# Properties

 Label 3479.1.d.e.638.1 Level $3479$ Weight $1$ Character 3479.638 Self dual yes Analytic conductor $1.736$ Analytic rank $0$ Dimension $3$ Projective image $D_{7}$ CM discriminant -71 Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3479,1,Mod(638,3479)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3479, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3479.638");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3479 = 7^{2} \cdot 71$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3479.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.73624717895$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: $$\Q(\zeta_{14})^+$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 2x + 1$$ x^3 - x^2 - 2*x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 71) Projective image: $$D_{7}$$ Projective field: Galois closure of 7.1.357911.1 Artin image: $D_{14}$ Artin field: Galois closure of 14.0.105496092121152103.1

## Embedding invariants

 Embedding label 638.1 Root $$0.445042$$ of defining polynomial Character $$\chi$$ $$=$$ 3479.638

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.80194 q^{2} +0.445042 q^{3} +2.24698 q^{4} -1.24698 q^{5} -0.801938 q^{6} -2.24698 q^{8} -0.801938 q^{9} +O(q^{10})$$ $$q-1.80194 q^{2} +0.445042 q^{3} +2.24698 q^{4} -1.24698 q^{5} -0.801938 q^{6} -2.24698 q^{8} -0.801938 q^{9} +2.24698 q^{10} +1.00000 q^{12} -0.554958 q^{15} +1.80194 q^{16} +1.44504 q^{18} +1.80194 q^{19} -2.80194 q^{20} -1.00000 q^{24} +0.554958 q^{25} -0.801938 q^{27} -0.445042 q^{29} +1.00000 q^{30} -1.00000 q^{32} -1.80194 q^{36} -1.80194 q^{37} -3.24698 q^{38} +2.80194 q^{40} +1.24698 q^{43} +1.00000 q^{45} +0.801938 q^{48} -1.00000 q^{50} +1.44504 q^{54} +0.801938 q^{57} +0.801938 q^{58} -1.24698 q^{60} +1.00000 q^{71} +1.80194 q^{72} -1.24698 q^{73} +3.24698 q^{74} +0.246980 q^{75} +4.04892 q^{76} +1.24698 q^{79} -2.24698 q^{80} +0.445042 q^{81} +1.80194 q^{83} -2.24698 q^{86} -0.198062 q^{87} +0.445042 q^{89} -1.80194 q^{90} -2.24698 q^{95} -0.445042 q^{96} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - q^{2} + q^{3} + 2 q^{4} + q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10})$$ 3 * q - q^2 + q^3 + 2 * q^4 + q^5 + 2 * q^6 - 2 * q^8 + 2 * q^9 $$3 q - q^{2} + q^{3} + 2 q^{4} + q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9} + 2 q^{10} + 3 q^{12} - 2 q^{15} + q^{16} + 4 q^{18} + q^{19} - 4 q^{20} - 3 q^{24} + 2 q^{25} + 2 q^{27} - q^{29} + 3 q^{30} - 3 q^{32} - q^{36} - q^{37} - 5 q^{38} + 4 q^{40} - q^{43} + 3 q^{45} - 2 q^{48} - 3 q^{50} + 4 q^{54} - 2 q^{57} - 2 q^{58} + q^{60} + 3 q^{71} + q^{72} + q^{73} + 5 q^{74} - 4 q^{75} + 3 q^{76} - q^{79} - 2 q^{80} + q^{81} + q^{83} - 2 q^{86} - 5 q^{87} + q^{89} - q^{90} - 2 q^{95} - q^{96}+O(q^{100})$$ 3 * q - q^2 + q^3 + 2 * q^4 + q^5 + 2 * q^6 - 2 * q^8 + 2 * q^9 + 2 * q^10 + 3 * q^12 - 2 * q^15 + q^16 + 4 * q^18 + q^19 - 4 * q^20 - 3 * q^24 + 2 * q^25 + 2 * q^27 - q^29 + 3 * q^30 - 3 * q^32 - q^36 - q^37 - 5 * q^38 + 4 * q^40 - q^43 + 3 * q^45 - 2 * q^48 - 3 * q^50 + 4 * q^54 - 2 * q^57 - 2 * q^58 + q^60 + 3 * q^71 + q^72 + q^73 + 5 * q^74 - 4 * q^75 + 3 * q^76 - q^79 - 2 * q^80 + q^81 + q^83 - 2 * q^86 - 5 * q^87 + q^89 - q^90 - 2 * q^95 - q^96

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3479\mathbb{Z}\right)^\times$$.

