Properties

Label 3450.2.a.bi
Level $3450$
Weight $2$
Character orbit 3450.a
Self dual yes
Analytic conductor $27.548$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 3450 = 2 \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3450.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(27.5483886973\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \(x^{2} - x - 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} + ( 1 + \beta ) q^{7} - q^{8} + q^{9} +O(q^{10})\) \( q - q^{2} + q^{3} + q^{4} - q^{6} + ( 1 + \beta ) q^{7} - q^{8} + q^{9} + ( 1 + \beta ) q^{11} + q^{12} -2 q^{13} + ( -1 - \beta ) q^{14} + q^{16} + ( -3 - \beta ) q^{17} - q^{18} + 4 q^{19} + ( 1 + \beta ) q^{21} + ( -1 - \beta ) q^{22} - q^{23} - q^{24} + 2 q^{26} + q^{27} + ( 1 + \beta ) q^{28} + 2 q^{29} - q^{32} + ( 1 + \beta ) q^{33} + ( 3 + \beta ) q^{34} + q^{36} + ( 3 + \beta ) q^{37} -4 q^{38} -2 q^{39} + 2 q^{41} + ( -1 - \beta ) q^{42} + ( 1 + \beta ) q^{44} + q^{46} + 8 q^{47} + q^{48} + ( 11 + 2 \beta ) q^{49} + ( -3 - \beta ) q^{51} -2 q^{52} + ( -4 + 2 \beta ) q^{53} - q^{54} + ( -1 - \beta ) q^{56} + 4 q^{57} -2 q^{58} + ( -6 - 2 \beta ) q^{59} + ( 5 - \beta ) q^{61} + ( 1 + \beta ) q^{63} + q^{64} + ( -1 - \beta ) q^{66} + 8 q^{67} + ( -3 - \beta ) q^{68} - q^{69} + ( -2 + 2 \beta ) q^{71} - q^{72} + ( -4 - 2 \beta ) q^{73} + ( -3 - \beta ) q^{74} + 4 q^{76} + ( 18 + 2 \beta ) q^{77} + 2 q^{78} + ( -1 - \beta ) q^{79} + q^{81} -2 q^{82} + ( 1 - 3 \beta ) q^{83} + ( 1 + \beta ) q^{84} + 2 q^{87} + ( -1 - \beta ) q^{88} + ( -1 + \beta ) q^{89} + ( -2 - 2 \beta ) q^{91} - q^{92} -8 q^{94} - q^{96} + ( 8 - 2 \beta ) q^{97} + ( -11 - 2 \beta ) q^{98} + ( 1 + \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} + 2q^{3} + 2q^{4} - 2q^{6} + 2q^{7} - 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{2} + 2q^{3} + 2q^{4} - 2q^{6} + 2q^{7} - 2q^{8} + 2q^{9} + 2q^{11} + 2q^{12} - 4q^{13} - 2q^{14} + 2q^{16} - 6q^{17} - 2q^{18} + 8q^{19} + 2q^{21} - 2q^{22} - 2q^{23} - 2q^{24} + 4q^{26} + 2q^{27} + 2q^{28} + 4q^{29} - 2q^{32} + 2q^{33} + 6q^{34} + 2q^{36} + 6q^{37} - 8q^{38} - 4q^{39} + 4q^{41} - 2q^{42} + 2q^{44} + 2q^{46} + 16q^{47} + 2q^{48} + 22q^{49} - 6q^{51} - 4q^{52} - 8q^{53} - 2q^{54} - 2q^{56} + 8q^{57} - 4q^{58} - 12q^{59} + 10q^{61} + 2q^{63} + 2q^{64} - 2q^{66} + 16q^{67} - 6q^{68} - 2q^{69} - 4q^{71} - 2q^{72} - 8q^{73} - 6q^{74} + 8q^{76} + 36q^{77} + 4q^{78} - 2q^{79} + 2q^{81} - 4q^{82} + 2q^{83} + 2q^{84} + 4q^{87} - 2q^{88} - 2q^{89} - 4q^{91} - 2q^{92} - 16q^{94} - 2q^{96} + 16q^{97} - 22q^{98} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−1.00000 1.00000 1.00000 0 −1.00000 −3.12311 −1.00000 1.00000 0
1.2 −1.00000 1.00000 1.00000 0 −1.00000 5.12311 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3450.2.a.bi 2
5.b even 2 1 690.2.a.l 2
5.c odd 4 2 3450.2.d.v 4
15.d odd 2 1 2070.2.a.t 2
20.d odd 2 1 5520.2.a.bs 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
690.2.a.l 2 5.b even 2 1
2070.2.a.t 2 15.d odd 2 1
3450.2.a.bi 2 1.a even 1 1 trivial
3450.2.d.v 4 5.c odd 4 2
5520.2.a.bs 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3450))\):

\( T_{7}^{2} - 2 T_{7} - 16 \)
\( T_{11}^{2} - 2 T_{11} - 16 \)
\( T_{13} + 2 \)
\( T_{17}^{2} + 6 T_{17} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ \( ( -1 + T )^{2} \)
$5$ \( T^{2} \)
$7$ \( -16 - 2 T + T^{2} \)
$11$ \( -16 - 2 T + T^{2} \)
$13$ \( ( 2 + T )^{2} \)
$17$ \( -8 + 6 T + T^{2} \)
$19$ \( ( -4 + T )^{2} \)
$23$ \( ( 1 + T )^{2} \)
$29$ \( ( -2 + T )^{2} \)
$31$ \( T^{2} \)
$37$ \( -8 - 6 T + T^{2} \)
$41$ \( ( -2 + T )^{2} \)
$43$ \( T^{2} \)
$47$ \( ( -8 + T )^{2} \)
$53$ \( -52 + 8 T + T^{2} \)
$59$ \( -32 + 12 T + T^{2} \)
$61$ \( 8 - 10 T + T^{2} \)
$67$ \( ( -8 + T )^{2} \)
$71$ \( -64 + 4 T + T^{2} \)
$73$ \( -52 + 8 T + T^{2} \)
$79$ \( -16 + 2 T + T^{2} \)
$83$ \( -152 - 2 T + T^{2} \)
$89$ \( -16 + 2 T + T^{2} \)
$97$ \( -4 - 16 T + T^{2} \)
show more
show less