Properties

Label 3420.2.f.a.1369.1
Level $3420$
Weight $2$
Character 3420.1369
Analytic conductor $27.309$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 3420 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3420.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(27.3088374913\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{5})\)
Defining polynomial: \( x^{4} + 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1369.1
Root \(0.874032i\) of defining polynomial
Character \(\chi\) \(=\) 3420.1369
Dual form 3420.2.f.a.1369.2

$q$-expansion

\(f(q)\) \(=\) \(q-2.23607 q^{5} -2.82843i q^{7} +O(q^{10})\) \(q-2.23607 q^{5} -2.82843i q^{7} +0.763932 q^{11} -5.45052i q^{13} -7.40492i q^{17} +1.00000 q^{19} +1.08036i q^{23} +5.00000 q^{25} -4.47214 q^{29} -4.00000 q^{31} +6.32456i q^{35} +2.62210i q^{37} +6.00000 q^{41} +8.48528i q^{43} +8.48528i q^{47} -1.00000 q^{49} -2.62210i q^{53} -1.70820 q^{55} -1.52786 q^{59} -11.7082 q^{61} +12.1877i q^{65} -11.1074i q^{67} +10.4721 q^{71} +5.24419i q^{73} -2.16073i q^{77} -15.4164 q^{79} -13.7295i q^{83} +16.5579i q^{85} +2.94427 q^{89} -15.4164 q^{91} -2.23607 q^{95} -13.9358i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{11} + 4 q^{19} + 20 q^{25} - 16 q^{31} + 24 q^{41} - 4 q^{49} + 20 q^{55} - 24 q^{59} - 20 q^{61} + 24 q^{71} - 8 q^{79} - 24 q^{89} - 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3420\mathbb{Z}\right)^\times\).

\(n\) \(1711\) \(1901\) \(2737\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.23607 −1.00000
\(6\) 0 0
\(7\) − 2.82843i − 1.06904i −0.845154 0.534522i \(-0.820491\pi\)
0.845154 0.534522i \(-0.179509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.763932 0.230334 0.115167 0.993346i \(-0.463260\pi\)
0.115167 + 0.993346i \(0.463260\pi\)
\(12\) 0 0
\(13\) − 5.45052i − 1.51170i −0.654743 0.755852i \(-0.727223\pi\)
0.654743 0.755852i \(-0.272777\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 7.40492i − 1.79596i −0.440040 0.897978i \(-0.645036\pi\)
0.440040 0.897978i \(-0.354964\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.08036i 0.225271i 0.993636 + 0.112636i \(0.0359293\pi\)
−0.993636 + 0.112636i \(0.964071\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.32456i 1.06904i
\(36\) 0 0
\(37\) 2.62210i 0.431070i 0.976496 + 0.215535i \(0.0691495\pi\)
−0.976496 + 0.215535i \(0.930850\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.48528i 1.29399i 0.762493 + 0.646997i \(0.223975\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.48528i 1.23771i 0.785507 + 0.618853i \(0.212402\pi\)
−0.785507 + 0.618853i \(0.787598\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 2.62210i − 0.360173i −0.983651 0.180086i \(-0.942362\pi\)
0.983651 0.180086i \(-0.0576377\pi\)
\(54\) 0 0
\(55\) −1.70820 −0.230334
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.52786 −0.198911 −0.0994555 0.995042i \(-0.531710\pi\)
−0.0994555 + 0.995042i \(0.531710\pi\)
\(60\) 0 0
\(61\) −11.7082 −1.49908 −0.749541 0.661958i \(-0.769726\pi\)
−0.749541 + 0.661958i \(0.769726\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.1877i 1.51170i
\(66\) 0 0
\(67\) − 11.1074i − 1.35698i −0.734609 0.678491i \(-0.762634\pi\)
0.734609 0.678491i \(-0.237366\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.4721 1.24281 0.621407 0.783488i \(-0.286561\pi\)
0.621407 + 0.783488i \(0.286561\pi\)
\(72\) 0 0
\(73\) 5.24419i 0.613786i 0.951744 + 0.306893i \(0.0992894\pi\)
−0.951744 + 0.306893i \(0.900711\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.16073i − 0.246238i
\(78\) 0 0
\(79\) −15.4164 −1.73448 −0.867241 0.497889i \(-0.834109\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 13.7295i − 1.50701i −0.657445 0.753503i \(-0.728363\pi\)
0.657445 0.753503i \(-0.271637\pi\)