 $$n$$ $$640$$ $$1569$$ $$\chi(n)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$3$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$4$$ 2.24698 2.24698
$$5$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$6$$ −0.801938 −0.801938
$$7$$ 0 0
$$8$$ −2.24698 −2.24698
$$9$$ −0.801938 −0.801938
$$10$$ 2.24698 2.24698
$$11$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$12$$ 1.00000 1.00000
$$13$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$14$$ 0 0
$$15$$ −0.554958 −0.554958
$$16$$ 1.80194 1.80194
$$17$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$18$$ 1.44504 1.44504
$$19$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$20$$ −2.80194 −2.80194
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$24$$ −1.00000 −1.00000
$$25$$ 0.554958 0.554958
$$26$$ 0 0
$$27$$ −0.801938 −0.801938
$$28$$ 0 0
$$29$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$30$$ 1.00000 1.00000
$$31$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$32$$ −1.00000 −1.00000
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ −1.80194 −1.80194
$$37$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$38$$ −3.24698 −3.24698
$$39$$ 0 0
$$40$$ 2.80194 2.80194
$$41$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$42$$ 0 0
$$43$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$44$$ 0 0
$$45$$ 1.00000 1.00000
$$46$$ 0 0
$$47$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$48$$ 0.801938 0.801938
$$49$$ 0 0
$$50$$ −1.00000 −1.00000
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$54$$ 1.44504 1.44504
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0.801938 0.801938
$$58$$ 0.801938 0.801938
$$59$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$60$$ −1.24698 −1.24698
$$61$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 1.00000 1.00000
$$72$$ 1.80194 1.80194
$$73$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$74$$ 3.24698 3.24698
$$75$$ 0.246980 0.246980
$$76$$ 4.04892 4.04892
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$80$$ −2.24698 −2.24698
$$81$$ 0.445042 0.445042
$$82$$ 0 0
$$83$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ −2.24698 −2.24698
$$87$$ −0.198062 −0.198062
$$88$$ 0 0
$$89$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$90$$ −1.80194 −1.80194
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ −2.24698 −2.24698
$$96$$ −0.445042 −0.445042
$$97$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 1.24698 1.24698
$$101$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$102$$ 0 0
$$103$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$108$$ −1.80194 −1.80194
$$109$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$110$$ 0 0
$$111$$ −0.801938 −0.801938
$$112$$ 0 0
$$113$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$114$$ −1.44504 −1.44504
$$115$$ 0 0
$$116$$ −1.00000 −1.00000
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 1.24698 1.24698
$$121$$ 1.00000 1.00000
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0.554958 0.554958
$$126$$ 0 0
$$127$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$128$$ 1.00000 1.00000
$$129$$ 0.554958 0.554958
$$130$$ 0 0
$$131$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 1.00000 1.00000
$$136$$ 0 0
$$137$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$138$$ 0 0
$$139$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ −1.80194 −1.80194
$$143$$ 0 0
$$144$$ −1.44504 −1.44504
$$145$$ 0.554958 0.554958
$$146$$ 2.24698 2.24698
$$147$$ 0 0
$$148$$ −4.04892 −4.04892
$$149$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$150$$ −0.445042 −0.445042
$$151$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$152$$ −4.04892 −4.04892
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$158$$ −2.24698 −2.24698
$$159$$ 0 0
$$160$$ 1.24698 1.24698
$$161$$ 0 0
$$162$$ −0.801938 −0.801938
$$163$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ −3.24698 −3.24698
$$167$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$168$$ 0 0
$$169$$ 1.00000 1.00000
$$170$$ 0 0
$$171$$ −1.44504 −1.44504
$$172$$ 2.80194 2.80194
$$173$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$174$$ 0.356896 0.356896
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ −0.801938 −0.801938
$$179$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$180$$ 2.24698 2.24698
$$181$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 2.24698 2.24698
