Properties

Label 345.2.c
Level $345$
Weight $2$
Character orbit 345.c
Rep. character $\chi_{345}(206,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $2$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 345 = 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 345.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(345, [\chi])\).

Total New Old
Modular forms 52 32 20
Cusp forms 44 32 12
Eisenstein series 8 0 8

Trace form

\( 32 q - 28 q^{4} + 2 q^{6} - 4 q^{9} + 6 q^{12} - 4 q^{16} - 22 q^{18} + 32 q^{25} - 12 q^{27} - 16 q^{31} + 58 q^{36} + 8 q^{39} - 12 q^{46} - 46 q^{48} - 64 q^{49} - 4 q^{52} + 52 q^{54} - 16 q^{55} - 84 q^{58}+ \cdots - 26 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(345, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
345.2.c.a 345.c 69.c $16$ $2.755$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 345.2.c.a \(0\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{6}q^{3}+(-1+\beta _{2})q^{4}-q^{5}+\cdots\)
345.2.c.b 345.c 69.c $16$ $2.755$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 345.2.c.a \(0\) \(0\) \(16\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{6}q^{3}+(-1+\beta _{2})q^{4}+q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(345, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(345, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)