + 0.677716i
\(546\) −4.39300 2.53630i −0.188003 0.108544i
\(547\) 5.38583 9.32852i 0.230281 0.398859i −0.727610 0.685991i \(-0.759369\pi\)
0.957891 + 0.287133i \(0.0927020\pi\)
\(548\) 3.46118 1.99831i 0.147854 0.0853637i
\(549\) 0.764771 0.441541i 0.0326396 0.0188445i
\(550\) −3.47790 + 6.02389i −0.148298 + 0.256860i
\(551\) 1.06810 + 1.85001i 0.0455028 + 0.0788131i
\(552\) 30.1988i 1.28535i
\(553\) −12.1726 21.0836i −0.517633 0.896566i
\(554\) −4.77549 + 8.27140i −0.202891 + 0.351418i
\(555\) 3.97393 + 6.88306i 0.168684 + 0.292169i
\(556\) −2.20887 + 3.82588i −0.0936770 + 0.162253i
\(557\) −2.58753 1.49391i −0.109637 0.0632991i 0.444179 0.895938i \(-0.353496\pi\)
−0.553816 + 0.832639i \(0.686829\pi\)
\(558\) −0.220686 0.127413i −0.00934238 0.00539382i
\(559\) −16.1222 −0.681895
\(560\) −5.06410 + 2.92376i −0.213997 + 0.123551i
\(561\) 28.3900 + 16.3910i 1.19863 + 0.692027i
\(562\) 14.4387i 0.609060i
\(563\) −1.79031 + 3.10092i −0.0754528 + 0.130688i −0.901283 0.433231i \(-0.857374\pi\)
0.825830 + 0.563919i \(0.190707\pi\)
\(564\) −15.8220 + 9.13485i −0.666227 + 0.384646i
\(565\) 20.6600i 0.869171i
\(566\) 6.15339 3.55266i 0.258646 0.149330i
\(567\) 16.6410i 0.698858i
\(568\) 11.2661 + 19.5134i 0.472714 + 0.818765i
\(569\) 24.8794 14.3641i 1.04300 0.602176i 0.122318 0.992491i \(-0.460967\pi\)
0.920682 + 0.390315i \(0.127634\pi\)
\(570\) −0.306171 + 0.176768i −0.0128241 + 0.00740400i
\(571\) 1.61544i 0.0676039i −0.999429 0.0338019i \(-0.989238\pi\)
0.999429 0.0338019i \(-0.0107615\pi\)
\(572\) 17.9580 0.750861
\(573\) −18.0406 −0.753656
\(574\) 4.83095 8.36746i 0.201640 0.349251i
\(575\) −12.6764 + 21.9561i −0.528641 + 0.915632i
\(576\) 0.0815911 + 0.141320i 0.00339963 + 0.00588833i
\(577\) 15.8924 0.661607 0.330804 0.943700i \(-0.392680\pi\)
0.330804 + 0.943700i \(0.392680\pi\)
\(578\) 3.10674 1.79368i 0.129224 0.0746072i
\(579\) 19.3503 11.1719i 0.804170 0.464288i
\(580\) 19.6494 0.815897
\(581\) 8.35471 + 4.82360i 0.346612 + 0.200116i
\(582\) −6.14314 10.6402i −0.254642 0.441052i
\(583\) 52.7219 2.18352
\(584\) −29.0203 16.7549i −1.20087 0.693323i
\(585\) −0.487667 + 0.281555i −0.0201626 + 0.0116409i
\(586\) −12.9641 7.48482i −0.535542 0.309195i
\(587\) 15.6168 27.0492i 0.644576 1.11644i −0.339823 0.940489i \(-0.610367\pi\)
0.984399 0.175949i \(-0.0562994\pi\)
\(588\) 8.99885 0.371106
\(589\) 0.381281 0.660398i 0.0157104 0.0272112i
\(590\) 0.609901 1.05638i 0.0251092 0.0434904i
\(591\) 19.9844 11.5380i 0.822049 0.474610i
\(592\) −3.52113 6.09878i −0.144718 0.250658i
\(593\) 18.0022 + 10.3935i 0.739260 + 0.426812i 0.821800 0.569776i \(-0.192970\pi\)
−0.0825404 + 0.996588i \(0.526303\pi\)
\(594\) −6.17155 10.6894i −0.253222 0.438593i
\(595\) 13.3065i 0.545512i
\(596\) 21.9883i 0.900675i
\(597\) 14.3386i 0.586841i
\(598\) −13.0315 −0.532899
\(599\) 16.3589 9.44480i 0.668405 0.385904i −0.127067 0.991894i \(-0.540556\pi\)
