Properties

Label 3420.2.bj.c.2629.4
Level $3420$
Weight $2$
Character 3420.2629
Analytic conductor $27.309$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3420,2,Mod(1189,3420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3420, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3420.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3420 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3420.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.3088374913\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 20 x^{18} + 261 x^{16} - 1994 x^{14} + 11074 x^{12} - 39211 x^{10} + 99376 x^{8} - 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2629.4
Root \(-2.48777 + 1.43632i\) of defining polynomial
Character \(\chi\) \(=\) 3420.2629
Dual form 3420.2.bj.c.1189.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38776 + 1.75332i) q^{5} +3.54568i q^{7} +1.81575 q^{11} +(2.78308 + 1.60681i) q^{13} +(6.92193 - 3.99638i) q^{17} +(0.863760 + 4.27246i) q^{19} +(7.30026 + 4.21480i) q^{23} +(-1.14823 - 4.86637i) q^{25} +(4.29124 - 7.43265i) q^{29} -1.70874 q^{31} +(-6.21669 - 4.92056i) q^{35} +5.50608i q^{37} +(-4.05694 - 7.02683i) q^{41} +(4.35373 - 2.51363i) q^{43} +(-1.16834 - 0.674543i) q^{47} -5.57183 q^{49} +(1.92201 + 1.10967i) q^{53} +(-2.51983 + 3.18359i) q^{55} +(-0.960774 - 1.66411i) q^{59} +(2.83047 - 4.90251i) q^{61} +(-6.67950 + 2.64974i) q^{65} +(8.04360 + 4.64397i) q^{67} +(2.94365 + 5.09854i) q^{71} +(-2.82716 + 1.63226i) q^{73} +6.43807i q^{77} +(2.08739 + 3.61546i) q^{79} +6.30268i q^{83} +(-2.59909 + 17.6824i) q^{85} +(-2.73646 + 4.73968i) q^{89} +(-5.69723 + 9.86789i) q^{91} +(-8.68966 - 4.41472i) q^{95} +(6.91255 - 3.99096i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{5} + 14 q^{19} + 9 q^{25} + 16 q^{29} + 8 q^{31} + 2 q^{35} - 26 q^{41} - 44 q^{49} - 12 q^{55} - 4 q^{59} + 2 q^{61} + 18 q^{65} + 2 q^{71} - 16 q^{79} - 39 q^{85} + 40 q^{89} - 4 q^{91} + 43 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3420\mathbb{Z}\right)^\times\).

\(n\) \(1711\) \(1901\) \(2737\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.38776 + 1.75332i −0.620626 + 0.784106i
\(6\) 0 0
\(7\) 3.54568i 1.34014i 0.742298 + 0.670070i \(0.233736\pi\)
−0.742298 + 0.670070i \(0.766264\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.81575 0.547470 0.273735 0.961805i \(-0.411741\pi\)
0.273735 + 0.961805i \(0.411741\pi\)
\(12\) 0 0
\(13\) 2.78308 + 1.60681i 0.771887 + 0.445649i 0.833547 0.552448i \(-0.186306\pi\)
−0.0616606 + 0.998097i \(0.519640\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.92193 3.99638i 1.67881 0.969264i 0.716396 0.697694i \(-0.245790\pi\)
0.962419 0.271570i \(-0.0875429\pi\)
\(18\) 0 0
\(19\) 0.863760 + 4.27246i 0.198160 + 0.980170i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.30026 + 4.21480i 1.52221 + 0.878848i 0.999656 + 0.0262406i \(0.00835362\pi\)
0.522553 + 0.852607i \(0.324980\pi\)
\(24\) 0 0
\(25\) −1.14823 4.86637i −0.229646 0.973274i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.29124 7.43265i 0.796863 1.38021i −0.124786 0.992184i \(-0.539824\pi\)
0.921649 0.388024i \(-0.126842\pi\)
\(30\) 0 0
\(31\) −1.70874 −0.306899 −0.153450 0.988156i \(-0.549038\pi\)
−0.153450 + 0.988156i \(0.549038\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.21669 4.92056i −1.05081 0.831726i
\(36\) 0 0
\(37\) 5.50608i 0.905193i 0.891715 + 0.452597i \(0.149502\pi\)
−0.891715 + 0.452597i \(0.850498\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.05694 7.02683i −0.633588 1.09741i −0.986812 0.161868i \(-0.948248\pi\)
