Properties

Label 3450.2.d.e.2899.1
Level $3450$
Weight $2$
Character 3450.2899
Analytic conductor $27.548$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3450 = 2 \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3450.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(27.5483886973\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 690)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2899.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3450.2899
Dual form 3450.2.d.e.2899.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +1.00000i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +1.00000i q^{8} -1.00000 q^{9} +1.00000i q^{12} +6.00000i q^{13} +1.00000 q^{16} -2.00000i q^{17} +1.00000i q^{18} -1.00000i q^{23} +1.00000 q^{24} +6.00000 q^{26} +1.00000i q^{27} -6.00000 q^{29} +8.00000 q^{31} -1.00000i q^{32} -2.00000 q^{34} +1.00000 q^{36} -10.0000i q^{37} +6.00000 q^{39} -6.00000 q^{41} -8.00000i q^{43} -1.00000 q^{46} -8.00000i q^{47} -1.00000i q^{48} +7.00000 q^{49} -2.00000 q^{51} -6.00000i q^{52} -6.00000i q^{53} +1.00000 q^{54} +6.00000i q^{58} +4.00000 q^{59} -6.00000 q^{61} -8.00000i q^{62} -1.00000 q^{64} -8.00000i q^{67} +2.00000i q^{68} -1.00000 q^{69} -8.00000 q^{71} -1.00000i q^{72} +10.0000i q^{73} -10.0000 q^{74} -6.00000i q^{78} +8.00000 q^{79} +1.00000 q^{81} +6.00000i q^{82} -8.00000i q^{83} -8.00000 q^{86} +6.00000i q^{87} +6.00000 q^{89} +1.00000i q^{92} -8.00000i q^{93} -8.00000 q^{94} -1.00000 q^{96} -18.0000i q^{97} -7.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{6} - 2q^{9} + 2q^{16} + 2q^{24} + 12q^{26} - 12q^{29} + 16q^{31} - 4q^{34} + 2q^{36} + 12q^{39} - 12q^{41} - 2q^{46} + 14q^{49} - 4q^{51} + 2q^{54} + 8q^{59} - 12q^{61} - 2q^{64} - 2q^{69} - 16q^{71} - 20q^{74} + 16q^{79} + 2q^{81} - 16q^{86} + 12q^{89} - 16q^{94} - 2q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3450\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 2.00000i − 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 1.00000i − 0.208514i
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 6.00000 1.17670
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 10.0000i − 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.00000 −0.147442
\(47\) − 8.00000i − 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) − 6.00000i − 0.832050i
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6.00000i 0.787839i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) − 8.00000i − 1.01600i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 2.00000i 0.242536i
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) − 6.00000i − 0.679366i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.00000i 0.662589i
\(83\) − 8.00000i − 0.878114i −0.898459 0.439057i \(-0.855313\pi\)
0.898459 0.439057i \(-0.144687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.00000i 0.104257i
\(93\) − 8.00000i − 0.829561i
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) − 18.0000i − 1.82762i −0.406138 0.913812i \(-0.633125\pi\)
0.406138 0.913812i \(-0.366875\pi\)
\(98\) − 7.00000i − 0.707107i
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 2.00000i 0.198030i
\(103\) − 8.00000i − 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) − 6.00000i − 0.554700i
\(118\) − 4.00000i − 0.368230i
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 6.00000i 0.543214i
\(123\) 6.00000i 0.541002i
\(124\) −8.00000 −0.718421
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 1.00000i 0.0851257i
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 8.00000i 0.671345i
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) − 7.00000i − 0.577350i
\(148\) 10.0000i 0.821995i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) −6.00000 −0.480384
\(157\) − 18.0000i − 1.43656i −0.695756 0.718278i \(-0.744931\pi\)
0.695756 0.718278i \(-0.255069\pi\)
\(158\) − 8.00000i − 0.636446i
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) − 1.00000i − 0.0785674i
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 16.0000i 1.23812i 0.785345 + 0.619059i \(0.212486\pi\)