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 4.04892 4.04892
$$191$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$192$$ 0 0
$$193$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$198$$ 0 0
$$199$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$200$$ −1.24698 −1.24698
$$201$$ 0 0
$$202$$ −3.24698 −3.24698
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ −0.801938 −0.801938
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$212$$ 0 0
$$213$$ 0.445042 0.445042
$$214$$ −3.60388 −3.60388
$$215$$ −1.55496 −1.55496
$$216$$ 1.80194 1.80194
$$217$$ 0 0
$$218$$ 0.801938 0.801938
$$219$$ −0.554958 −0.554958
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 1.44504 1.44504
$$223$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$224$$ 0 0
$$225$$ −0.445042 −0.445042
$$226$$ 0 0
$$227$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$228$$ 1.80194 1.80194
$$229$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 1.00000 1.00000
$$233$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0.554958 0.554958
$$238$$ 0 0
$$239$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$240$$ −1.00000 −1.00000
$$241$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$242$$ −1.80194 −1.80194
$$243$$ 1.00000 1.00000
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0.801938 0.801938
$$250$$ −1.00000 −1.00000
$$251$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ −1.80194 −1.80194
$$257$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$258$$ −1.00000 −1.00000
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0.356896 0.356896
$$262$$ 2.24698 2.24698
$$263$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0.198062 0.198062
$$268$$ 0 0
$$269$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$270$$ −1.80194 −1.80194
$$271$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$282$$ 0 0
$$283$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$284$$ 2.24698 2.24698
$$285$$ −1.00000 −1.00000
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0.801938 0.801938
$$289$$ 1.00000 1.00000
$$290$$ −1.00000 −1.00000
$$291$$ 0 0
$$292$$ −2.80194 −2.80194
$$293$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 4.04892 4.04892
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0.554958 0.554958
$$301$$ 0 0
$$302$$ 0.801938 0.801938
$$303$$ 0.801938 0.801938
$$304$$ 3.24698 3.24698
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$308$$ 0 0
$$309$$ 0.198062 0.198062
$$310$$ 0 0
$$311$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$312$$ 0 0
$$313$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$314$$ −0.801938 −0.801938
$$315$$ 0 0
$$316$$ 2.80194 2.80194
$$317$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0.890084 0.890084
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 1.00000 1.00000
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −0.198062 −0.198062
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$332$$ 4.04892 4.04892
$$333$$ 1.44504 1.44504
$$334$$ 2.24698 2.24698
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$338$$ −1.80194 −1.80194
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 2.60388 2.60388
$$343$$ 0 0
$$344$$ −2.80194 −2.80194
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$348$$ −0.445042 −0.445042
$$349$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$354$$ 0 0
$$355$$ −1.24698 −1.24698
$$356$$ 1.00000 1.00000
$$357$$ 0 0
$$358$$ −2.24698 −2.24698
$$359$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$360$$ −2.24698 −2.24698
$$361$$ 2.24698 2.24698
$$362$$ 0 0
$$363$$ 0.445042 0.445042
$$364$$ 0 0
$$365$$ 1.55496 1.55496
$$366$$ 0 0
$$367$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ −4.04892 −4.04892
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$374$$ 0 0
$$375$$ 0.246980 0.246980
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$380$$ −5.04892 −5.04892
$$381$$ 0 0
$$382$$ 0.801938 0.801938
$$383$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$384$$ 0.445042 0.445042
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −1.00000 −1.00000
$$388$$ 0 0
$$389$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ −0.554958 −0.554958
$$394$$ 0 0
$$395$$ −1.55496 −1.55496
$$396$$ 0 0
$$397$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$398$$ −3.24698 −3.24698
$$399$$ 0 0
$$400$$ 1.00000 1.00000