0.795472 + 0.605990i \(0.207223\pi\)
\(600\) 10.6938i 0.436574i
\(601\) 37.9558 21.9138i 1.54825 0.893883i 0.549976 0.835181i \(-0.314637\pi\)
0.998276 0.0587026i \(-0.0186964\pi\)
\(602\) 5.87219 3.39031i 0.239333 0.138179i
\(603\) 1.19455 + 2.06902i 0.0486457 + 0.0842569i
\(604\) 2.08617 + 3.61336i 0.0848852 + 0.147025i
\(605\) −3.70080 + 6.40997i −0.150459 + 0.260602i
\(606\) 2.87448 0.116768
\(607\) −15.3200 + 26.5350i −0.621819 + 1.07702i 0.367327 + 0.930092i \(0.380273\pi\)
−0.989147 + 0.146931i \(0.953060\pi\)
\(608\) 1.21098 0.699161i 0.0491118 0.0283547i
\(609\) 23.7389 + 13.7057i 0.961951 + 0.555383i
\(610\) −4.83947 −0.195944
\(611\) 8.66865 + 15.0145i 0.350696 + 0.607424i
\(612\) 1.19645 0.0483637
\(613\) 7.22720 12.5179i 0.291904 0.505592i −0.682356 0.731020i \(-0.739045\pi\)
0.974260 + 0.225428i \(0.0723780\pi\)
\(614\) 12.6465 + 7.30148i 0.510373 + 0.294664i
\(615\) 10.2725 + 17.7925i 0.414228 + 0.717464i
\(616\) −14.3840 + 8.30459i −0.579546 + 0.334601i
\(617\) 14.1661 24.5363i 0.570304 0.987796i −0.426230 0.904615i \(-0.640159\pi\)
0.996534 0.0831811i \(-0.0265080\pi\)
\(618\) 1.09158 0.0439096
\(619\) 28.5378i 1.14703i −0.819195 0.573515i \(-0.805579\pi\)
0.819195 0.573515i \(-0.194421\pi\)
\(620\) −3.50712 6.07451i −0.140849 0.243958i
\(621\) −22.4943 38.9612i −0.902664 1.56346i
\(622\) −2.65048 4.59077i −0.106275 0.184073i
\(623\) −18.6166 −0.745858
\(624\) −8.27690 + 4.77867i −0.331341 + 0.191300i
\(625\) 0.520387 0.901337i 0.0208155 0.0360535i
\(626\) −2.26555 + 1.30802i −0.0905496 + 0.0522788i
\(627\) 1.51207 0.872997i 0.0603865 0.0348641i
\(628\) 3.38385 + 5.86101i 0.135030 + 0.233880i
\(629\) −16.0252 −0.638966
\(630\) 0.118416 0.205102i 0.00471780 0.00817146i
\(631\) 5.72773 0.228017 0.114009 0.993480i \(-0.463631\pi\)
0.114009 + 0.993480i \(0.463631\pi\)
\(632\) 26.3808 1.04937
\(633\) 31.2149i 1.24068i
\(634\) −10.4026 −0.413138
\(635\) 4.40909 + 2.54559i 0.174970 + 0.101019i
\(636\) −31.9201 + 18.4291i −1.26571 + 0.730761i
\(637\) 8.53960i 0.338351i
\(638\) 19.3205 0.764905
\(639\) 1.37415 + 0.793364i 0.0543604 + 0.0313850i
\(640\) 16.3172i 0.644993i
\(641\) −11.0363 19.1154i −0.435906 0.755012i 0.561463 0.827502i \(-0.310239\pi\)
−0.997369 + 0.0724900i \(0.976905\pi\)
\(642\) 7.80317 + 13.5155i 0.307966 + 0.533413i
\(643\) 9.76633 + 5.63859i 0.385147 + 0.222364i 0.680055 0.733161i \(-0.261956\pi\)
−0.294909 + 0.955525i \(0.595289\pi\)
\(644\) −23.8403 + 13.7642i −0.939441 + 0.542386i
\(645\) 14.4183i 0.567719i
\(646\) 0.712831i 0.0280460i
\(647\) −5.67436 + 9.82828i −0.223082 + 0.386390i −0.955742 0.294205i \(-0.904945\pi\)
0.732660 + 0.680595i \(0.238279\pi\)
\(648\) 15.6165 + 9.01621i 0.613476 + 0.354190i
\(649\) −3.01209 + 5.21709i −0.118235 + 0.204789i
\(650\) −4.61466 −0.181002
\(651\) 9.78503i 0.383505i
\(652\) 7.13764 + 4.12092i 0.279532 + 0.161388i
