Defining parameters
Level: | \( N \) | \(=\) | \( 345 = 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 345.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(345, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 200 | 88 | 112 |
Cusp forms | 184 | 88 | 96 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(345, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
345.3.k.a | \(88\) | \(9.401\) | None | \(8\) | \(0\) | \(16\) | \(16\) |
Decomposition of \(S_{3}^{\mathrm{old}}(345, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(345, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)