−0.785345 + 0.619059i \(0.787514\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000i 0.609994i
\(173\) − 18.0000i − 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) 0 0
\(177\) − 4.00000i − 0.300658i
\(178\) − 6.00000i − 0.449719i
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 6.00000i 0.443533i
\(184\) 1.00000 0.0737210
\(185\) 0 0
\(186\) −8.00000 −0.586588
\(187\) 0 0
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 18.0000i 1.29567i 0.761781 + 0.647834i \(0.224325\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) −18.0000 −1.29232
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) − 22.0000i − 1.56744i −0.621117 0.783718i \(-0.713321\pi\)
0.621117 0.783718i \(-0.286679\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) − 6.00000i − 0.422159i
\(203\) 0 0
\(204\) 2.00000 0.140028
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 1.00000i 0.0695048i
\(208\) 6.00000i 0.416025i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 8.00000i 0.548151i
\(214\) 0 0
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) − 6.00000i − 0.406371i
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 10.0000i 0.671156i
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 6.00000i − 0.393919i
\(233\) − 22.0000i − 1.44127i −0.693316 0.720634i \(-0.743851\pi\)
0.693316 0.720634i \(-0.256149\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) − 8.00000i − 0.519656i
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 11.0000i 0.707107i
\(243\) − 1.00000i − 0.0641500i
\(244\) 6.00000 0.384111
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 0 0
\(248\) 8.00000i 0.508001i
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 18.0000i − 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 8.00000i 0.498058i
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) − 4.00000i − 0.247121i
\(263\) − 8.00000i − 0.493301i −0.969104 0.246651i \(-0.920670\pi\)
0.969104 0.246651i \(-0.0793300\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 6.00000i − 0.367194i
\(268\) 8.00000i 0.488678i
\(269\) −22.0000 −1.34136 −0.670682 0.741745i \(-0.733998\pi\)
−0.670682 + 0.741745i \(0.733998\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) − 2.00000i − 0.121268i
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) 1.00000 0.0601929
\(277\) 10.0000i 0.600842i 0.953807 + 0.300421i \(0.0971271\pi\)
−0.953807 + 0.300421i \(0.902873\pi\)
\(278\) − 4.00000i − 0.239904i
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 8.00000i 0.476393i
\(283\) 24.0000i 1.42665i 0.700832 + 0.713326i \(0.252812\pi\)
−0.700832 + 0.713326i \(0.747188\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −18.0000 −1.05518
\(292\) − 10.0000i − 0.585206i
\(293\) − 6.00000i − 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) −7.00000 −0.408248
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) − 6.00000i − 0.347571i
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) 16.0000i 0.920697i
\(303\) − 6.00000i − 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 6.00000i 0.339683i
\(313\) − 6.00000i − 0.339140i −0.985518 0.169570i \(-0.945762\pi\)
0.985518 0.169570i \(-0.0542379\pi\)
\(314\) −18.0000 −1.01580
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 6.00000i 0.336463i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 12.0000 0.664619
\(327\) − 6.00000i − 0.331801i
\(328\) − 6.00000i − 0.331295i
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 8.00000i 0.439057i
\(333\) 10.0000i 0.547997i
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 23.0000i 1.25104i
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) − 36.0000i − 1.93258i −0.257454 0.966291i \(-0.582883\pi\)
0.257454 0.966291i \(-0.417117\pi\)
\(348\) − 6.00000i − 0.321634i
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) 18.0000i 0.958043i 0.877803 + 0.479022i \(0.159008\pi\)
−0.877803 + 0.479022i \(0.840992\pi\)
\(354\) −4.00000 −0.212598
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) − 4.00000i − 0.211407i
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) − 2.00000i − 0.105118i
\(363\) 11.0000i 0.577350i
