# Properties

 Label 3450.2.d.e Level $3450$ Weight $2$ Character orbit 3450.d Analytic conductor $27.548$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3450 = 2 \cdot 3 \cdot 5^{2} \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3450.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$27.5483886973$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 690) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{2} -i q^{3} - q^{4} - q^{6} + i q^{8} - q^{9} +O(q^{10})$$ $$q -i q^{2} -i q^{3} - q^{4} - q^{6} + i q^{8} - q^{9} + i q^{12} + 6 i q^{13} + q^{16} -2 i q^{17} + i q^{18} -i q^{23} + q^{24} + 6 q^{26} + i q^{27} -6 q^{29} + 8 q^{31} -i q^{32} -2 q^{34} + q^{36} -10 i q^{37} + 6 q^{39} -6 q^{41} -8 i q^{43} - q^{46} -8 i q^{47} -i q^{48} + 7 q^{49} -2 q^{51} -6 i q^{52} -6 i q^{53} + q^{54} + 6 i q^{58} + 4 q^{59} -6 q^{61} -8 i q^{62} - q^{64} -8 i q^{67} + 2 i q^{68} - q^{69} -8 q^{71} -i q^{72} + 10 i q^{73} -10 q^{74} -6 i q^{78} + 8 q^{79} + q^{81} + 6 i q^{82} -8 i q^{83} -8 q^{86} + 6 i q^{87} + 6 q^{89} + i q^{92} -8 i q^{93} -8 q^{94} - q^{96} -18 i q^{97} -7 i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10})$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} + 2q^{16} + 2q^{24} + 12q^{26} - 12q^{29} + 16q^{31} - 4q^{34} + 2q^{36} + 12q^{39} - 12q^{41} - 2q^{46} + 14q^{49} - 4q^{51} + 2q^{54} + 8q^{59} - 12q^{61} - 2q^{64} - 2q^{69} - 16q^{71} - 20q^{74} + 16q^{79} + 2q^{81} - 16q^{86} + 12q^{89} - 16q^{94} - 2q^{96} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3450\mathbb{Z}\right)^\times$$.

 $$n$$ $$277$$ $$1151$$ $$1201$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2899.1
 1.00000i − 1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 0 1.00000i −1.00000 0
2899.2 1.00000i 1.00000i −1.00000 0 −1.00000 0 1.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3450.2.d.e 2
5.b even 2 1 inner 3450.2.d.e 2
5.c odd 4 1 690.2.a.h 1
5.c odd 4 1 3450.2.a.j 1
15.e even 4 1 2070.2.a.h 1
20.e even 4 1 5520.2.a.x 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
690.2.a.h 1 5.c odd 4 1
2070.2.a.h 1 15.e even 4 1
3450.2.a.j 1 5.c odd 4 1
3450.2.d.e 2 1.a even 1 1 trivial
3450.2.d.e 2 5.b even 2 1 inner
5520.2.a.x 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3450, [\chi])$$:

 $$T_{7}$$ $$T_{11}$$ $$T_{13}^{2} + 36$$ $$T_{17}^{2} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$36 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$T^{2}$$
$23$ $$1 + T^{2}$$
$29$ $$( 6 + T )^{2}$$
$31$ $$( -8 + T )^{2}$$
$37$ $$100 + T^{2}$$
$41$ $$( 6 + T )^{2}$$
$43$ $$64 + T^{2}$$
$47$ $$64 + T^{2}$$
$53$ $$36 + T^{2}$$
$59$ $$( -4 + T )^{2}$$
$61$ $$( 6 + T )^{2}$$
$67$ $$64 + T^{2}$$
$71$ $$( 8 + T )^{2}$$
$73$ $$100 + T^{2}$$
$79$ $$( -8 + T )^{2}$$
$83$ $$64 + T^{2}$$
$89$ $$( -6 + T )^{2}$$
$97$ $$324 + T^{2}$$