\(84\) 0 0
\(85\) 16.5579i 1.79596i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.94427 0.312092 0.156046 0.987750i \(-0.450125\pi\)
0.156046 + 0.987750i \(0.450125\pi\)
\(90\) 0 0
\(91\) −15.4164 −1.61608
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.23607 −0.229416
\(96\) 0 0
\(97\) − 13.9358i − 1.41497i −0.706730 0.707483i \(-0.749830\pi\)
0.706730 0.707483i \(-0.250170\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.23607 −0.521008 −0.260504 0.965473i \(-0.583889\pi\)
−0.260504 + 0.965473i \(0.583889\pi\)
\(102\) 0 0
\(103\) − 5.86319i − 0.577717i −0.957372 0.288858i \(-0.906724\pi\)
0.957372 0.288858i \(-0.0932757\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 13.2681i − 1.28268i −0.767258 0.641338i \(-0.778380\pi\)
0.767258 0.641338i \(-0.221620\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.3516i 1.53823i 0.639113 + 0.769113i \(0.279302\pi\)
−0.639113 + 0.769113i \(0.720698\pi\)
\(114\) 0 0
\(115\) − 2.41577i − 0.225271i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −20.9443 −1.91996
\(120\) 0 0
\(121\) −10.4164 −0.946946
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) 19.5927i 1.73857i 0.494314 + 0.869284i \(0.335419\pi\)
−0.494314 + 0.869284i \(0.664581\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) − 2.82843i − 0.245256i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 7.40492i − 0.632645i −0.948652 0.316322i \(-0.897552\pi\)
0.948652 0.316322i \(-0.102448\pi\)
\(138\) 0 0
\(139\) −2.29180 −0.194388 −0.0971938 0.995265i \(-0.530987\pi\)
−0.0971938 + 0.995265i \(0.530987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 4.16383i − 0.348197i
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.6525 −1.03653 −0.518266 0.855220i \(-0.673422\pi\)
−0.518266 + 0.855220i \(0.673422\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.94427 0.718421
\(156\) 0 0
\(157\) 0.412662i 0.0329340i 0.999864 + 0.0164670i \(0.00524185\pi\)
−0.999864 + 0.0164670i \(0.994758\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.05573 0.240825
\(162\) 0 0
\(163\) − 8.48528i − 0.664619i −0.943170 0.332309i \(-0.892172\pi\)
0.943170 0.332309i \(-0.107828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.4319i 1.34892i 0.738310 + 0.674462i \(0.235624\pi\)
−0.738310 + 0.674462i \(0.764376\pi\)
\(168\) 0 0
\(169\) −16.7082 −1.28525
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 8.94665i − 0.680201i −0.940389 0.340101i \(-0.889539\pi\)
0.940389 0.340101i \(-0.110461\pi\)
\(174\) 0 0
\(175\) − 14.1421i − 1.06904i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.4721 −1.67965 −0.839823 0.542860i \(-0.817341\pi\)
−0.839823 + 0.542860i \(0.817341\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 5.86319i − 0.431070i
\(186\) 0 0
\(187\) − 5.65685i − 0.413670i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.05573 0.221105 0.110552 0.993870i \(-0.464738\pi\)
0.110552 + 0.993870i \(0.464738\pi\)
\(192\) 0 0
\(193\) 13.9358i 1.00312i 0.865123 + 0.501561i \(0.167241\pi\)
−0.865123 + 0.501561i \(0.832759\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.6491i 0.901212i 0.892723 + 0.450606i \(0.148792\pi\)
−0.892723 + 0.450606i \(0.851208\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.6491i 0.887794i
\(204\) 0 0
\(205\) −13.4164 −0.937043
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.763932 0.0528423
\(210\) 0 0
\(211\) 15.4164 1.06131 0.530655 0.847588i \(-0.321946\pi\)
0.530655 + 0.847588i \(0.321946\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 18.9737i − 1.29399i
\(216\) 0 0
\(217\) 11.3137i 0.768025i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −40.3607 −2.71495
\(222\) 0 0
\(223\) 18.7673i 1.25675i 0.777909 + 0.628377i \(0.216280\pi\)
