Properties

Label 344.1.s.a.219.1
Level $344$
Weight $1$
Character 344.219
Analytic conductor $0.172$
Analytic rank $0$
Dimension $6$
Projective image $D_{7}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [344,1,Mod(11,344)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("344.11"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(344, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 7, 10])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 344 = 2^{3} \cdot 43 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 344.s (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.171678364346\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.3236537881088.1

Embedding invariants

Embedding label 219.1
Root \(0.900969 - 0.433884i\) of defining polynomial
Character \(\chi\) \(=\) 344.219
Dual form 344.1.s.a.11.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.623490 - 0.781831i) q^{2} +(-0.277479 - 0.347948i) q^{3} +(-0.222521 - 0.974928i) q^{4} -0.445042 q^{6} +(-0.900969 - 0.433884i) q^{8} +(0.178448 - 0.781831i) q^{9} +(-0.277479 + 1.21572i) q^{11} +(-0.277479 + 0.347948i) q^{12} +(-0.900969 + 0.433884i) q^{16} +(0.400969 - 0.193096i) q^{17} +(-0.500000 - 0.626980i) q^{18} +(0.0990311 + 0.433884i) q^{19} +(0.777479 + 0.974928i) q^{22} +(0.0990311 + 0.433884i) q^{24} +(0.623490 + 0.781831i) q^{25} +(-0.722521 + 0.347948i) q^{27} +(-0.222521 + 0.974928i) q^{32} +(0.500000 - 0.240787i) q^{33} +(0.0990311 - 0.433884i) q^{34} -0.801938 q^{36} +(0.400969 + 0.193096i) q^{38} +(-1.12349 + 1.40881i) q^{41} +(0.623490 - 0.781831i) q^{43} +1.24698 q^{44} +(0.400969 + 0.193096i) q^{48} +1.00000 q^{49} +1.00000 q^{50} +(-0.178448 - 0.0859360i) q^{51} +(-0.178448 + 0.781831i) q^{54} +(0.123490 - 0.154851i) q^{57} +(-1.12349 + 0.541044i) q^{59} +(0.623490 + 0.781831i) q^{64} +(0.123490 - 0.541044i) q^{66} +(-0.445042 - 1.94986i) q^{67} +(-0.277479 - 0.347948i) q^{68} +(-0.500000 + 0.626980i) q^{72} +(-1.80194 - 0.867767i) q^{73} +(0.0990311 - 0.433884i) q^{75} +(0.400969 - 0.193096i) q^{76} +(-0.400969 - 0.193096i) q^{81} +(0.400969 + 1.75676i) q^{82} +(0.777479 + 0.974928i) q^{83} +(-0.222521 - 0.974928i) q^{86} +(0.777479 - 0.974928i) q^{88} +(-1.12349 - 1.40881i) q^{89} +(0.400969 - 0.193096i) q^{96} +(-0.277479 + 1.21572i) q^{97} +(0.623490 - 0.781831i) q^{98} +(0.900969 + 0.433884i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 2 q^{3} - q^{4} - 2 q^{6} - q^{8} - 3 q^{9} - 2 q^{11} - 2 q^{12} - q^{16} - 2 q^{17} - 3 q^{18} + 5 q^{19} + 5 q^{22} + 5 q^{24} - q^{25} - 4 q^{27} - q^{32} + 3 q^{33} + 5 q^{34} + 4 q^{36}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/344\mathbb{Z}\right)^\times\).