\(364\) 0 0
\(365\) 0 0
\(366\) 6.00000 0.313625
\(367\) 24.0000i 1.25279i 0.779506 + 0.626395i \(0.215470\pi\)
−0.779506 + 0.626395i \(0.784530\pi\)
\(368\) − 1.00000i − 0.0521286i
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 0 0
\(372\) 8.00000i 0.414781i
\(373\) 26.0000i 1.34623i 0.739538 + 0.673114i \(0.235044\pi\)
−0.739538 + 0.673114i \(0.764956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) − 36.0000i − 1.85409i
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 24.0000i 1.22795i
\(383\) − 32.0000i − 1.63512i −0.575841 0.817562i \(-0.695325\pi\)
0.575841 0.817562i \(-0.304675\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) 8.00000i 0.406663i
\(388\) 18.0000i 0.913812i
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 7.00000i 0.353553i
\(393\) − 4.00000i − 0.201773i
\(394\) −22.0000 −1.10834
\(395\) 0 0
\(396\) 0 0
\(397\) − 6.00000i − 0.301131i −0.988600 0.150566i \(-0.951890\pi\)
0.988600 0.150566i \(-0.0481095\pi\)
\(398\) − 16.0000i − 0.802008i
\(399\) 0 0
\(400\) 0 0
\(401\) 26.0000 1.29838 0.649189 0.760627i \(-0.275108\pi\)
0.649189 + 0.760627i \(0.275108\pi\)
\(402\) 8.00000i 0.399004i
\(403\) 48.0000i 2.39105i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) − 2.00000i − 0.0990148i
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 8.00000i 0.394132i
\(413\) 0 0
\(414\) 1.00000 0.0491473
\(415\) 0 0
\(416\) 6.00000 0.294174
\(417\) − 4.00000i − 0.195881i
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) − 4.00000i − 0.194717i
\(423\) 8.00000i 0.388973i
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 8.00000 0.387601
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) − 14.0000i − 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.00000 −0.287348
\(437\) 0 0
\(438\) − 10.0000i − 0.477818i
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) − 12.0000i − 0.570782i
\(443\) 20.0000i 0.950229i 0.879924 + 0.475114i \(0.157593\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(444\) 10.0000 0.474579
\(445\) 0 0
\(446\) 0 0
\(447\) − 6.00000i − 0.283790i
\(448\) 0 0
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 6.00000i 0.282216i
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 38.0000i 1.77757i 0.458329 + 0.888783i \(0.348448\pi\)
−0.458329 + 0.888783i \(0.651552\pi\)
\(458\) 18.0000i 0.841085i
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) − 40.0000i − 1.85896i −0.368875 0.929479i \(-0.620257\pi\)
0.368875 0.929479i \(-0.379743\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −22.0000 −1.01913
\(467\) − 8.00000i − 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 6.00000i 0.277350i
\(469\) 0 0
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 4.00000i 0.184115i
\(473\) 0 0
\(474\) −8.00000 −0.367452
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 8.00000i 0.365911i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 60.0000 2.73576
\(482\) − 26.0000i − 1.18427i
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) − 16.0000i − 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) − 6.00000i − 0.271607i
\(489\) 12.0000 0.542659
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) − 6.00000i − 0.270501i
\(493\) 12.0000i 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 8.00000i 0.358489i
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) − 8.00000i − 0.357057i
\(503\) 16.0000i 0.713405i 0.934218 + 0.356702i \(0.116099\pi\)
−0.934218 + 0.356702i \(0.883901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 23.0000i 1.02147i
\(508\) − 8.00000i − 0.354943i
\(509\) 26.0000 1.15243 0.576215 0.817298i \(-0.304529\pi\)
0.576215 + 0.817298i \(0.304529\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) 0 0
\(518\) 0 0
\(519\) −18.0000 −0.790112
\(520\) 0 0
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) − 6.00000i − 0.262613i
\(523\) − 16.0000i − 0.699631i −0.936819 0.349816i \(-0.886244\pi\)
0.936819 0.349816i \(-0.113756\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) − 16.0000i − 0.696971i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) − 36.0000i − 1.55933i