−0.777909 + 0.628377i \(0.783720\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.86319i 0.389153i 0.980887 + 0.194577i \(0.0623333\pi\)
−0.980887 + 0.194577i \(0.937667\pi\)
\(228\) 0 0
\(229\) −7.70820 −0.509372 −0.254686 0.967024i \(-0.581972\pi\)
−0.254686 + 0.967024i \(0.581972\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.6491i 0.828671i 0.910124 + 0.414335i \(0.135986\pi\)
−0.910124 + 0.414335i \(0.864014\pi\)
\(234\) 0 0
\(235\) − 18.9737i − 1.23771i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −29.8885 −1.93333 −0.966665 0.256046i \(-0.917580\pi\)
−0.966665 + 0.256046i \(0.917580\pi\)
\(240\) 0 0
\(241\) −28.8328 −1.85728 −0.928642 0.370976i \(-0.879023\pi\)
−0.928642 + 0.370976i \(0.879023\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.23607 0.142857
\(246\) 0 0
\(247\) − 5.45052i − 0.346808i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.88854 0.371682 0.185841 0.982580i \(-0.440499\pi\)
0.185841 + 0.982580i \(0.440499\pi\)
\(252\) 0 0
\(253\) 0.825324i 0.0518877i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 17.4319i − 1.08737i −0.839288 0.543687i \(-0.817028\pi\)
0.839288 0.543687i \(-0.182972\pi\)
\(258\) 0 0
\(259\) 7.41641 0.460833
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 15.8902i − 0.979832i −0.871770 0.489916i \(-0.837027\pi\)
0.871770 0.489916i \(-0.162973\pi\)
\(264\) 0 0
\(265\) 5.86319i 0.360173i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.9443 0.911168 0.455584 0.890193i \(-0.349430\pi\)
0.455584 + 0.890193i \(0.349430\pi\)
\(270\) 0 0
\(271\) 21.1246 1.28323 0.641614 0.767027i \(-0.278265\pi\)
0.641614 + 0.767027i \(0.278265\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.81966 0.230334
\(276\) 0 0
\(277\) 22.2148i 1.33476i 0.744719 + 0.667378i \(0.232583\pi\)
−0.744719 + 0.667378i \(0.767417\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.4164 1.51622 0.758108 0.652129i \(-0.226124\pi\)
0.758108 + 0.652129i \(0.226124\pi\)
\(282\) 0 0
\(283\) − 2.41577i − 0.143602i −0.997419 0.0718012i \(-0.977125\pi\)
0.997419 0.0718012i \(-0.0228747\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 16.9706i − 1.00174i
\(288\) 0 0
\(289\) −37.8328 −2.22546
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 2.62210i − 0.153184i −0.997062 0.0765922i \(-0.975596\pi\)
0.997062 0.0765922i \(-0.0244040\pi\)
\(294\) 0 0
\(295\) 3.41641 0.198911
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.88854 0.340543
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 26.1803 1.49908
\(306\) 0 0
\(307\) 5.45052i 0.311078i 0.987830 + 0.155539i \(0.0497114\pi\)
−0.987830 + 0.155539i \(0.950289\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.70820 0.550502 0.275251 0.961372i \(-0.411239\pi\)
0.275251 + 0.961372i \(0.411239\pi\)
\(312\) 0 0
\(313\) − 10.4884i − 0.592839i −0.955058 0.296419i \(-0.904207\pi\)
0.955058 0.296419i \(-0.0957926\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 8.94665i − 0.502494i −0.967923 0.251247i \(-0.919159\pi\)
0.967923 0.251247i \(-0.0808406\pi\)
\(318\) 0 0
\(319\) −3.41641 −0.191282
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 7.40492i − 0.412021i
\(324\) 0 0
\(325\) − 27.2526i − 1.51170i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 7.41641 0.407643 0.203821 0.979008i \(-0.434664\pi\)
0.203821 + 0.979008i \(0.434664\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 24.8369i 1.35698i
\(336\) 0 0
\(337\) − 16.7642i − 0.913206i −0.889671 0.456603i \(-0.849066\pi\)
0.889671 0.456603i \(-0.150934\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.05573 −0.165477
\(342\) 0 0
\(343\) − 16.9706i − 0.916324i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 9.40802i − 0.505049i −0.967590 0.252525i \(-0.918739\pi\)
0.967590 0.252525i \(-0.0812608\pi\)
\(348\) 0 0
