# Properties

 Label 3450.2.d.b Level $3450$ Weight $2$ Character orbit 3450.d Analytic conductor $27.548$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3450 = 2 \cdot 3 \cdot 5^{2} \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3450.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$27.5483886973$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} + i q^{3} - q^{4} - q^{6} + 3 i q^{7} -i q^{8} - q^{9} +O(q^{10})$$ $$q + i q^{2} + i q^{3} - q^{4} - q^{6} + 3 i q^{7} -i q^{8} - q^{9} -3 q^{11} -i q^{12} + 3 i q^{13} -3 q^{14} + q^{16} -4 i q^{17} -i q^{18} + 3 q^{19} -3 q^{21} -3 i q^{22} + i q^{23} + q^{24} -3 q^{26} -i q^{27} -3 i q^{28} -3 q^{29} -10 q^{31} + i q^{32} -3 i q^{33} + 4 q^{34} + q^{36} -8 i q^{37} + 3 i q^{38} -3 q^{39} -9 q^{41} -3 i q^{42} -i q^{43} + 3 q^{44} - q^{46} + 2 i q^{47} + i q^{48} -2 q^{49} + 4 q^{51} -3 i q^{52} + 6 i q^{53} + q^{54} + 3 q^{56} + 3 i q^{57} -3 i q^{58} -8 q^{59} + 12 q^{61} -10 i q^{62} -3 i q^{63} - q^{64} + 3 q^{66} + 8 i q^{67} + 4 i q^{68} - q^{69} -14 q^{71} + i q^{72} -13 i q^{73} + 8 q^{74} -3 q^{76} -9 i q^{77} -3 i q^{78} + 17 q^{79} + q^{81} -9 i q^{82} -i q^{83} + 3 q^{84} + q^{86} -3 i q^{87} + 3 i q^{88} + 6 q^{89} -9 q^{91} -i q^{92} -10 i q^{93} -2 q^{94} - q^{96} + 6 i q^{97} -2 i q^{98} + 3 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10})$$ $$2q - 2q^{4} - 2q^{6} - 2q^{9} - 6q^{11} - 6q^{14} + 2q^{16} + 6q^{19} - 6q^{21} + 2q^{24} - 6q^{26} - 6q^{29} - 20q^{31} + 8q^{34} + 2q^{36} - 6q^{39} - 18q^{41} + 6q^{44} - 2q^{46} - 4q^{49} + 8q^{51} + 2q^{54} + 6q^{56} - 16q^{59} + 24q^{61} - 2q^{64} + 6q^{66} - 2q^{69} - 28q^{71} + 16q^{74} - 6q^{76} + 34q^{79} + 2q^{81} + 6q^{84} + 2q^{86} + 12q^{89} - 18q^{91} - 4q^{94} - 2q^{96} + 6q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3450\mathbb{Z}\right)^\times$$.

 $$n$$ $$277$$ $$1151$$ $$1201$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
2899.1
 − 1.00000i 1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 3.00000i 1.00000i −1.00000 0
2899.2 1.00000i 1.00000i −1.00000 0 −1.00000 3.00000i 1.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3450.2.d.b 2
5.b even 2 1 inner 3450.2.d.b 2
5.c odd 4 1 3450.2.a.h 1
5.c odd 4 1 3450.2.a.s yes 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3450.2.a.h 1 5.c odd 4 1
3450.2.a.s yes 1 5.c odd 4 1
3450.2.d.b 2 1.a even 1 1 trivial
3450.2.d.b 2 5.b even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(3450, [\chi])$$:

 $$T_{7}^{2} + 9$$ $$T_{11} + 3$$ $$T_{13}^{2} + 9$$ $$T_{17}^{2} + 16$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$9 + T^{2}$$
$11$ $$( 3 + T )^{2}$$
$13$ $$9 + T^{2}$$
$17$ $$16 + T^{2}$$
$19$ $$( -3 + T )^{2}$$
$23$ $$1 + T^{2}$$
$29$ $$( 3 + T )^{2}$$
$31$ $$( 10 + T )^{2}$$
$37$ $$64 + T^{2}$$
$41$ $$( 9 + T )^{2}$$
$43$ $$1 + T^{2}$$
$47$ $$4 + T^{2}$$
$53$ $$36 + T^{2}$$
$59$ $$( 8 + T )^{2}$$
$61$ $$( -12 + T )^{2}$$
$67$ $$64 + T^{2}$$
$71$ $$( 14 + T )^{2}$$
$73$ $$169 + T^{2}$$
$79$ $$( -17 + T )^{2}$$
$83$ $$1 + T^{2}$$
$89$ $$( -6 + T )^{2}$$
$97$ $$36 + T^{2}$$