\(534\) −6.00000 −0.259645
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) − 4.00000i − 0.172613i
\(538\) 22.0000i 0.948487i
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) − 16.0000i − 0.687259i
\(543\) − 2.00000i − 0.0858282i
\(544\) −2.00000 −0.0857493
\(545\) 0 0
\(546\) 0 0
\(547\) − 4.00000i − 0.171028i −0.996337 0.0855138i \(-0.972747\pi\)
0.996337 0.0855138i \(-0.0272532\pi\)
\(548\) − 6.00000i − 0.256307i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 0 0
\(552\) − 1.00000i − 0.0425628i
\(553\) 0 0
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) − 10.0000i − 0.423714i −0.977301 0.211857i \(-0.932049\pi\)
0.977301 0.211857i \(-0.0679510\pi\)
\(558\) 8.00000i 0.338667i
\(559\) 48.0000 2.03018
\(560\) 0 0
\(561\) 0 0
\(562\) 22.0000i 0.928014i
\(563\) 32.0000i 1.34864i 0.738440 + 0.674320i \(0.235563\pi\)
−0.738440 + 0.674320i \(0.764437\pi\)
\(564\) 8.00000 0.336861
\(565\) 0 0
\(566\) 24.0000 1.00880
\(567\) 0 0
\(568\) − 8.00000i − 0.335673i
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) − 2.00000i − 0.0832611i −0.999133 0.0416305i \(-0.986745\pi\)
0.999133 0.0416305i \(-0.0132552\pi\)
\(578\) − 13.0000i − 0.540729i
\(579\) 18.0000 0.748054
\(580\) 0 0
\(581\) 0 0
\(582\) 18.0000i 0.746124i
\(583\) 0 0
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 7.00000i 0.288675i
\(589\) 0 0
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) − 10.0000i − 0.410997i
\(593\) − 30.0000i − 1.23195i −0.787765 0.615976i \(-0.788762\pi\)
0.787765 0.615976i \(-0.211238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) − 16.0000i − 0.654836i
\(598\) − 6.00000i − 0.245358i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 8.00000i 0.325785i
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) −6.00000 −0.243733
\(607\) 16.0000i 0.649420i 0.945814 + 0.324710i \(0.105267\pi\)
−0.945814 + 0.324710i \(0.894733\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) − 2.00000i − 0.0808452i
\(613\) − 46.0000i − 1.85792i −0.370177 0.928961i \(-0.620703\pi\)
0.370177 0.928961i \(-0.379297\pi\)
\(614\) 4.00000 0.161427
\(615\) 0 0
\(616\) 0 0
\(617\) − 2.00000i − 0.0805170i −0.999189 0.0402585i \(-0.987182\pi\)
0.999189 0.0402585i \(-0.0128181\pi\)
\(618\) 8.00000i 0.321807i
\(619\) 16.0000 0.643094 0.321547 0.946894i \(-0.395797\pi\)
0.321547 + 0.946894i \(0.395797\pi\)
\(620\) 0 0
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 0 0
\(624\) 6.00000 0.240192
\(625\) 0 0
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) 18.0000i 0.718278i
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 8.00000i 0.318223i
\(633\) − 4.00000i − 0.158986i
\(634\) 2.00000 0.0794301
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) 42.0000i 1.66410i
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −22.0000 −0.868948 −0.434474 0.900684i \(-0.643066\pi\)
−0.434474 + 0.900684i \(0.643066\pi\)
\(642\) 0 0
\(643\) − 16.0000i − 0.630978i −0.948929 0.315489i \(-0.897831\pi\)
0.948929 0.315489i \(-0.102169\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000i 0.943537i 0.881722 + 0.471769i \(0.156384\pi\)
−0.881722 + 0.471769i \(0.843616\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) − 12.0000i − 0.469956i
\(653\) − 42.0000i − 1.64359i −0.569785 0.821794i \(-0.692974\pi\)
0.569785 0.821794i \(-0.307026\pi\)
\(654\) −6.00000 −0.234619
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) − 10.0000i − 0.390137i
\(658\) 0 0
\(659\) 48.0000 1.86981 0.934907 0.354892i \(-0.115482\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 20.0000i 0.777322i
\(663\) − 12.0000i − 0.466041i
\(664\) 8.00000 0.310460
\(665\) 0 0
\(666\) 10.0000 0.387492
\(667\) 6.00000i 0.232321i
\(668\) − 16.0000i − 0.619059i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 30.0000i − 1.15642i −0.815890 0.578208i \(-0.803752\pi\)
0.815890 0.578208i \(-0.196248\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 6.00000i 0.230599i 0.993331 + 0.115299i \(0.0367827\pi\)
−0.993331 + 0.115299i \(0.963217\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 4.00000i − 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 18.0000i 0.686743i