\(349\) −25.4164 −1.36051 −0.680255 0.732976i \(-0.738131\pi\)
−0.680255 + 0.732976i \(0.738131\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 9.56564i − 0.509128i −0.967056 0.254564i \(-0.918068\pi\)
0.967056 0.254564i \(-0.0819319\pi\)
\(354\) 0 0
\(355\) −23.4164 −1.24281
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.1246 1.53714 0.768569 0.639767i \(-0.220969\pi\)
0.768569 + 0.639767i \(0.220969\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 11.7264i − 0.613786i
\(366\) 0 0
\(367\) − 8.48528i − 0.442928i −0.975169 0.221464i \(-0.928916\pi\)
0.975169 0.221464i \(-0.0710835\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.41641 −0.385041
\(372\) 0 0
\(373\) 13.1105i 0.678835i 0.940636 + 0.339417i \(0.110230\pi\)
−0.940636 + 0.339417i \(0.889770\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.3755i 1.25540i
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 36.4056i 1.86024i 0.367257 + 0.930120i \(0.380297\pi\)
−0.367257 + 0.930120i \(0.619703\pi\)
\(384\) 0 0
\(385\) 4.83153i 0.246238i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.9443 −0.757705 −0.378852 0.925457i \(-0.623681\pi\)
−0.378852 + 0.925457i \(0.623681\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 34.4721 1.73448
\(396\) 0 0
\(397\) − 11.7264i − 0.588530i −0.955724 0.294265i \(-0.904925\pi\)
0.955724 0.294265i \(-0.0950748\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.47214 0.223328 0.111664 0.993746i \(-0.464382\pi\)
0.111664 + 0.993746i \(0.464382\pi\)
\(402\) 0 0
\(403\) 21.8021i 1.08604i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.00310i 0.0992901i
\(408\) 0 0
\(409\) −17.4164 −0.861186 −0.430593 0.902546i \(-0.641696\pi\)
−0.430593 + 0.902546i \(0.641696\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.32145i 0.212645i
\(414\) 0 0
\(415\) 30.7000i 1.50701i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.9443 −1.02319 −0.511597 0.859225i \(-0.670946\pi\)
−0.511597 + 0.859225i \(0.670946\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 37.0246i − 1.79596i
\(426\) 0 0
\(427\) 33.1158i 1.60259i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.52786 −0.0735946 −0.0367973 0.999323i \(-0.511716\pi\)
−0.0367973 + 0.999323i \(0.511716\pi\)
\(432\) 0 0
\(433\) − 28.4906i − 1.36917i −0.728933 0.684585i \(-0.759983\pi\)
0.728933 0.684585i \(-0.240017\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.08036i 0.0516808i
\(438\) 0 0
\(439\) 18.8328 0.898841 0.449421 0.893320i \(-0.351630\pi\)
0.449421 + 0.893320i \(0.351630\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.7295i 0.652307i 0.945317 + 0.326153i \(0.105753\pi\)
−0.945317 + 0.326153i \(0.894247\pi\)
\(444\) 0 0
\(445\) −6.58359 −0.312092
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −16.4721 −0.777368 −0.388684 0.921371i \(-0.627070\pi\)
−0.388684 + 0.921371i \(0.627070\pi\)
\(450\) 0 0
\(451\) 4.58359 0.215833
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 34.4721 1.61608
\(456\) 0 0
\(457\) − 37.9473i − 1.77510i −0.460710 0.887551i \(-0.652405\pi\)
0.460710 0.887551i \(-0.347595\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −23.8885 −1.11260 −0.556300 0.830981i \(-0.687780\pi\)
−0.556300 + 0.830981i \(0.687780\pi\)
\(462\) 0 0
\(463\) 14.5548i 0.676419i 0.941071 + 0.338209i \(0.109821\pi\)
−0.941071 + 0.338209i \(0.890179\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.7000i 1.42063i 0.703885 + 0.710314i \(0.251447\pi\)
−0.703885 + 0.710314i \(0.748553\pi\)
\(468\) 0 0
\(469\) −31.4164 −1.45067
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.48218i 0.298051i
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.2361 0.513389 0.256695 0.966493i \(-0.417367\pi\)
0.256695 + 0.966493i \(0.417367\pi\)
\(480\) 0 0