\(n\) \(87\) \(89\) \(173\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{7}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.623490 0.781831i 0.623490 0.781831i
\(3\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(4\) −0.222521 0.974928i −0.222521 0.974928i
\(5\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(6\) −0.445042 −0.445042
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −0.900969 0.433884i −0.900969 0.433884i
\(9\) 0.178448 0.781831i 0.178448 0.781831i
\(10\) 0 0
\(11\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(12\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(13\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(17\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(18\) −0.500000 0.626980i −0.500000 0.626980i
\(19\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 \(0\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(23\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(24\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(25\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(26\) 0 0
\(27\) −0.722521 + 0.347948i −0.722521 + 0.347948i
\(28\) 0 0
\(29\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(30\) 0 0
\(31\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(32\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(33\) 0.500000 0.240787i 0.500000 0.240787i
\(34\) 0.0990311 0.433884i 0.0990311 0.433884i
\(35\) 0 0
\(36\) −0.801938 −0.801938
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(42\) 0 0
\(43\) 0.623490 0.781831i 0.623490 0.781831i
\(44\) 1.24698 1.24698
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(48\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(49\) 1.00000 1.00000
\(50\) 1.00000 1.00000
\(51\) −0.178448 0.0859360i −0.178448 0.0859360i
\(52\) 0 0
\(53\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(54\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.123490 0.154851i 0.123490 0.154851i
\(58\) 0 0
\(59\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(60\) 0 0
\(61\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(65\) 0 0
\(66\) 0.123490 0.541044i 0.123490 0.541044i
\(67\) −0.445042 1.94986i −0.445042 1.94986i −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(68\) −0.277479 0.347948i −0.277479 0.347948i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(72\) −0.500000 + 0.626980i −0.500000 + 0.626980i
\(73\) −1.80194 0.867767i −1.80194 0.867767i −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 0.433884i \(-0.857143\pi\)
\(74\) 0 0
\(75\) 0.0990311 0.433884i 0.0990311 0.433884i
\(76\) 0.400969 0.193096i 0.400969 0.193096i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −0.400969 0.193096i −0.400969 0.193096i
\(82\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(83\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.222521 0.974928i −0.222521 0.974928i
\(87\) 0 0
\(88\) 0.777479 0.974928i 0.777479 0.974928i
\(89\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.400969 0.193096i 0.400969 0.193096i
\(97\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(98\) 0.623490 0.781831i 0.623490 0.781831i
\(99\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(100\) 0.623490 0.781831i 0.623490 0.781831i
\(101\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(102\) −0.178448 + 0.0859360i −0.178448 + 0.0859360i
\(103\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(108\) 0.500000 + 0.626980i 0.500000 + 0.626980i
\(109\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(114\) −0.0440730 0.193096i −0.0440730 0.193096i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 0.240787i −0.500000 0.240787i
\(122\) 0 0
\(123\) 0.801938 0.801938
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(128\) 1.00000 1.00000
\(129\) −0.445042 −0.445042
\(130\) 0 0
\(131\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(132\) −0.346011 0.433884i −0.346011 0.433884i
\(133\) 0 0
\(134\) −1.80194 0.867767i −1.80194 0.867767i
\(135\) 0 0
\(136\) −0.445042 −0.445042
\(137\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(138\) 0 0
\(139\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.178448 + 0.781831i 0.178448 + 0.781831i
\(145\) 0 0
\(146\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(147\) −0.277479 0.347948i −0.277479 0.347948i
\(148\) 0 0
\(149\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(150\) −0.277479 0.347948i −0.277479 0.347948i
\(151\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(152\) 0.0990311 0.433884i 0.0990311 0.433884i
\(153\) −0.0794168 0.347948i −0.0794168 0.347948i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −0.400969 + 0.193096i −0.400969 + 0.193096i
\(163\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(164\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(165\) 0 0
\(166\) 1.24698 1.24698
\(167\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(168\) 0 0
\(169\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(170\) 0 0