\(688\) − 8.00000i − 0.304997i
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 18.0000i 0.684257i
\(693\) 0 0
\(694\) −36.0000 −1.36654
\(695\) 0 0
\(696\) −6.00000 −0.227429
\(697\) 12.0000i 0.454532i
\(698\) − 26.0000i − 0.984115i
\(699\) −22.0000 −0.832116
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 6.00000i 0.226455i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) 0 0
\(708\) 4.00000i 0.150329i
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 6.00000i 0.224860i
\(713\) − 8.00000i − 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) −4.00000 −0.149487
\(717\) 8.00000i 0.298765i
\(718\) 16.0000i 0.597115i
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 19.0000i 0.707107i
\(723\) − 26.0000i − 0.966950i
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) 11.0000 0.408248
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −16.0000 −0.591781
\(732\) − 6.00000i − 0.221766i
\(733\) 2.00000i 0.0738717i 0.999318 + 0.0369358i \(0.0117597\pi\)
−0.999318 + 0.0369358i \(0.988240\pi\)
\(734\) 24.0000 0.885856
\(735\) 0 0
\(736\) −1.00000 −0.0368605
\(737\) 0 0
\(738\) − 6.00000i − 0.220863i
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 8.00000i − 0.293492i −0.989174 0.146746i \(-0.953120\pi\)
0.989174 0.146746i \(-0.0468799\pi\)
\(744\) 8.00000 0.293294
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) 8.00000i 0.292705i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) − 8.00000i − 0.291730i
\(753\) − 8.00000i − 0.291536i
\(754\) −36.0000 −1.31104
\(755\) 0 0
\(756\) 0 0
\(757\) − 34.0000i − 1.23575i −0.786276 0.617876i \(-0.787994\pi\)
0.786276 0.617876i \(-0.212006\pi\)
\(758\) − 24.0000i − 0.871719i
\(759\) 0 0
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) − 8.00000i − 0.289809i
\(763\) 0 0
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) −32.0000 −1.15621
\(767\) 24.0000i 0.866590i
\(768\) − 1.00000i − 0.0360844i
\(769\) 6.00000 0.216366 0.108183 0.994131i \(-0.465497\pi\)
0.108183 + 0.994131i \(0.465497\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) − 18.0000i − 0.647834i
\(773\) 2.00000i 0.0719350i 0.999353 + 0.0359675i \(0.0114513\pi\)
−0.999353 + 0.0359675i \(0.988549\pi\)
\(774\) 8.00000 0.287554
\(775\) 0 0
\(776\) 18.0000 0.646162
\(777\) 0 0
\(778\) 2.00000i 0.0717035i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 2.00000i 0.0715199i
\(783\) − 6.00000i − 0.214423i
\(784\) 7.00000 0.250000
\(785\) 0 0
\(786\) −4.00000 −0.142675
\(787\) 32.0000i 1.14068i 0.821410 + 0.570338i \(0.193188\pi\)
−0.821410 + 0.570338i \(0.806812\pi\)
\(788\) 22.0000i 0.783718i
\(789\) −8.00000 −0.284808
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) − 36.0000i − 1.27840i
\(794\) −6.00000 −0.212932
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) 54.0000i 1.91278i 0.292096 + 0.956389i \(0.405647\pi\)
−0.292096 + 0.956389i \(0.594353\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) − 26.0000i − 0.918092i
\(803\) 0 0
\(804\) 8.00000 0.282138
\(805\) 0 0
\(806\) 48.0000 1.69073
\(807\) 22.0000i 0.774437i
\(808\) 6.00000i 0.211079i
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) − 16.0000i − 0.561144i
\(814\) 0 0
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) 10.0000i 0.349642i
\(819\) 0 0
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) − 6.00000i − 0.209274i
\(823\) 56.0000i 1.95204i 0.217687 + 0.976019i \(0.430149\pi\)
−0.217687 + 0.976019i \(0.569851\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) 48.0000i 1.66912i 0.550914 + 0.834562i \(0.314279\pi\)
−0.550914 + 0.834562i \(0.685721\pi\)
\(828\) − 1.00000i − 0.0347524i
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) − 6.00000i − 0.208013i
\(833\) − 14.0000i − 0.485071i
\(834\) −4.00000 −0.138509
\(835\) 0 0
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 16.0000i 0.552711i
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 22.0000i 0.758170i
\(843\) 22.0000i 0.757720i
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) 8.00000 0.275046
\(847\) 0 0