\(481\) 14.2918 0.651650
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 31.1614i 1.41497i
\(486\) 0 0
\(487\) 10.6947i 0.484624i 0.970198 + 0.242312i \(0.0779057\pi\)
−0.970198 + 0.242312i \(0.922094\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.88854 −0.265746 −0.132873 0.991133i \(-0.542420\pi\)
−0.132873 + 0.991133i \(0.542420\pi\)
\(492\) 0 0
\(493\) 33.1158i 1.49146i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 29.6197i − 1.32862i
\(498\) 0 0
\(499\) 17.1246 0.766603 0.383301 0.923623i \(-0.374787\pi\)
0.383301 + 0.923623i \(0.374787\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 20.2117i − 0.901193i −0.892728 0.450597i \(-0.851211\pi\)
0.892728 0.450597i \(-0.148789\pi\)
\(504\) 0 0
\(505\) 11.7082 0.521008
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.5836 −0.469109 −0.234555 0.972103i \(-0.575363\pi\)
−0.234555 + 0.972103i \(0.575363\pi\)
\(510\) 0 0
\(511\) 14.8328 0.656165
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.1105i 0.577717i
\(516\) 0 0
\(517\) 6.48218i 0.285086i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.111456 −0.00488298 −0.00244149 0.999997i \(-0.500777\pi\)
−0.00244149 + 0.999997i \(0.500777\pi\)
\(522\) 0 0
\(523\) − 24.8369i − 1.08604i −0.839720 0.543020i \(-0.817281\pi\)
0.839720 0.543020i \(-0.182719\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 29.6197i 1.29025i
\(528\) 0 0
\(529\) 21.8328 0.949253
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 32.7031i − 1.41653i
\(534\) 0 0
\(535\) 29.6684i 1.28268i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.763932 −0.0329049
\(540\) 0 0
\(541\) 11.7082 0.503375 0.251688 0.967809i \(-0.419014\pi\)
0.251688 + 0.967809i \(0.419014\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.47214 0.191565
\(546\) 0 0
\(547\) 8.27895i 0.353982i 0.984212 + 0.176991i \(0.0566364\pi\)
−0.984212 + 0.176991i \(0.943364\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.47214 −0.190519
\(552\) 0 0
\(553\) 43.6042i 1.85424i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.0540i 0.849716i 0.905260 + 0.424858i \(0.139676\pi\)
−0.905260 + 0.424858i \(0.860324\pi\)
\(558\) 0 0
\(559\) 46.2492 1.95613
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 30.0810i − 1.26776i −0.773429 0.633882i \(-0.781460\pi\)
0.773429 0.633882i \(-0.218540\pi\)
\(564\) 0 0
\(565\) − 36.5632i − 1.53823i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −38.9443 −1.63263 −0.816314 0.577608i \(-0.803986\pi\)
−0.816314 + 0.577608i \(0.803986\pi\)
\(570\) 0 0
\(571\) 25.1246 1.05143 0.525716 0.850660i \(-0.323797\pi\)
0.525716 + 0.850660i \(0.323797\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.40182i 0.225271i
\(576\) 0 0
\(577\) 5.65685i 0.235498i 0.993043 + 0.117749i \(0.0375678\pi\)
−0.993043 + 0.117749i \(0.962432\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −38.8328 −1.61106
\(582\) 0 0
\(583\) − 2.00310i − 0.0829601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.40182i 0.222957i 0.993767 + 0.111478i \(0.0355586\pi\)
−0.993767 + 0.111478i \(0.964441\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.16073i 0.0887304i 0.999015 + 0.0443652i \(0.0141265\pi\)
−0.999015 + 0.0443652i \(0.985873\pi\)
\(594\) 0 0
\(595\) 46.8328 1.91996
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 16.8328 0.686625 0.343312 0.939221i \(-0.388451\pi\)
0.343312 + 0.939221i \(0.388451\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23.2918 0.946946
\(606\) 0 0
\(607\) − 22.4211i − 0.910044i −0.890480 0.455022i \(-0.849631\pi\)
0.890480 0.455022i \(-0.150369\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 46.2492 1.87104
\(612\) 0 0
\(613\) − 39.1853i − 1.58268i −0.611376 0.791340i \(-0.709384\pi\)