0.353224 0.935539i \(-0.385085\pi\)
\(42\) 0 0
\(43\) 4.35373 2.51363i 0.663938 0.383325i −0.129838 0.991535i \(-0.541446\pi\)
0.793776 + 0.608211i \(0.208112\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.16834 0.674543i −0.170420 0.0983922i 0.412364 0.911019i \(-0.364703\pi\)
−0.582784 + 0.812627i \(0.698037\pi\)
\(48\) 0 0
\(49\) −5.57183 −0.795976
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.92201 + 1.10967i 0.264009 + 0.152426i 0.626162 0.779693i \(-0.284625\pi\)
−0.362153 + 0.932119i \(0.617958\pi\)
\(54\) 0 0
\(55\) −2.51983 + 3.18359i −0.339774 + 0.429275i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.960774 1.66411i −0.125082 0.216649i 0.796683 0.604398i \(-0.206586\pi\)
−0.921765 + 0.387749i \(0.873253\pi\)
\(60\) 0 0
\(61\) 2.83047 4.90251i 0.362404 0.627702i −0.625952 0.779862i \(-0.715289\pi\)
0.988356 + 0.152159i \(0.0486227\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.67950 + 2.64974i −0.828489 + 0.328660i
\(66\) 0 0
\(67\) 8.04360 + 4.64397i 0.982682 + 0.567352i 0.903079 0.429475i \(-0.141301\pi\)
0.0796032 + 0.996827i \(0.474635\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.94365 + 5.09854i 0.349346 + 0.605086i 0.986134 0.165954i \(-0.0530703\pi\)
−0.636787 + 0.771040i \(0.719737\pi\)
\(72\) 0 0
\(73\) −2.82716 + 1.63226i −0.330894 + 0.191042i −0.656238 0.754554i \(-0.727853\pi\)
0.325344 + 0.945596i \(0.394520\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.43807i 0.733687i
\(78\) 0 0
\(79\) 2.08739 + 3.61546i 0.234850 + 0.406771i 0.959229 0.282630i \(-0.0912069\pi\)
−0.724379 + 0.689402i \(0.757874\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.30268i 0.691809i 0.938270 + 0.345905i \(0.112428\pi\)
−0.938270 + 0.345905i \(0.887572\pi\)
\(84\) 0 0
\(85\) −2.59909 + 17.6824i −0.281910 + 1.91792i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.73646 + 4.73968i −0.290064 + 0.502405i −0.973825 0.227301i \(-0.927010\pi\)
0.683761 + 0.729706i \(0.260343\pi\)
\(90\) 0 0
\(91\) −5.69723 + 9.86789i −0.597232 + 1.03444i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.68966 4.41472i −0.891541 0.452941i
\(96\) 0 0
\(97\) 6.91255 3.99096i 0.701863 0.405221i −0.106178 0.994347i \(-0.533861\pi\)
0.808041 + 0.589126i \(0.200528\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.46731 + 4.27351i −0.245507 + 0.425230i −0.962274 0.272082i \(-0.912288\pi\)
0.716767 + 0.697313i \(0.245621\pi\)
\(102\) 0 0
\(103\) 5.56291i 0.548130i −0.961711 0.274065i \(-0.911632\pi\)
0.961711 0.274065i \(-0.0883684\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.12251i 0.881907i −0.897530 0.440953i \(-0.854640\pi\)
0.897530 0.440953i \(-0.145360\pi\)
\(108\) 0 0
\(109\) 7.57225 + 13.1155i 0.725290 + 1.25624i 0.958855 + 0.283898i \(0.0916276\pi\)
−0.233565 + 0.972341i \(0.575039\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.46091i 0.419647i 0.977739 + 0.209823i \(0.0672889\pi\)
−0.977739 + 0.209823i \(0.932711\pi\)
\(114\) 0 0
\(115\) −17.5209 + 6.95050i −1.63383 + 0.648138i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.1699 + 24.5429i 1.29895 + 2.24985i
\(120\) 0 0
\(121\) −7.70304 −0.700277
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.1258 + 4.74016i 0.905675 + 0.423973i
\(126\) 0 0
\(127\) 0.180177 + 0.104025i 0.0159881 + 0.00923073i 0.507973 0.861373i \(-0.330395\pi\)
−0.491985 + 0.870604i \(0.663728\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.55409 13.0841i −0.660004 1.14316i −0.980614 0.195950i \(-0.937221\pi\)
0.320610 0.947211i \(-0.396112\pi\)