$$401$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 4.04892 4.04892
$$405$$ −0.554958 −0.554958
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 1.00000 1.00000
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −2.24698 −2.24698
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$420$$ 0 0
$$421$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ −0.801938 −0.801938
$$427$$ 0 0
$$428$$ 4.49396 4.49396
$$429$$ 0 0
$$430$$ 2.80194 2.80194
$$431$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$432$$ −1.44504 −1.44504
$$433$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$434$$ 0 0
$$435$$ 0.246980 0.246980
$$436$$ −1.00000 −1.00000
$$437$$ 0 0
$$438$$ 1.00000 1.00000
$$439$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$444$$ −1.80194 −1.80194
$$445$$ −0.554958 −0.554958
$$446$$ −3.24698 −3.24698
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$450$$ 0.801938 0.801938
$$451$$ 0 0
$$452$$ 0 0
$$453$$ −0.198062 −0.198062
$$454$$ 0 0
$$455$$ 0 0
$$456$$ −1.80194 −1.80194
$$457$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$458$$ 2.24698 2.24698
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$462$$ 0 0
$$463$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$464$$ −0.801938 −0.801938
$$465$$ 0 0
$$466$$ 3.24698 3.24698
$$467$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0.198062 0.198062
$$472$$ 0 0
$$473$$ 0 0
$$474$$ −1.00000 −1.00000
$$475$$ 1.00000 1.00000
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$480$$ 0.554958 0.554958
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 2.24698 2.24698
$$485$$ 0 0
$$486$$ −1.80194 −1.80194
$$487$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ −1.44504 −1.44504
$$499$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$500$$ 1.24698 1.24698
$$501$$ −0.554958 −0.554958
$$502$$ −3.24698 −3.24698
$$503$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$504$$ 0 0
$$505$$ −2.24698 −2.24698
$$506$$ 0 0
$$507$$ 0.445042 0.445042
$$508$$ 0 0
$$509$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 2.24698 2.24698
$$513$$ −1.44504 −1.44504
$$514$$ 0 0
$$515$$ −0.554958 −0.554958
$$516$$ 1.24698 1.24698
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$522$$ −0.643104 −0.643104
$$523$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$524$$ −2.80194 −2.80194
$$525$$ 0 0
$$526$$ −2.24698 −2.24698
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 1.00000 1.00000
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ −0.356896 −0.356896
$$535$$ −2.49396 −2.49396
$$536$$ 0 0
$$537$$ 0.554958 0.554958
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 2.24698 2.24698
$$541$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$542$$ −0.801938 −0.801938
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0.554958 0.554958
$$546$$ 0 0
$$547$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −0.801938 −0.801938
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 3.24698 3.24698
$$555$$ 1.00000 1.00000
$$556$$ 0 0
$$557$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ −2.24698 −2.24698
$$569$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$570$$ 1.80194 1.80194
$$571$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$572$$ 0 0
$$573$$ −0.198062 −0.198062
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$578$$ −1.80194 −1.80194
$$579$$ 0 0
$$580$$ 1.24698 1.24698
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 2.80194 2.80194
$$585$$ 0 0
$$586$$ 3.60388 3.60388
$$587$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ −3.24698 −3.24698
$$593$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0.801938 0.801938
$$598$$ 0 0
$$599$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$600$$ −0.554958 −0.554958
$$601$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ −1.00000 −1.00000
$$605$$ −1.24698 −1.24698
$$606$$ −1.44504 −1.44504
$$607$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$608$$ −1.80194 −1.80194
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$618$$ −0.356896 −0.356896
$$619$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ −3.24698 −3.24698
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −1.24698 −1.24698
$$626$$ −3.24698 −3.24698
$$627$$ 0 0
$$628$$ 1.00000 1.00000
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$632$$ −2.80194 −2.80194
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ −0.801938 −0.801938