0.611376 0.791340i \(-0.290616\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.08347i 0.124136i 0.998072 + 0.0620678i \(0.0197695\pi\)
−0.998072 + 0.0620678i \(0.980230\pi\)
\(618\) 0 0
\(619\) −41.1246 −1.65294 −0.826469 0.562982i \(-0.809654\pi\)
−0.826469 + 0.562982i \(0.809654\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 8.32766i − 0.333641i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.4164 0.774183
\(630\) 0 0
\(631\) −1.70820 −0.0680025 −0.0340013 0.999422i \(-0.510825\pi\)
−0.0340013 + 0.999422i \(0.510825\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 43.8105i − 1.73857i
\(636\) 0 0
\(637\) 5.45052i 0.215958i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.1115 0.478374 0.239187 0.970974i \(-0.423119\pi\)
0.239187 + 0.970974i \(0.423119\pi\)
\(642\) 0 0
\(643\) − 30.7000i − 1.21069i −0.795963 0.605346i \(-0.793035\pi\)
0.795963 0.605346i \(-0.206965\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 9.40802i − 0.369867i −0.982751 0.184934i \(-0.940793\pi\)
0.982751 0.184934i \(-0.0592071\pi\)
\(648\) 0 0
\(649\) −1.16718 −0.0458160
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.2148i 0.869331i 0.900592 + 0.434665i \(0.143133\pi\)
−0.900592 + 0.434665i \(0.856867\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −44.9443 −1.75078 −0.875390 0.483417i \(-0.839395\pi\)
−0.875390 + 0.483417i \(0.839395\pi\)
\(660\) 0 0
\(661\) −26.0000 −1.01128 −0.505641 0.862744i \(-0.668744\pi\)
−0.505641 + 0.862744i \(0.668744\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.32456i 0.245256i
\(666\) 0 0
\(667\) − 4.83153i − 0.187078i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.94427 −0.345290
\(672\) 0 0
\(673\) − 4.62520i − 0.178288i −0.996019 0.0891442i \(-0.971587\pi\)
0.996019 0.0891442i \(-0.0284132\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.7302i 1.64225i 0.570746 + 0.821127i \(0.306654\pi\)
−0.570746 + 0.821127i \(0.693346\pi\)
\(678\) 0 0
\(679\) −39.4164 −1.51266
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 19.5927i − 0.749692i −0.927087 0.374846i \(-0.877696\pi\)
0.927087 0.374846i \(-0.122304\pi\)
\(684\) 0 0
\(685\) 16.5579i 0.632645i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.2918 −0.544474
\(690\) 0 0
\(691\) 25.1246 0.955785 0.477893 0.878418i \(-0.341401\pi\)
0.477893 + 0.878418i \(0.341401\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.12461 0.194388
\(696\) 0 0
\(697\) − 44.4295i − 1.68289i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −0.875388 −0.0330630 −0.0165315 0.999863i \(-0.505262\pi\)
−0.0165315 + 0.999863i \(0.505262\pi\)
\(702\) 0 0
\(703\) 2.62210i 0.0988942i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.8098i 0.556981i
\(708\) 0 0
\(709\) −33.4164 −1.25498 −0.627490 0.778625i \(-0.715918\pi\)
−0.627490 + 0.778625i \(0.715918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 4.32145i − 0.161840i
\(714\) 0 0
\(715\) 9.31061i 0.348197i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 27.5967 1.02919 0.514593 0.857435i \(-0.327943\pi\)
0.514593 + 0.857435i \(0.327943\pi\)
\(720\) 0 0
\(721\) −16.5836 −0.617605
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −22.3607 −0.830455
\(726\) 0 0
\(727\) − 8.48528i − 0.314702i −0.987543 0.157351i \(-0.949705\pi\)
0.987543 0.157351i \(-0.0502953\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 62.8328 2.32396
\(732\) 0 0
\(733\) − 33.9411i − 1.25364i −0.779162 0.626822i \(-0.784355\pi\)
0.779162 0.626822i \(-0.215645\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8.48528i − 0.312559i
\(738\) 0 0
\(739\) 18.8328 0.692776 0.346388 0.938091i \(-0.387408\pi\)
0.346388 + 0.938091i \(0.387408\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.62210i 0.0961954i 0.998843 + 0.0480977i \(0.0153159\pi\)
−0.998843 + 0.0480977i \(0.984684\pi\)