\(132\) 0 0
\(133\) −15.1488 + 3.06261i −1.31356 + 0.265562i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.56291 + 2.63439i 0.389835 + 0.225072i 0.682089 0.731269i \(-0.261072\pi\)
−0.292253 + 0.956341i \(0.594405\pi\)
\(138\) 0 0
\(139\) 3.38336 5.86016i 0.286973 0.497052i −0.686113 0.727495i \(-0.740684\pi\)
0.973086 + 0.230443i \(0.0740176\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.05338 + 2.91757i 0.422585 + 0.243979i
\(144\) 0 0
\(145\) 7.07655 + 17.8386i 0.587675 + 1.48142i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.83003 8.36586i −0.395692 0.685358i 0.597498 0.801871i \(-0.296162\pi\)
−0.993189 + 0.116513i \(0.962828\pi\)
\(150\) 0 0
\(151\) −12.0256 −0.978631 −0.489316 0.872107i \(-0.662753\pi\)
−0.489316 + 0.872107i \(0.662753\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.37133 2.99597i 0.190470 0.240642i
\(156\) 0 0
\(157\) −1.36610 + 0.788721i −0.109027 + 0.0629468i −0.553522 0.832835i \(-0.686716\pi\)
0.444495 + 0.895781i \(0.353383\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.9443 + 25.8844i −1.17778 + 2.03997i
\(162\) 0 0
\(163\) 16.0641i 1.25823i 0.777310 + 0.629117i \(0.216584\pi\)
−0.777310 + 0.629117i \(0.783416\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.16826 3.56125i −0.477314 0.275578i 0.241982 0.970281i \(-0.422202\pi\)
−0.719297 + 0.694703i \(0.755536\pi\)
\(168\) 0 0
\(169\) −1.33632 2.31458i −0.102794 0.178044i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.8757 + 8.58850i −1.13098 + 0.652972i −0.944181 0.329427i \(-0.893145\pi\)
−0.186799 + 0.982398i \(0.559811\pi\)
\(174\) 0 0
\(175\) 17.2546 4.07125i 1.30432 0.307758i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.38519 −0.253021 −0.126510 0.991965i \(-0.540378\pi\)
−0.126510 + 0.991965i \(0.540378\pi\)
\(180\) 0 0
\(181\) 10.4226 18.0524i 0.774704 1.34183i −0.160257 0.987075i \(-0.551232\pi\)
0.934961 0.354751i \(-0.115434\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.65389 7.64113i −0.709768 0.561787i
\(186\) 0 0
\(187\) 12.5685 7.25643i 0.919101 0.530643i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.58794 −0.331972 −0.165986 0.986128i \(-0.553081\pi\)
−0.165986 + 0.986128i \(0.553081\pi\)
\(192\) 0 0
\(193\) −17.4238 + 10.0596i −1.25419 + 0.724108i −0.971939 0.235232i \(-0.924415\pi\)
−0.282252 + 0.959340i \(0.591082\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.983439i 0.0700671i 0.999386 + 0.0350336i \(0.0111538\pi\)
−0.999386 + 0.0350336i \(0.988846\pi\)
\(198\) 0 0
\(199\) −5.84473 + 10.1234i −0.414322 + 0.717626i −0.995357 0.0962520i \(-0.969315\pi\)
0.581035 + 0.813878i \(0.302648\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 26.3538 + 15.2154i 1.84967 + 1.06791i
\(204\) 0 0
\(205\) 17.9503 + 2.63848i 1.25371 + 0.184279i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.56837 + 7.75773i 0.108487 + 0.536613i
\(210\) 0 0
\(211\) −5.35987 9.28357i −0.368989 0.639107i 0.620419 0.784270i \(-0.286963\pi\)
−0.989408 + 0.145163i \(0.953629\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.63476 + 11.1218i −0.111490 + 0.758499i
\(216\) 0 0
\(217\) 6.05865i 0.411288i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 25.6857 1.72781
\(222\) 0 0
\(223\) 17.8291 10.2936i 1.19393 0.689313i 0.234731 0.972060i \(-0.424579\pi\)
0.959195 + 0.282747i \(0.0912456\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.47441i 0.496094i −0.968748 0.248047i \(-0.920211\pi\)
0.968748 0.248047i \(-0.0797887\pi\)
\(228\) 0 0
\(229\) 11.0863 0.732604 0.366302 0.930496i \(-0.380624\pi\)