\(171\) 0.356896 0.356896
\(172\) −0.900969 0.433884i −0.900969 0.433884i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.277479 1.21572i −0.277479 1.21572i
\(177\) 0.500000 + 0.240787i 0.500000 + 0.240787i
\(178\) −1.80194 −1.80194
\(179\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(180\) 0 0
\(181\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(192\) 0.0990311 0.433884i 0.0990311 0.433884i
\(193\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(194\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(195\) 0 0
\(196\) −0.222521 0.974928i −0.222521 0.974928i
\(197\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(198\) 0.900969 0.433884i 0.900969 0.433884i
\(199\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(200\) −0.222521 0.974928i −0.222521 0.974928i
\(201\) −0.554958 + 0.695895i −0.554958 + 0.695895i
\(202\) 0 0
\(203\) 0 0
\(204\) −0.0440730 + 0.193096i −0.0440730 + 0.193096i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.554958 −0.554958
\(210\) 0 0
\(211\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.80194 −1.80194
\(215\) 0 0
\(216\) 0.801938 0.801938
\(217\) 0 0
\(218\) 0 0
\(219\) 0.198062 + 0.867767i 0.198062 + 0.867767i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(224\) 0 0
\(225\) 0.722521 0.347948i 0.722521 0.347948i
\(226\) 0.0990311 0.433884i 0.0990311 0.433884i
\(227\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(228\) −0.178448 0.0859360i −0.178448 0.0859360i
\(229\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(240\) 0 0
\(241\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(242\) −0.500000 + 0.240787i −0.500000 + 0.240787i
\(243\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.500000 0.626980i 0.500000 0.626980i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.123490 0.541044i 0.123490 0.541044i
\(250\) 0 0
\(251\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.623490 0.781831i 0.623490 0.781831i
\(257\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(258\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(263\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(264\) −0.554958 −0.554958
\(265\) 0 0
\(266\) 0 0
\(267\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(268\) −1.80194 + 0.867767i −1.80194 + 0.867767i
\(269\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(270\) 0 0
\(271\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(272\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(273\) 0 0
\(274\) −1.12349 + 0.541044i −1.12349 + 0.541044i
\(275\) −1.12349 + 0.541044i −1.12349 + 0.541044i
\(276\) 0 0
\(277\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(278\) 0.400969 1.75676i 0.400969 1.75676i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.445042 + 1.94986i −0.445042 + 1.94986i −0.222521 + 0.974928i \(0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(282\) 0 0
\(283\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.722521 + 0.347948i 0.722521 + 0.347948i
\(289\) −0.500000 + 0.626980i −0.500000 + 0.626980i
\(290\) 0 0
\(291\) 0.500000 0.240787i 0.500000 0.240787i
\(292\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(293\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(294\) −0.445042 −0.445042
\(295\) 0 0
\(296\) 0 0
\(297\) −0.222521 0.974928i −0.222521 0.974928i
\(298\) 0 0
\(299\) 0 0
\(300\) −0.445042 −0.445042
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −0.277479 0.347948i −0.277479 0.347948i
\(305\) 0 0
\(306\) −0.321552 0.154851i −0.321552 0.154851i
\(307\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(312\) 0 0
\(313\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(322\) 0 0
\(323\) 0.123490 + 0.154851i 0.123490 + 0.154851i
\(324\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(325\) 0 0
\(326\) −1.12349 1.40881i −1.12349 1.40881i
\(327\) 0 0
\(328\) 1.62349 0.781831i 1.62349 0.781831i
\(329\) 0 0
\(330\) 0 0
\(331\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(332\) 0.777479 0.974928i 0.777479 0.974928i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(338\) 1.00000 1.00000
\(339\) −0.178448 0.0859360i −0.178448 0.0859360i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.222521 0.279032i 0.222521 0.279032i
\(343\) 0 0
\(344\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(348\) 0 0
\(349\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.12349 0.541044i −1.12349 0.541044i
\(353\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(354\) 0.500000 0.240787i 0.500000 0.240787i
\(355\) 0 0
\(356\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(357\) 0 0
\(358\) 0.777479 0.974928i 0.777479 0.974928i
\(359\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(360\) 0 0
\(361\) 0.722521 0.347948i 0.722521 0.347948i
\(362\) 0 0
\(363\) 0.0549581 + 0.240787i 0.0549581 + 0.240787i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(368\) 0 0