\(744\) 0 0
\(745\) 28.2918 1.03653
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −37.5279 −1.37124
\(750\) 0 0
\(751\) 20.5836 0.751106 0.375553 0.926801i \(-0.377453\pi\)
0.375553 + 0.926801i \(0.377453\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17.8885 0.651031
\(756\) 0 0
\(757\) 38.7727i 1.40922i 0.709597 + 0.704608i \(0.248877\pi\)
−0.709597 + 0.704608i \(0.751123\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.5410 1.54211 0.771055 0.636768i \(-0.219729\pi\)
0.771055 + 0.636768i \(0.219729\pi\)
\(762\) 0 0
\(763\) 5.65685i 0.204792i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.32766i 0.300694i
\(768\) 0 0
\(769\) 38.5410 1.38982 0.694912 0.719094i \(-0.255443\pi\)
0.694912 + 0.719094i \(0.255443\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 5.86319i − 0.210884i −0.994425 0.105442i \(-0.966374\pi\)
0.994425 0.105442i \(-0.0336258\pi\)
\(774\) 0 0
\(775\) −20.0000 −0.718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 0.922740i − 0.0329340i
\(786\) 0 0
\(787\) − 24.8369i − 0.885338i −0.896685 0.442669i \(-0.854032\pi\)
0.896685 0.442669i \(-0.145968\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 46.2492 1.64443
\(792\) 0 0
\(793\) 63.8158i 2.26617i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 52.2958i − 1.85241i −0.377018 0.926206i \(-0.623050\pi\)
0.377018 0.926206i \(-0.376950\pi\)
\(798\) 0 0
\(799\) 62.8328 2.22287
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.00621i 0.141376i
\(804\) 0 0
\(805\) −6.83282 −0.240825
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7.52786 −0.264666 −0.132333 0.991205i \(-0.542247\pi\)
−0.132333 + 0.991205i \(0.542247\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.9737i 0.664619i
\(816\) 0 0
\(817\) 8.48528i 0.296862i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −38.9443 −1.35916 −0.679582 0.733599i \(-0.737839\pi\)
−0.679582 + 0.733599i \(0.737839\pi\)
\(822\) 0 0
\(823\) − 35.9442i − 1.25294i −0.779447 0.626469i \(-0.784500\pi\)
0.779447 0.626469i \(-0.215500\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 7.86629i − 0.273538i −0.990603 0.136769i \(-0.956328\pi\)
0.990603 0.136769i \(-0.0436717\pi\)
\(828\) 0 0
\(829\) −18.0000 −0.625166 −0.312583 0.949890i \(-0.601194\pi\)
−0.312583 + 0.949890i \(0.601194\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 7.40492i 0.256565i
\(834\) 0 0
\(835\) − 38.9790i − 1.34892i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 49.3050 1.70220 0.851098 0.525007i \(-0.175937\pi\)
0.851098 + 0.525007i \(0.175937\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.3607 1.28525
\(846\) 0 0
\(847\) 29.4621i 1.01233i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.83282 −0.0971077
\(852\) 0 0
\(853\) − 27.4589i − 0.940176i −0.882619 0.470088i \(-0.844222\pi\)
0.882619 0.470088i \(-0.155778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.3190i 1.06984i 0.844903 + 0.534919i \(0.179658\pi\)
−0.844903 + 0.534919i \(0.820342\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 7.86629i − 0.267772i −0.990997 0.133886i \(-0.957254\pi\)
0.990997 0.133886i \(-0.0427455\pi\)
\(864\) 0 0
\(865\) 20.0053i 0.680201i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.7771 −0.399510
\(870\) 0 0
\(871\) −60.5410 −2.05135
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 31.6228i 1.06904i
\(876\) 0 0
\(877\) − 13.9358i − 0.470579i −0.971925 0.235289i \(-0.924396\pi\)
0.971925 0.235289i \(-0.0756038\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.652476 −0.0219825 −0.0109912 0.999940i \(-0.503499\pi\)
−0.0109912 + 0.999940i \(0.503499\pi\)
\(882\) 0 0
\(883\) − 52.9148i − 1.78072i −0.455253 0.890362i \(-0.650451\pi\)