0.366302 + 0.930496i \(0.380624\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.8785 + 9.16743i −1.04023 + 0.600578i −0.919899 0.392155i \(-0.871730\pi\)
−0.120333 + 0.992734i \(0.538396\pi\)
\(234\) 0 0
\(235\) 2.80407 1.11237i 0.182917 0.0725628i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.8518 0.766630 0.383315 0.923618i \(-0.374782\pi\)
0.383315 + 0.923618i \(0.374782\pi\)
\(240\) 0 0
\(241\) −2.34317 + 4.05850i −0.150937 + 0.261431i −0.931572 0.363556i \(-0.881562\pi\)
0.780635 + 0.624987i \(0.214896\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.73238 9.76918i 0.494004 0.624130i
\(246\) 0 0
\(247\) −4.46112 + 13.2785i −0.283854 + 0.844890i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.0510129 + 0.0883569i −0.00321990 + 0.00557704i −0.867631 0.497209i \(-0.834358\pi\)
0.864411 + 0.502786i \(0.167692\pi\)
\(252\) 0 0
\(253\) 13.2555 + 7.65304i 0.833363 + 0.481143i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.3268 7.69424i −0.831303 0.479953i 0.0229953 0.999736i \(-0.492680\pi\)
−0.854299 + 0.519782i \(0.826013\pi\)
\(258\) 0 0
\(259\) −19.5228 −1.21309
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −16.9467 + 9.78416i −1.04498 + 0.603317i −0.921239 0.388998i \(-0.872821\pi\)
−0.123737 + 0.992315i \(0.539488\pi\)
\(264\) 0 0
\(265\) −4.61291 + 1.82993i −0.283369 + 0.112412i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.585331 1.01382i −0.0356883 0.0618139i 0.847630 0.530588i \(-0.178029\pi\)
−0.883318 + 0.468775i \(0.844696\pi\)
\(270\) 0 0
\(271\) 6.40442 + 11.0928i 0.389041 + 0.673838i 0.992321 0.123691i \(-0.0394732\pi\)
−0.603280 + 0.797529i \(0.706140\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.08490 8.83613i −0.125724 0.532838i
\(276\) 0 0
\(277\) 11.0122i 0.661656i 0.943691 + 0.330828i \(0.107328\pi\)
−0.943691 + 0.330828i \(0.892672\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.93481 3.35119i 0.115421 0.199915i −0.802527 0.596616i \(-0.796512\pi\)
0.917948 + 0.396701i \(0.129845\pi\)
\(282\) 0 0
\(283\) 19.5893 11.3099i 1.16446 0.672303i 0.212093 0.977249i \(-0.431972\pi\)
0.952369 + 0.304947i \(0.0986387\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.9149 14.3846i 1.47068 0.849097i
\(288\) 0 0
\(289\) 23.4421 40.6029i 1.37895 2.38840i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.4482i 1.66196i −0.556303 0.830980i \(-0.687781\pi\)
0.556303 0.830980i \(-0.312219\pi\)
\(294\) 0 0
\(295\) 4.25104 + 0.624850i 0.247505 + 0.0363801i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.5448 + 23.4603i 0.783315 + 1.35674i
\(300\) 0 0
\(301\) 8.91251 + 15.4369i 0.513709 + 0.889770i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.66763 + 11.7662i 0.267268 + 0.673732i
\(306\) 0 0
\(307\) 12.2248 7.05802i 0.697709 0.402822i −0.108785 0.994065i \(-0.534696\pi\)
0.806494 + 0.591243i \(0.201363\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.4672 −0.933768 −0.466884 0.884319i \(-0.654623\pi\)
−0.466884 + 0.884319i \(0.654623\pi\)
\(312\) 0 0
\(313\) −21.6363 12.4917i −1.22295 0.706073i −0.257408 0.966303i \(-0.582868\pi\)
−0.965547 + 0.260229i \(0.916202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.91012 + 1.10281i 0.107283 + 0.0619399i 0.552681 0.833393i \(-0.313605\pi\)
−0.445398 + 0.895332i \(0.646938\pi\)
\(318\) 0 0
\(319\) 7.79183 13.4958i 0.436259 0.755622i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 23.0533 + 26.1218i 1.28272 + 1.45345i
\(324\) 0 0
\(325\) 4.62373 15.3885i 0.256478 0.853599i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.39171 4.14257i 0.131859 0.228387i