$$640$$ −1.24698 −1.24698
$$641$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$642$$ −1.60388 −1.60388
$$643$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$644$$ 0 0
$$645$$ −0.692021 −0.692021
$$646$$ 0 0
$$647$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$648$$ −1.00000 −1.00000
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$654$$ 0.356896 0.356896
$$655$$ 1.55496 1.55496
$$656$$ 0 0
$$657$$ 1.00000 1.00000
$$658$$ 0 0
$$659$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$660$$ 0 0
$$661$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ −4.04892 −4.04892
$$665$$ 0 0
$$666$$ −2.60388 −2.60388
$$667$$ 0 0
$$668$$ −2.80194 −2.80194
$$669$$ 0.801938 0.801938
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$674$$ 0 0
$$675$$ −0.445042 −0.445042
$$676$$ 2.24698 2.24698
$$677$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$684$$ −3.24698 −3.24698
$$685$$ 0 0
$$686$$ 0 0
$$687$$ −0.554958 −0.554958
$$688$$ 2.24698 2.24698
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0.445042 0.445042
$$697$$ 0 0
$$698$$ 0 0
$$699$$ −0.801938 −0.801938
$$700$$ 0 0
$$701$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$702$$ 0 0
$$703$$ −3.24698 −3.24698
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$710$$ 2.24698 2.24698
$$711$$ −1.00000 −1.00000
$$712$$ −1.00000 −1.00000
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 2.80194 2.80194
$$717$$ 0 0
$$718$$ −2.24698 −2.24698
$$719$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$720$$ 1.80194 1.80194
$$721$$ 0 0
$$722$$ −4.04892 −4.04892
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −0.246980 −0.246980
$$726$$ −0.801938 −0.801938
$$727$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ −2.80194 −2.80194
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$734$$ 2.24698 2.24698
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$740$$ 5.04892 5.04892
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ −2.24698 −2.24698
$$747$$ −1.44504 −1.44504
$$748$$ 0 0
$$749$$ 0 0
$$750$$ −0.445042 −0.445042
$$751$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$752$$ 0 0
$$753$$ 0.801938 0.801938
$$754$$ 0 0
$$755$$ 0.554958 0.554958
$$756$$ 0 0
$$757$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$758$$ 0.801938 0.801938
$$759$$ 0 0
$$760$$ 5.04892 5.04892
$$761$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ −1.00000 −1.00000
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ −0.801938 −0.801938
$$769$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$774$$ 1.80194 1.80194
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0.356896 0.356896
$$784$$ 0 0
$$785$$ −0.554958 −0.554958
$$786$$ 1.00000 1.00000
$$787$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$788$$ 0 0
$$789$$ 0.554958 0.554958
$$790$$ 2.80194 2.80194
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 4.04892 4.04892
$$797$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ −0.554958 −0.554958
$$801$$ −0.356896 −0.356896
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ −4.04892 −4.04892
$$809$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$810$$ 1.00000 1.00000
$$811$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$812$$ 0 0
$$813$$ 0.198062 0.198062
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 2.24698 2.24698
$$818$$ −0.801938 −0.801938
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −1.80194 −1.80194 −0.900969 0.433884i $$-0.857143\pi$$
−0.900969 + 0.433884i $$0.857143\pi$$
$$822$$ 0 0
$$823$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$824$$ −1.00000 −1.00000
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$828$$ 0 0
$$829$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$830$$ 4.04892 4.04892
$$831$$ −0.801938 −0.801938
$$832$$ 0 0
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 1.55496 1.55496
$$836$$ 0 0
$$837$$ 0 0
$$838$$ −0.801938 −0.801938
$$839$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$840$$ 0 0
$$841$$ −0.801938 −0.801938
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ −1.24698 −1.24698
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 1.00000 1.00000
$$853$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$854$$ 0 0
$$855$$ 1.80194 1.80194
$$856$$ −4.49396 −4.49396
$$857$$ 0.445042 0.445042 0.222521 0.974928i $$-0.428571\pi$$
0.222521 + 0.974928i $$0.428571\pi$$