\(369\) 0.900969 + 1.12978i 0.900969 + 1.12978i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(374\) 0.500000 + 0.240787i 0.500000 + 0.240787i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(384\) −0.277479 0.347948i −0.277479 0.347948i
\(385\) 0 0
\(386\) 1.24698 1.24698
\(387\) −0.500000 0.626980i −0.500000 0.626980i
\(388\) 1.24698 1.24698
\(389\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.900969 0.433884i −0.900969 0.433884i
\(393\) 0.801938 0.801938
\(394\) 0 0
\(395\) 0 0
\(396\) 0.222521 0.974928i 0.222521 0.974928i
\(397\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.900969 0.433884i −0.900969 0.433884i
\(401\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(402\) 0.198062 + 0.867767i 0.198062 + 0.867767i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.123490 + 0.154851i 0.123490 + 0.154851i
\(409\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(410\) 0 0
\(411\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.722521 0.347948i −0.722521 0.347948i
\(418\) −0.346011 + 0.433884i −0.346011 + 0.433884i
\(419\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(420\) 0 0
\(421\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(422\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(423\) 0 0
\(424\) 0 0
\(425\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0.500000 0.626980i 0.500000 0.626980i
\(433\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.801938 + 0.386193i 0.801938 + 0.386193i
\(439\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(440\) 0 0
\(441\) 0.178448 0.781831i 0.178448 0.781831i
\(442\) 0 0
\(443\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(450\) 0.178448 0.781831i 0.178448 0.781831i
\(451\) −1.40097 1.75676i −1.40097 1.75676i
\(452\) −0.277479 0.347948i −0.277479 0.347948i
\(453\) 0 0
\(454\) −0.277479 1.21572i −0.277479 1.21572i
\(455\) 0 0
\(456\) −0.178448 + 0.0859360i −0.178448 + 0.0859360i
\(457\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(458\) 0 0
\(459\) −0.222521 + 0.279032i −0.222521 + 0.279032i
\(460\) 0 0
\(461\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(462\) 0 0
\(463\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −0.445042 −0.445042
\(467\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.24698 1.24698
\(473\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(474\) 0 0
\(475\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(483\) 0 0
\(484\) −0.123490 + 0.541044i −0.123490 + 0.541044i
\(485\) 0 0
\(486\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(487\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(488\) 0 0
\(489\) −0.722521 + 0.347948i −0.722521 + 0.347948i
\(490\) 0 0
\(491\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(492\) −0.178448 0.781831i −0.178448 0.781831i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.346011 0.433884i −0.346011 0.433884i
\(499\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.24698 1.56366i 1.24698 1.56366i
\(503\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.0990311 0.433884i 0.0990311 0.433884i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.222521 0.974928i −0.222521 0.974928i
\(513\) −0.222521 0.279032i −0.222521 0.279032i
\(514\) 1.24698 1.56366i 1.24698 1.56366i
\(515\) 0 0
\(516\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(522\) 0 0
\(523\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(524\) 1.62349 + 0.781831i 1.62349 + 0.781831i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.346011 + 0.433884i −0.346011 + 0.433884i
\(529\) −0.900969 0.433884i −0.900969 0.433884i
\(530\) 0 0
\(531\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(532\) 0 0
\(533\) 0 0
\(534\) 0.500000 + 0.626980i 0.500000 + 0.626980i
\(535\) 0 0
\(536\) −0.445042 + 1.94986i −0.445042 + 1.94986i
\(537\) −0.346011 0.433884i −0.346011 0.433884i
\(538\) 0 0
\(539\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(540\) 0 0
\(541\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(548\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(549\) 0 0
\(550\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.12349 1.40881i −1.12349 1.40881i
\(557\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.153989 0.193096i 0.153989 0.193096i
\(562\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(563\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.445042 −0.445042
\(567\) 0 0
\(568\) 0 0
\(569\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(570\) 0 0
\(571\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.722521 0.347948i 0.722521 0.347948i
\(577\) 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 \(0\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(578\) 0.178448 + 0.781831i 0.178448 + 0.781831i
\(579\) 0.123490 0.541044i 0.123490 0.541044i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.123490 0.541044i 0.123490 0.541044i
\(583\) 0 0
\(584\) 1.24698 + 1.56366i 1.24698 + 1.56366i
\(585\) 0 0
\(586\) 0 0