\(330\) 0 0
\(331\) −27.5415 −1.51382 −0.756910 0.653519i \(-0.773292\pi\)
−0.756910 + 0.653519i \(0.773292\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −19.3050 + 7.65823i −1.05474 + 0.418414i
\(336\) 0 0
\(337\) −15.9464 + 9.20668i −0.868658 + 0.501520i −0.866902 0.498479i \(-0.833892\pi\)
−0.00175582 + 0.999998i \(0.500559\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.10265 −0.168018
\(342\) 0 0
\(343\) 5.06383i 0.273421i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.8072 + 13.1677i −1.22435 + 0.706881i −0.965843 0.259128i \(-0.916565\pi\)
−0.258510 + 0.966009i \(0.583232\pi\)
\(348\) 0 0
\(349\) 7.40515 0.396388 0.198194 0.980163i \(-0.436492\pi\)
0.198194 + 0.980163i \(0.436492\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.42201i 0.128910i −0.997921 0.0644552i \(-0.979469\pi\)
0.997921 0.0644552i \(-0.0205309\pi\)
\(354\) 0 0
\(355\) −13.0244 1.91443i −0.691265 0.101607i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.28083 3.95051i −0.120377 0.208500i 0.799539 0.600614i \(-0.205077\pi\)
−0.919917 + 0.392114i \(0.871744\pi\)
\(360\) 0 0
\(361\) −17.5078 + 7.38076i −0.921465 + 0.388461i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.06156 7.22209i 0.0555645 0.378021i
\(366\) 0 0
\(367\) 9.11478 + 5.26242i 0.475788 + 0.274696i 0.718659 0.695362i \(-0.244756\pi\)
−0.242872 + 0.970058i \(0.578089\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.93455 + 6.81484i −0.204272 + 0.353809i
\(372\) 0 0
\(373\) 21.8633i 1.13204i −0.824392 0.566019i \(-0.808483\pi\)
0.824392 0.566019i \(-0.191517\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 23.8857 13.7904i 1.23018 0.710243i
\(378\) 0 0
\(379\) −9.33617 −0.479567 −0.239783 0.970826i \(-0.577076\pi\)
−0.239783 + 0.970826i \(0.577076\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.77320 2.75581i 0.243899 0.140815i −0.373068 0.927804i \(-0.621694\pi\)
0.616968 + 0.786989i \(0.288361\pi\)
\(384\) 0 0
\(385\) −11.2880 8.93452i −0.575288 0.455345i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.50605 + 14.7329i −0.431274 + 0.746988i −0.996983 0.0776163i \(-0.975269\pi\)
0.565709 + 0.824605i \(0.308602\pi\)
\(390\) 0 0
\(391\) 67.3758 3.40734
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −9.23585 1.35755i −0.464706 0.0683060i
\(396\) 0 0
\(397\) −27.2122 + 15.7110i −1.36574 + 0.788512i −0.990381 0.138366i \(-0.955815\pi\)
−0.375362 + 0.926878i \(0.622482\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.4762 23.3415i −0.672971 1.16562i −0.977058 0.212976i \(-0.931685\pi\)
0.304087 0.952644i \(-0.401649\pi\)
\(402\) 0 0
\(403\) −4.75556 2.74563i −0.236891 0.136769i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.99767i 0.495566i
\(408\) 0 0
\(409\) −17.0791 + 29.5819i −0.844509 + 1.46273i 0.0415373 + 0.999137i \(0.486774\pi\)
−0.886047 + 0.463596i \(0.846559\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.90040 3.40660i 0.290340 0.167628i
\(414\) 0 0
\(415\) −11.0506 8.74663i −0.542452 0.429355i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.5998 1.78802 0.894009 0.448049i \(-0.147881\pi\)
0.894009 + 0.448049i \(0.147881\pi\)
\(420\) 0 0
\(421\) −4.85007 8.40057i −0.236378 0.409419i 0.723294 0.690540i \(-0.242627\pi\)
−0.959672 + 0.281121i \(0.909294\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −27.3958 29.0959i −1.32889 1.41136i
\(426\) 0 0
\(427\) 17.3827 + 10.0359i 0.841209 + 0.485672i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.4779 25.0764i 0.697375 1.20789i −0.271999 0.962298i \(-0.587685\pi\)