\(653\) −30.4809 −1.19281 −0.596405 0.802684i \(-0.703405\pi\)
−0.596405 + 0.802684i \(0.703405\pi\)
\(654\) −10.8757 6.27909i −0.425274 0.245532i
\(655\) −1.68779 0.974444i −0.0659473 0.0380747i
\(656\) −9.10204 15.7652i −0.355375 0.615528i
\(657\) −2.35978 −0.0920639
\(658\) −6.31478 3.64584i −0.246176 0.142130i
\(659\) 7.44776i 0.290124i 0.989423 + 0.145062i \(0.0463381\pi\)
−0.989423 + 0.145062i \(0.953662\pi\)
\(660\) 16.0601i 0.625138i
\(661\) 27.7912 1.08095 0.540476 0.841359i \(-0.318244\pi\)
0.540476 + 0.841359i \(0.318244\pi\)
\(662\) 5.53940 0.215295
\(663\) 21.7484i 0.844638i
\(664\) −9.05326 + 5.22690i −0.351335 + 0.202843i
\(665\) 0.613763 + 0.354356i 0.0238007 + 0.0137414i
\(666\) 0.247008 + 0.142610i 0.00957136 + 0.00552603i
\(667\) 70.4200 2.72667
\(668\) −17.1217 9.88520i −0.662457 0.382470i
\(669\) 17.4767 30.2706i 0.675690 1.17033i
\(670\) 13.0927i 0.505816i
\(671\) 23.9005 0.922667
\(672\) 8.97148 15.5391i 0.346082 0.599432i
\(673\) −19.9410 34.5389i −0.768671 1.33138i −0.938284 0.345866i \(-0.887585\pi\)
0.169613 0.985511i \(-0.445748\pi\)
\(674\) 5.83578 + 3.36929i 0.224786 + 0.129780i
\(675\) −7.96555 13.7967i −0.306594 0.531037i
\(676\) −4.88460 8.46038i −0.187869 0.325399i
\(677\) 5.90438i 0.226924i −0.993542 0.113462i \(-0.963806\pi\)
0.993542 0.113462i \(-0.0361940\pi\)
\(678\) −7.10086 12.2990i −0.272707 0.472342i
\(679\) −12.3148 + 21.3298i −0.472598 + 0.818564i
\(680\) −12.4872 7.20952i −0.478864 0.276472i
\(681\) −36.1794 −1.38640
\(682\) −3.44841 5.97283i −0.132047 0.228711i
\(683\) −13.8194 23.9360i −0.528786 0.915884i −0.999437 0.0335647i \(-0.989314\pi\)
0.470650 0.882320i \(-0.344019\pi\)
\(684\) 0.0318620 0.0551866i 0.00121827 0.00211011i
\(685\) −2.93741 + 1.69592i −0.112233 + 0.0647976i
\(686\) 5.72994 + 9.92454i 0.218770 + 0.378921i
\(687\) 2.89724i 0.110537i
\(688\) 12.7754i 0.487059i
\(689\) 17.4886 + 30.2911i 0.666261 + 1.15400i
\(690\) 11.6543i 0.443672i
\(691\) 11.5460 6.66610i 0.439231 0.253590i −0.264040 0.964512i \(-0.585055\pi\)
0.703271 + 0.710921i \(0.251722\pi\)
\(692\) 18.9278i 0.719529i
\(693\) −0.584814 + 1.01293i −0.0222153 + 0.0384780i
\(694\) −3.13337 + 5.42716i −0.118941 + 0.206012i
\(695\) 1.87461 3.24692i 0.0711080 0.123163i
\(696\) −25.7238 + 14.8516i −0.975058 + 0.562950i
\(697\) −41.4247 −1.56907
\(698\) −10.5080 + 2.34035i −0.397732 + 0.0885835i
\(699\) 16.4562 0.622431
\(700\) −8.44221 + 4.87411i −0.319086 + 0.184224i
\(701\) −14.2975 + 24.7640i −0.540010 + 0.935324i 0.458893 + 0.888492i \(0.348246\pi\)
−0.998903 + 0.0468328i \(0.985087\pi\)
\(702\) 4.09437 7.09166i 0.154532 0.267657i
\(703\) −0.426758 + 0.739166i −0.0160955 + 0.0278782i
\(704\) 4.41650i 0.166453i
\(705\) 13.4277 7.75251i 0.505718 0.291976i
\(706\) 5.56416i 0.209410i
\(707\) −2.88115 4.99029i −0.108357 0.187679i
\(708\) 4.21153i 0.158279i
\(709\) 22.7417i 0.854081i 0.904233 + 0.427040i \(0.140444\pi\)