\(587\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(588\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(594\) −0.900969 0.433884i −0.900969 0.433884i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(600\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(601\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(602\) 0 0
\(603\) −1.60388 −1.60388
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(608\) −0.445042 −0.445042
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.321552 + 0.154851i −0.321552 + 0.154851i
\(613\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(614\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 \(0\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(618\) 0 0
\(619\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(626\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(627\) 0.153989 + 0.193096i 0.153989 + 0.193096i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(632\) 0 0
\(633\) 0.500000 0.626980i 0.500000 0.626980i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(642\) 0.500000 + 0.626980i 0.500000 + 0.626980i
\(643\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.198062 0.198062
\(647\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(648\) 0.277479 + 0.347948i 0.277479 + 0.347948i
\(649\) −0.346011 1.51597i −0.346011 1.51597i
\(650\) 0 0
\(651\) 0 0
\(652\) −1.80194 −1.80194
\(653\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.400969 1.75676i 0.400969 1.75676i
\(657\) −1.00000 + 1.25396i −1.00000 + 1.25396i
\(658\) 0 0
\(659\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(660\) 0 0
\(661\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(662\) −1.12349 + 0.541044i −1.12349 + 0.541044i
\(663\) 0 0
\(664\) −0.277479 1.21572i −0.277479 1.21572i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(674\) 0.777479 0.974928i 0.777479 0.974928i
\(675\) −0.722521 0.347948i −0.722521 0.347948i
\(676\) 0.623490 0.781831i 0.623490 0.781831i
\(677\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) −0.178448 + 0.0859360i −0.178448 + 0.0859360i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.554958 −0.554958
\(682\) 0 0
\(683\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(684\) −0.0794168 0.347948i −0.0794168 0.347948i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.24698 + 1.56366i 1.24698 + 1.56366i 0.623490 + 0.781831i \(0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.445042 −0.445042
\(695\) 0 0
\(696\) 0 0
\(697\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(698\) 0 0
\(699\) −0.0440730 + 0.193096i −0.0440730 + 0.193096i
\(700\) 0 0
\(701\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.12349 + 0.541044i −1.12349 + 0.541044i
\(705\) 0 0
\(706\) −1.12349 1.40881i −1.12349 1.40881i
\(707\) 0 0
\(708\) 0.123490 0.541044i 0.123490 0.541044i
\(709\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −0.277479 1.21572i −0.277479 1.21572i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.178448 0.781831i 0.178448 0.781831i
\(723\) 0.500000 + 0.240787i 0.500000 + 0.240787i
\(724\) 0 0
\(725\) 0 0
\(726\) 0.222521 + 0.107160i 0.222521 + 0.107160i
\(727\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.0990311 0.433884i 0.0990311 0.433884i
\(732\) 0 0
\(733\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.49396 2.49396
\(738\) 1.44504 1.44504
\(739\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.900969 0.433884i 0.900969 0.433884i
\(748\) 0.500000 0.240787i 0.500000 0.240787i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(752\) 0 0
\(753\) −0.554958 0.695895i −0.554958 0.695895i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) −1.12349 + 0.541044i −1.12349 + 0.541044i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.445042 −0.445042
\(769\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(770\) 0 0
\(771\) −0.554958 0.695895i −0.554958 0.695895i
\(772\) 0.777479 0.974928i 0.777479 0.974928i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −0.801938 −0.801938
\(775\) 0 0
\(776\) 0.777479 0.974928i 0.777479 0.974928i
\(777\) 0 0
\(778\) 0 0
\(779\) −0.722521 0.347948i −0.722521 0.347948i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(785\) 0 0
\(786\) 0.500000 0.626980i 0.500000 0.626980i
\(787\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.623490 0.781831i −0.623490 0.781831i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(801\) −1.30194 + 0.626980i −1.30194 + 0.626980i
\(802\) −0.277479 1.21572i −0.277479 1.21572i
\(803\) 1.55496 1.94986i 1.55496 1.94986i
\(804\) 0.801938 + 0.386193i 0.801938 + 0.386193i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0 0
\(811\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0.198062 0.198062
\(817\) 0.400969 + 0.193096i 0.400969 + 0.193096i
\(818\) −1.80194 −1.80194
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(822\) 0.500000 + 0.240787i 0.500000 + 0.240787i
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0.500000 + 0.240787i 0.500000 + 0.240787i
\(826\) 0 0