0.969373 0.245591i \(-0.0789821\pi\)
\(432\) 0 0
\(433\) 6.44994 + 3.72388i 0.309965 + 0.178958i 0.646911 0.762566i \(-0.276061\pi\)
−0.336946 + 0.941524i \(0.609394\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.7019 + 34.8306i −0.559779 + 1.66618i
\(438\) 0 0
\(439\) 5.70008 + 9.87283i 0.272050 + 0.471204i 0.969387 0.245539i \(-0.0789650\pi\)
−0.697337 + 0.716744i \(0.745632\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.66042 3.84540i −0.316446 0.182700i 0.333361 0.942799i \(-0.391817\pi\)
−0.649807 + 0.760099i \(0.725150\pi\)
\(444\) 0 0
\(445\) −4.51260 11.3754i −0.213918 0.539247i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.0590 1.74892 0.874460 0.485097i \(-0.161216\pi\)
0.874460 + 0.485097i \(0.161216\pi\)
\(450\) 0 0
\(451\) −7.36641 12.7590i −0.346871 0.600797i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.39512 23.6833i −0.440450 1.11029i
\(456\) 0 0
\(457\) 22.1647i 1.03682i 0.855131 + 0.518411i \(0.173476\pi\)
−0.855131 + 0.518411i \(0.826524\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −21.0779 36.5080i −0.981697 1.70035i −0.655783 0.754949i \(-0.727661\pi\)
−0.325914 0.945400i \(-0.605672\pi\)
\(462\) 0 0
\(463\) 5.16758i 0.240158i 0.992764 + 0.120079i \(0.0383148\pi\)
−0.992764 + 0.120079i \(0.961685\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.7096i 0.588129i 0.955786 + 0.294064i \(0.0950080\pi\)
−0.955786 + 0.294064i \(0.904992\pi\)
\(468\) 0 0
\(469\) −16.4660 + 28.5200i −0.760331 + 1.31693i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.90530 4.56413i 0.363486 0.209859i
\(474\) 0 0
\(475\) 19.7996 9.10914i 0.908467 0.417956i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.0555 19.1487i 0.505140 0.874928i −0.494842 0.868983i \(-0.664774\pi\)
0.999982 0.00594539i \(-0.00189249\pi\)
\(480\) 0 0
\(481\) −8.84722 + 15.3238i −0.403399 + 0.698707i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.59556 + 17.6584i −0.117858 + 0.801826i
\(486\) 0 0
\(487\) 28.3389i 1.28416i −0.766639 0.642078i \(-0.778072\pi\)
0.766639 0.642078i \(-0.221928\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.33288 + 7.50477i 0.195540 + 0.338686i 0.947077 0.321005i \(-0.104021\pi\)
−0.751537 + 0.659691i \(0.770687\pi\)
\(492\) 0 0
\(493\) 68.5977i 3.08948i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.0778 + 10.4372i −0.810900 + 0.468173i
\(498\) 0 0
\(499\) −8.07784 13.9912i −0.361614 0.626334i 0.626613 0.779331i \(-0.284441\pi\)
−0.988227 + 0.152997i \(0.951107\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.3262 + 12.8900i 0.995474 + 0.574737i 0.906906 0.421333i \(-0.138438\pi\)
0.0885682 + 0.996070i \(0.471771\pi\)
\(504\) 0 0
\(505\) −4.06877 10.2566i −0.181058 0.456413i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.15335 10.6579i 0.272743 0.472404i −0.696821 0.717246i \(-0.745403\pi\)
0.969563 + 0.244842i \(0.0787359\pi\)
\(510\) 0 0
\(511\) −5.78747 10.0242i −0.256023 0.443444i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.75354 + 7.72000i 0.429792 + 0.340184i
\(516\) 0 0
\(517\) −2.12142 1.22480i −0.0933000 0.0538668i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.0934 −0.748875 −0.374438 0.927252i \(-0.622164\pi\)
−0.374438 + 0.927252i \(0.622164\pi\)
\(522\) 0 0
\(523\) 2.29269 + 1.32368i 0.100252 + 0.0578806i 0.549288 0.835633i \(-0.314899\pi\)
−0.449036 + 0.893514i \(0.648232\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.8278 + 6.82878i −0.515227 + 0.297466i
\(528\) 0 0