−0.904233 + 0.427040i \(0.859556\pi\)
\(710\) −4.34780 7.53061i −0.163170 0.282619i
\(711\) 1.60886 0.928877i 0.0603370 0.0348356i
\(712\) 10.0866 17.4705i 0.378011 0.654734i
\(713\) −12.5689 21.7700i −0.470709 0.815291i
\(714\) −4.57345 7.92145i −0.171157 0.296453i
\(715\) −15.2405 −0.569962
\(716\) 14.1442 + 8.16617i 0.528594 + 0.305184i
\(717\) −9.81559 + 17.0011i −0.366570 + 0.634918i
\(718\) −2.86215 4.95738i −0.106814 0.185008i
\(719\) 7.79895i 0.290852i 0.989369 + 0.145426i \(0.0464552\pi\)
−0.989369 + 0.145426i \(0.953545\pi\)
\(720\) −0.223108 0.386435i −0.00831475 0.0144016i
\(721\) −1.09411 1.89505i −0.0407467 0.0705754i
\(722\) 9.44918 + 5.45549i 0.351662 + 0.203032i
\(723\) 11.1950 + 19.3902i 0.416345 + 0.721131i
\(724\) −6.10103 + 10.5673i −0.226743 + 0.392730i
\(725\) 24.9367 0.926127
\(726\) 5.08788i 0.188829i
\(727\) −17.9180 + 31.0349i −0.664542 + 1.15102i 0.314868 + 0.949136i \(0.398040\pi\)
−0.979409 + 0.201885i \(0.935293\pi\)
\(728\) −9.54271 5.50948i −0.353676 0.204195i
\(729\) 28.2034 1.04457
\(730\) 11.1995 + 6.46604i 0.414513 + 0.239319i
\(731\) −25.1766 14.5357i −0.931190 0.537623i
\(732\) −14.4704 + 8.35447i −0.534840 + 0.308790i
\(733\) 45.0455i 1.66379i −0.554930 0.831897i \(-0.687255\pi\)
0.554930 0.831897i \(-0.312745\pi\)
\(734\) −21.2311 −0.783654
\(735\) −7.63709 −0.281698
\(736\) 46.0956i 1.69911i
\(737\) 64.6605i 2.38180i
\(738\) 0.638509 + 0.368643i 0.0235038 + 0.0135700i
\(739\) 23.0163 0.846670 0.423335 0.905973i \(-0.360859\pi\)
0.423335 + 0.905973i \(0.360859\pi\)
\(740\) 3.92543 + 6.79904i 0.144302 + 0.249938i
\(741\) 1.00315 + 0.579169i 0.0368517 + 0.0212763i
\(742\) −12.7398 7.35530i −0.467691 0.270022i
\(743\) −1.71131 −0.0627817 −0.0313909 0.999507i \(-0.509994\pi\)
−0.0313909 + 0.999507i \(0.509994\pi\)
\(744\) 9.18262 + 5.30159i 0.336651 + 0.194366i
\(745\) 18.6609i 0.683681i
\(746\) 10.1400 0.371252
\(747\) −0.368082 + 0.637537i −0.0134674 + 0.0233263i
\(748\) 28.0434 + 16.1909i 1.02537 + 0.591998i
\(749\) 15.6425 27.0937i 0.571566 0.989981i
\(750\) 11.0137i 0.402165i
\(751\) 45.4727i 1.65932i −0.558268 0.829661i \(-0.688534\pi\)
0.558268 0.829661i \(-0.311466\pi\)
\(752\) −11.8977 + 6.86916i −0.433866 + 0.250493i
\(753\) −19.4566 11.2333i −0.709039 0.409364i
\(754\) 6.40886 + 11.1005i 0.233397 + 0.404256i
\(755\) −1.77048 3.06656i −0.0644344 0.111604i
\(756\) 17.2983i 0.629133i
\(757\) −30.6971 17.7230i −1.11571 0.644153i −0.175405 0.984496i \(-0.556123\pi\)
−0.940301 + 0.340343i \(0.889457\pi\)
\(758\) −3.73976 −0.135834
\(759\) 57.5566i 2.08917i
\(760\) −0.665081 + 0.383985i −0.0241250 + 0.0139286i
\(761\) −42.7367 24.6740i −1.54920 0.894433i −0.998203 0.0599279i \(-0.980913\pi\)
−0.551000 0.834505i \(-0.685754\pi\)
\(762\) −3.49969 −0.126781
\(763\) 25.1746i 0.911383i
\(764\) −17.8204 −0.644718
\(765\) −1.01540 −0.0367118
\(766\) −8.76461 + 15.1808i −0.316678