0.455253 0.890362i \(-0.349549\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 49.0547i − 1.64710i −0.567247 0.823548i \(-0.691991\pi\)
0.567247 0.823548i \(-0.308009\pi\)
\(888\) 0 0
\(889\) 55.4164 1.85861
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.48528i 0.283949i
\(894\) 0 0
\(895\) 50.2492 1.67965
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 17.8885 0.596616
\(900\) 0 0
\(901\) −19.4164 −0.646854
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.4164 −0.445976
\(906\) 0 0
\(907\) 38.5663i 1.28057i 0.768136 + 0.640287i \(0.221185\pi\)
−0.768136 + 0.640287i \(0.778815\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 46.4721 1.53969 0.769845 0.638231i \(-0.220333\pi\)
0.769845 + 0.638231i \(0.220333\pi\)
\(912\) 0 0
\(913\) − 10.4884i − 0.347115i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −26.8328 −0.885133 −0.442566 0.896736i \(-0.645932\pi\)
−0.442566 + 0.896736i \(0.645932\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 57.0786i − 1.87877i
\(924\) 0 0
\(925\) 13.1105i 0.431070i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.52786 0.246981 0.123491 0.992346i \(-0.460591\pi\)
0.123491 + 0.992346i \(0.460591\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.6491i 0.413670i
\(936\) 0 0
\(937\) 43.1915i 1.41101i 0.708707 + 0.705503i \(0.249279\pi\)
−0.708707 + 0.705503i \(0.750721\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 38.9443 1.26955 0.634773 0.772698i \(-0.281093\pi\)
0.634773 + 0.772698i \(0.281093\pi\)
\(942\) 0 0
\(943\) 6.48218i 0.211089i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 47.6706i − 1.54909i −0.632521 0.774543i \(-0.717980\pi\)
0.632521 0.774543i \(-0.282020\pi\)
\(948\) 0 0
\(949\) 28.5836 0.927863
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.5632i 1.18440i 0.805791 + 0.592199i \(0.201740\pi\)
−0.805791 + 0.592199i \(0.798260\pi\)
\(954\) 0 0
\(955\) −6.83282 −0.221105
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −20.9443 −0.676326
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 31.1614i − 1.00312i
\(966\) 0 0
\(967\) 2.41577i 0.0776858i 0.999245 + 0.0388429i \(0.0123672\pi\)
−0.999245 + 0.0388429i \(0.987633\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40.3607 1.29524 0.647618 0.761965i \(-0.275765\pi\)
0.647618 + 0.761965i \(0.275765\pi\)
\(972\) 0 0
\(973\) 6.48218i 0.207809i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.9945i 0.799644i 0.916593 + 0.399822i \(0.130928\pi\)
−0.916593 + 0.399822i \(0.869072\pi\)
\(978\) 0 0
\(979\) 2.24922 0.0718855
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 30.2387i 0.964464i 0.876044 + 0.482232i \(0.160174\pi\)
−0.876044 + 0.482232i \(0.839826\pi\)
\(984\) 0 0
\(985\) − 28.2843i − 0.901212i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.16718 −0.291500
\(990\) 0 0
\(991\) 38.8328 1.23357 0.616783 0.787134i \(-0.288436\pi\)
0.616783 + 0.787134i \(0.288436\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −35.7771 −1.13421
\(996\) 0 0
\(997\) 11.7264i 0.371378i 0.982609 + 0.185689i \(0.0594517\pi\)
−0.982609 + 0.185689i \(0.940548\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3420.2.f.a.1369.1 4
3.2 odd 2 380.2.c.a.229.3 yes 4
5.4 even 2 inner 3420.2.f.a.1369.2 4
12.11 even 2 1520.2.d.f.609.2 4
15.2 even 4 1900.2.a.j.1.3 4
15.8 even 4 1900.2.a.j.1.2 4
15.14 odd 2 380.2.c.a.229.2 4
60.23 odd 4 7600.2.a.ce.1.3 4
60.47 odd 4 7600.2.a.ce.1.2 4
60.59 even 2 1520.2.d.f.609.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.c.a.229.2 4 15.14 odd 2
380.2.c.a.229.3 yes 4 3.2 odd 2
1520.2.d.f.609.2 4 12.11 even 2
1520.2.d.f.609.3 4 60.59 even 2
1900.2.a.j.1.2 4 15.8 even 4
1900.2.a.j.1.3 4 15.2 even 4
3420.2.f.a.1369.1 4 1.1 even 1 trivial
3420.2.f.a.1369.2 4 5.4 even 2 inner
7600.2.a.ce.1.2 4 60.47 odd 4
7600.2.a.ce.1.3 4 60.23 odd 4