\(529\) 24.0292 + 41.6197i 1.04475 + 1.80955i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 26.0750i 1.12943i
\(534\) 0 0
\(535\) 15.9946 + 12.6599i 0.691509 + 0.547335i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.1171 −0.435773
\(540\) 0 0
\(541\) −5.06701 + 8.77631i −0.217848 + 0.377323i −0.954150 0.299330i \(-0.903237\pi\)
0.736302 + 0.676653i \(0.236570\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −33.5041 4.92469i −1.43516 0.210951i
\(546\) 0 0
\(547\) −19.4639 11.2375i −0.832217 0.480480i 0.0223944 0.999749i \(-0.492871\pi\)
−0.854611 + 0.519269i \(0.826204\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 35.4623 + 11.9141i 1.51074 + 0.507559i
\(552\) 0 0
\(553\) −12.8193 + 7.40121i −0.545131 + 0.314731i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.86157 2.22948i −0.163620 0.0944659i 0.415954 0.909386i \(-0.363448\pi\)
−0.579574 + 0.814920i \(0.696781\pi\)
\(558\) 0 0
\(559\) 16.1557 0.683313
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.0514i 0.423616i −0.977311 0.211808i \(-0.932065\pi\)
0.977311 0.211808i \(-0.0679352\pi\)
\(564\) 0 0
\(565\) −7.82137 6.19068i −0.329048 0.260444i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.41442 −0.226984 −0.113492 0.993539i \(-0.536204\pi\)
−0.113492 + 0.993539i \(0.536204\pi\)
\(570\) 0 0
\(571\) −24.0418 −1.00612 −0.503059 0.864252i \(-0.667792\pi\)
−0.503059 + 0.864252i \(0.667792\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.1284 40.3653i 0.505791 1.68335i
\(576\) 0 0
\(577\) 1.40727i 0.0585855i −0.999571 0.0292928i \(-0.990674\pi\)
0.999571 0.0292928i \(-0.00932551\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −22.3473 −0.927121
\(582\) 0 0
\(583\) 3.48990 + 2.01489i 0.144537 + 0.0834484i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.224303 0.129501i 0.00925798 0.00534510i −0.495364 0.868686i \(-0.664965\pi\)
0.504622 + 0.863340i \(0.331632\pi\)
\(588\) 0 0
\(589\) −1.47594 7.30054i −0.0608152 0.300813i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.57044 1.48405i −0.105555 0.0609425i 0.446293 0.894887i \(-0.352744\pi\)
−0.551848 + 0.833944i \(0.686077\pi\)
\(594\) 0 0
\(595\) −62.6959 9.21552i −2.57028 0.377800i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −23.7083 + 41.0640i −0.968696 + 1.67783i −0.269359 + 0.963040i \(0.586812\pi\)
−0.699338 + 0.714791i \(0.746522\pi\)
\(600\) 0 0
\(601\) −22.2047 −0.905747 −0.452874 0.891575i \(-0.649601\pi\)
−0.452874 + 0.891575i \(0.649601\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.6900 13.5059i 0.434610 0.549091i
\(606\) 0 0
\(607\) 37.6580i 1.52849i 0.644925 + 0.764246i \(0.276888\pi\)
−0.644925 + 0.764246i \(0.723112\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.16772 3.75461i −0.0876968 0.151895i
\(612\) 0 0
\(613\) −38.3694 + 22.1526i −1.54973 + 0.894734i −0.551563 + 0.834133i \(0.685969\pi\)
−0.998162 + 0.0606013i \(0.980698\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.1247 11.6190i −0.810190 0.467764i 0.0368317 0.999321i \(-0.488273\pi\)
−0.847022 + 0.531558i \(0.821607\pi\)
\(618\) 0 0
\(619\) 28.8420 1.15926 0.579630 0.814880i \(-0.303197\pi\)
0.579630 + 0.814880i \(0.303197\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.8054 9.70259i −0.673294 0.388726i
\(624\) 0 0
\(625\) −22.3631 + 11.1754i −0.894526 + 0.447017i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 22.0044 + 38.1127i 0.877371 + 1.51965i
\(630\) 0 0
\(631\) 6.79323 11.7662i 0.270434 0.468406i −0.698539 0.715572i \(-0.746166\pi\)