\(827\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(828\) 0 0
\(829\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.400969 0.193096i 0.400969 0.193096i
\(834\) −0.722521 + 0.347948i −0.722521 + 0.347948i
\(835\) 0 0
\(836\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(837\) 0 0
\(838\) −1.12349 1.40881i −1.12349 1.40881i
\(839\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(840\) 0 0
\(841\) −0.222521 0.974928i −0.222521 0.974928i
\(842\) 0 0
\(843\) 0.801938 0.386193i 0.801938 0.386193i
\(844\) 1.62349 0.781831i 1.62349 0.781831i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.0440730 + 0.193096i −0.0440730 + 0.193096i
\(850\) 0.400969 0.193096i 0.400969 0.193096i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.400969 + 1.75676i 0.400969 + 1.75676i
\(857\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(858\) 0 0
\(859\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(864\) −0.178448 0.781831i −0.178448 0.781831i
\(865\) 0 0
\(866\) −1.80194 −1.80194
\(867\) 0.356896 0.356896
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(874\) 0 0
\(875\) 0 0
\(876\) 0.801938 0.386193i 0.801938 0.386193i
\(877\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(882\) −0.500000 0.626980i −0.500000 0.626980i
\(883\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.62349 0.781831i 1.62349 0.781831i
\(887\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.346011 0.433884i 0.346011 0.433884i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −1.12349 0.541044i −1.12349 0.541044i
\(899\) 0 0
\(900\) −0.500000 0.626980i −0.500000 0.626980i
\(901\) 0 0
\(902\) −2.24698 −2.24698
\(903\) 0 0
\(904\) −0.445042 −0.445042
\(905\) 0 0
\(906\) 0 0
\(907\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(908\) −1.12349 0.541044i −1.12349 0.541044i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(912\) −0.0440730 + 0.193096i −0.0440730 + 0.193096i
\(913\) −1.40097 + 0.674671i −1.40097 + 0.674671i
\(914\) 0.400969 1.75676i 0.400969 1.75676i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.0794168 + 0.347948i 0.0794168 + 0.347948i
\(919\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(920\) 0 0
\(921\) 0.123490 + 0.154851i 0.123490 + 0.154851i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.80194 + 0.867767i −1.80194 + 0.867767i −0.900969 + 0.433884i \(0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(930\) 0 0
\(931\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(932\) −0.277479 + 0.347948i −0.277479 + 0.347948i
\(933\) 0 0
\(934\) −1.12349 + 1.40881i −1.12349 + 1.40881i
\(935\) 0 0
\(936\) 0 0
\(937\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(938\) 0 0
\(939\) 0.801938 0.801938
\(940\) 0 0
\(941\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0.777479 0.974928i 0.777479 0.974928i
\(945\) 0 0
\(946\) 1.24698 1.24698
\(947\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.0990311 + 0.433884i 0.0990311 + 0.433884i
\(951\) 0 0
\(952\) 0 0
\(953\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.222521 0.974928i −0.222521 0.974928i
\(962\) 0 0
\(963\) −1.30194 + 0.626980i −1.30194 + 0.626980i
\(964\) 0.777479 + 0.974928i 0.777479 + 0.974928i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(968\) 0.346011 + 0.433884i 0.346011 + 0.433884i
\(969\) 0.0196143 0.0859360i 0.0196143 0.0859360i
\(970\) 0 0
\(971\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(972\) 0.900969 0.433884i 0.900969 0.433884i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(978\) −0.178448 + 0.781831i −0.178448 + 0.781831i
\(979\) 2.02446 0.974928i 2.02446 0.974928i
\(980\) 0 0
\(981\) 0 0
\(982\) −0.445042 −0.445042
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) −0.722521 0.347948i −0.722521 0.347948i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(992\) 0 0
\(993\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(994\) 0 0
\(995\) 0 0
\(996\) −0.554958 −0.554958
\(997\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(998\) −0.277479 + 1.21572i −0.277479 + 1.21572i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 344.1.s.a.219.1 yes 6
3.2 odd 2 3096.1.dm.a.2971.1 6
4.3 odd 2 1376.1.be.a.47.1 6
8.3 odd 2 CM 344.1.s.a.219.1 yes 6
8.5 even 2 1376.1.be.a.47.1 6
24.11 even 2 3096.1.dm.a.2971.1 6
43.11 even 7 inner 344.1.s.a.11.1 6
129.11 odd 14 3096.1.dm.a.1387.1 6
172.11 odd 14 1376.1.be.a.527.1 6
344.11 odd 14 inner 344.1.s.a.11.1 6
344.269 even 14 1376.1.be.a.527.1 6
1032.11 even 14 3096.1.dm.a.1387.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
344.1.s.a.11.1 6 43.11 even 7 inner
344.1.s.a.11.1 6 344.11 odd 14 inner
344.1.s.a.219.1 yes 6 1.1 even 1 trivial
344.1.s.a.219.1 yes 6 8.3 odd 2 CM
1376.1.be.a.47.1 6 4.3 odd 2
1376.1.be.a.47.1 6 8.5 even 2
1376.1.be.a.527.1 6 172.11 odd 14
1376.1.be.a.527.1 6 344.269 even 14
3096.1.dm.a.1387.1 6 129.11 odd 14
3096.1.dm.a.1387.1 6 1032.11 even 14
3096.1.dm.a.2971.1 6 3.2 odd 2
3096.1.dm.a.2971.1 6 24.11 even 2