\(848\) − 6.00000i − 0.206041i
\(849\) 24.0000 0.823678
\(850\) 0 0
\(851\) −10.0000 −0.342796
\(852\) − 8.00000i − 0.274075i
\(853\) − 50.0000i − 1.71197i −0.517003 0.855984i \(-0.672952\pi\)
0.517003 0.855984i \(-0.327048\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 10.0000i − 0.341593i −0.985306 0.170797i \(-0.945366\pi\)
0.985306 0.170797i \(-0.0546341\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 8.00000i 0.272481i
\(863\) 48.0000i 1.63394i 0.576681 + 0.816970i \(0.304348\pi\)
−0.576681 + 0.816970i \(0.695652\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) − 13.0000i − 0.441503i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 6.00000i 0.203186i
\(873\) 18.0000i 0.609208i
\(874\) 0 0
\(875\) 0 0
\(876\) −10.0000 −0.337869
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) 8.00000i 0.269987i
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) 7.00000i 0.235702i
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) 20.0000 0.671913
\(887\) − 16.0000i − 0.537227i −0.963248 0.268614i \(-0.913434\pi\)
0.963248 0.268614i \(-0.0865655\pi\)
\(888\) − 10.0000i − 0.335578i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) 0 0
\(897\) − 6.00000i − 0.200334i
\(898\) − 14.0000i − 0.467186i
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) 0 0
\(906\) 16.0000 0.531564
\(907\) − 8.00000i − 0.265636i −0.991140 0.132818i \(-0.957597\pi\)
0.991140 0.132818i \(-0.0424025\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 38.0000 1.25693
\(915\) 0 0
\(916\) 18.0000 0.594737
\(917\) 0 0
\(918\) − 2.00000i − 0.0660098i
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) − 6.00000i − 0.197599i
\(923\) − 48.0000i − 1.57994i
\(924\) 0 0
\(925\) 0 0
\(926\) −40.0000 −1.31448
\(927\) 8.00000i 0.262754i
\(928\) 6.00000i 0.196960i
\(929\) 14.0000 0.459325 0.229663 0.973270i \(-0.426238\pi\)
0.229663 + 0.973270i \(0.426238\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 22.0000i 0.720634i
\(933\) 0 0
\(934\) −8.00000 −0.261768
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) − 2.00000i − 0.0653372i −0.999466 0.0326686i \(-0.989599\pi\)
0.999466 0.0326686i \(-0.0104006\pi\)
\(938\) 0 0
\(939\) −6.00000 −0.195803
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 18.0000i 0.586472i
\(943\) 6.00000i 0.195387i
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) − 44.0000i − 1.42981i −0.699223 0.714904i \(-0.746470\pi\)
0.699223 0.714904i \(-0.253530\pi\)
\(948\) 8.00000i 0.259828i
\(949\) −60.0000 −1.94768
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) 0 0
\(953\) − 6.00000i − 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) − 60.0000i − 1.93448i
\(963\) 0 0
\(964\) −26.0000 −0.837404
\(965\) 0 0
\(966\) 0 0
\(967\) 56.0000i 1.80084i 0.435023 + 0.900419i \(0.356740\pi\)
−0.435023 + 0.900419i \(0.643260\pi\)
\(968\) − 11.0000i − 0.353553i
\(969\) 0 0
\(970\) 0 0
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) 0 0
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) − 50.0000i − 1.59964i −0.600239 0.799821i \(-0.704928\pi\)
0.600239 0.799821i \(-0.295072\pi\)
\(978\) − 12.0000i − 0.383718i
\(979\) 0 0
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) − 36.0000i − 1.14881i
\(983\) − 48.0000i − 1.53096i −0.643458 0.765481i \(-0.722501\pi\)
0.643458 0.765481i \(-0.277499\pi\)
\(984\) −6.00000 −0.191273
\(985\) 0 0
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) − 8.00000i − 0.254000i
\(993\) 20.0000i 0.634681i
\(994\) 0 0
\(995\) 0 0
\(996\) 8.00000 0.253490
\(997\) − 38.0000i − 1.20347i −0.798695 0.601736i \(-0.794476\pi\)
0.798695 0.601736i \(-0.205524\pi\)
\(998\) − 20.0000i − 0.633089i
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3450.2.d.e.2899.1 2
5.2 odd 4 690.2.a.h.1.1 1
5.3 odd 4 3450.2.a.j.1.1 1
5.4 even 2 inner 3450.2.d.e.2899.2 2
15.2 even 4 2070.2.a.h.1.1 1
20.7 even 4 5520.2.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
690.2.a.h.1.1 1 5.2 odd 4
2070.2.a.h.1.1 1 15.2 even 4
3450.2.a.j.1.1 1 5.3 odd 4
3450.2.d.e.2899.1 2 1.1 even 1 trivial
3450.2.d.e.2899.2 2 5.4 even 2 inner
5520.2.a.x.1.1 1 20.7 even 4