$$858$$ 0 0
$$859$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$860$$ −3.49396 −3.49396
$$861$$ 0 0
$$862$$ 3.24698 3.24698
$$863$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$864$$ 0.801938 0.801938
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0.445042 0.445042
$$868$$ 0 0
$$869$$ 0 0
$$870$$ −0.445042 −0.445042
$$871$$ 0 0
$$872$$ 1.00000 1.00000
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ −1.24698 −1.24698
$$877$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$878$$ 0 0
$$879$$ −0.890084 −0.890084
$$880$$ 0 0
$$881$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$882$$ 0 0
$$883$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$888$$ 1.80194 1.80194
$$889$$ 0 0
$$890$$ 1.00000 1.00000
$$891$$ 0 0
$$892$$ 4.04892 4.04892
$$893$$ 0 0
$$894$$ 0 0
$$895$$ −1.55496 −1.55496
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ −1.00000 −1.00000
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0.356896 0.356896
$$907$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$908$$ 0 0
$$909$$ −1.44504 −1.44504
$$910$$ 0 0
$$911$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$912$$ 1.44504 1.44504
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ −2.80194 −2.80194
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ −1.00000 −1.00000
$$926$$ 3.24698 3.24698
$$927$$ −0.356896 −0.356896
$$928$$ 0.445042 0.445042
$$929$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ −4.04892 −4.04892
$$933$$ 0.801938 0.801938
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$938$$ 0 0
$$939$$ 0.801938 0.801938
$$940$$ 0 0
$$941$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$942$$ −0.356896 −0.356896
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$948$$ 1.24698 1.24698
$$949$$ 0 0
$$950$$ −1.80194 −1.80194
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 1.24698 1.24698 0.623490 0.781831i $$-0.285714\pi$$
0.623490 + 0.781831i $$0.285714\pi$$
$$954$$ 0 0
$$955$$ 0.554958 0.554958
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 1.00000 1.00000
$$962$$ 0 0
$$963$$ −1.60388 −1.60388
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$968$$ −2.24698 −2.24698
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$972$$ 2.24698 2.24698
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −0.445042 −0.445042 −0.222521 0.974928i $$-0.571429\pi$$
−0.222521 + 0.974928i $$0.571429\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0.356896 0.356896
$$982$$ 0 0
$$983$$ 1.80194 1.80194 0.900969 0.433884i $$-0.142857\pi$$
0.900969 + 0.433884i $$0.142857\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −2.24698 −2.24698
$$996$$ 1.80194 1.80194
$$997$$ −1.24698 −1.24698 −0.623490 0.781831i $$-0.714286\pi$$
−0.623490 + 0.781831i $$0.714286\pi$$
$$998$$ 0.801938 0.801938
$$999$$ 1.44504 1.44504
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3479.1.d.e.638.1 3
7.2 even 3 3479.1.g.d.851.3 6
7.3 odd 6 3479.1.g.e.1206.3 6
7.4 even 3 3479.1.g.d.1206.3 6
7.5 odd 6 3479.1.g.e.851.3 6
7.6 odd 2 71.1.b.a.70.1 3
21.20 even 2 639.1.d.a.496.3 3
28.27 even 2 1136.1.h.a.993.2 3
35.13 even 4 1775.1.c.a.1774.6 6
35.27 even 4 1775.1.c.a.1774.1 6
35.34 odd 2 1775.1.d.b.851.3 3
71.70 odd 2 CM 3479.1.d.e.638.1 3
497.212 odd 6 3479.1.g.d.851.3 6
497.283 even 6 3479.1.g.e.1206.3 6
497.354 odd 6 3479.1.g.d.1206.3 6
497.425 even 6 3479.1.g.e.851.3 6
497.496 even 2 71.1.b.a.70.1 3
1491.1490 odd 2 639.1.d.a.496.3 3
1988.1987 odd 2 1136.1.h.a.993.2 3
2485.993 odd 4 1775.1.c.a.1774.6 6
2485.1987 odd 4 1775.1.c.a.1774.1 6
2485.2484 even 2 1775.1.d.b.851.3 3

By twisted newform
Twist Min Dim Char Parity Ord Type
71.1.b.a.70.1 3 7.6 odd 2
71.1.b.a.70.1 3 497.496 even 2
639.1.d.a.496.3 3 21.20 even 2
639.1.d.a.496.3 3 1491.1490 odd 2
1136.1.h.a.993.2 3 28.27 even 2
1136.1.h.a.993.2 3 1988.1987 odd 2
1775.1.c.a.1774.1 6 35.27 even 4
1775.1.c.a.1774.1 6 2485.1987 odd 4
1775.1.c.a.1774.6 6 35.13 even 4
1775.1.c.a.1774.6 6 2485.993 odd 4
1775.1.d.b.851.3 3 35.34 odd 2
1775.1.d.b.851.3 3 2485.2484 even 2
3479.1.d.e.638.1 3 1.1 even 1 trivial
3479.1.d.e.638.1 3 71.70 odd 2 CM
3479.1.g.d.851.3 6 7.2 even 3
3479.1.g.d.851.3 6 497.212 odd 6
3479.1.g.d.1206.3 6 7.4 even 3
3479.1.g.d.1206.3 6 497.354 odd 6
3479.1.g.e.851.3 6 7.5 odd 6
3479.1.g.e.851.3 6 497.425 even 6
3479.1.g.e.1206.3 6 7.3 odd 6
3479.1.g.e.1206.3 6 497.283 even 6