0.968973 + 0.247166i \(0.0794994\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.432431 + 0.171544i −0.0171605 + 0.00680753i
\(636\) 0 0
\(637\) −15.5068 8.95287i −0.614403 0.354726i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.15731 5.46863i −0.124706 0.215998i 0.796912 0.604096i \(-0.206466\pi\)
−0.921618 + 0.388098i \(0.873132\pi\)
\(642\) 0 0
\(643\) −11.8657 + 6.85067i −0.467938 + 0.270164i −0.715376 0.698740i \(-0.753745\pi\)
0.247438 + 0.968904i \(0.420411\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.50227i 0.334259i 0.985935 + 0.167129i \(0.0534497\pi\)
−0.985935 + 0.167129i \(0.946550\pi\)
\(648\) 0 0
\(649\) −1.74453 3.02161i −0.0684787 0.118609i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.89369i 0.269771i 0.990861 + 0.134885i \(0.0430667\pi\)
−0.990861 + 0.134885i \(0.956933\pi\)
\(654\) 0 0
\(655\) 33.4238 + 4.91288i 1.30598 + 0.191962i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.9585 18.9807i 0.426884 0.739384i −0.569711 0.821845i \(-0.692945\pi\)
0.996594 + 0.0824611i \(0.0262780\pi\)
\(660\) 0 0
\(661\) 15.5768 26.9797i 0.605866 1.04939i −0.386048 0.922479i \(-0.626160\pi\)
0.991914 0.126912i \(-0.0405065\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 15.6532 30.8107i 0.607004 1.19479i
\(666\) 0 0
\(667\) 62.6543 36.1735i 2.42598 1.40064i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.13943 8.90175i 0.198405 0.343648i
\(672\) 0 0
\(673\) 24.5193i 0.945150i −0.881290 0.472575i \(-0.843325\pi\)
0.881290 0.472575i \(-0.156675\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.89395i 0.303389i 0.988427 + 0.151695i \(0.0484730\pi\)
−0.988427 + 0.151695i \(0.951527\pi\)
\(678\) 0 0
\(679\) 14.1507 + 24.5097i 0.543053 + 0.940595i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 44.3352i 1.69644i −0.529644 0.848220i \(-0.677675\pi\)
0.529644 0.848220i \(-0.322325\pi\)
\(684\) 0 0
\(685\) −10.9512 + 4.34430i −0.418422 + 0.165987i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.56607 + 6.17662i 0.135857 + 0.235311i
\(690\) 0 0
\(691\) 44.2501 1.68335 0.841676 0.539982i \(-0.181569\pi\)
0.841676 + 0.539982i \(0.181569\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.57940 + 14.0646i 0.211639 + 0.533501i
\(696\) 0 0
\(697\) −56.1638 32.4262i −2.12735 1.22823i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 9.27840 + 16.0707i 0.350440 + 0.606980i 0.986327 0.164802i \(-0.0526987\pi\)
−0.635886 + 0.771783i \(0.719365\pi\)
\(702\) 0 0
\(703\) −23.5245 + 4.75593i −0.887243 + 0.179373i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.1525 8.74830i −0.569868 0.329014i
\(708\) 0 0
\(709\) 21.4349 37.1263i 0.805003 1.39431i −0.111285 0.993788i \(-0.535497\pi\)
0.916289 0.400518i \(-0.131170\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −12.4743 7.20202i −0.467165 0.269718i
\(714\) 0 0
\(715\) −12.1283 + 4.81127i −0.453573 + 0.179931i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.5024 + 30.3150i 0.652728 + 1.13056i 0.982458 + 0.186483i \(0.0597088\pi\)
−0.329730 + 0.944075i \(0.606958\pi\)
\(720\) 0 0
\(721\) 19.7243 0.734571
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −41.0973 12.3484i −1.52632 0.458608i
\(726\) 0 0
\(727\) 0.436587 0.252064i 0.0161921 0.00934852i −0.491882 0.870662i \(-0.663691\pi\)
0.508074 + 0.861313i \(0.330358\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.0908 34.7983i 0.743086 1.28706i
\(732\) 0 0
\(733\) 26.5745i 0.981553i −0.871285 0.490777i \(-0.836713\pi\)
0.871285 0.490777i \(-0.163287\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.6052 + 8.43231i 0.537989 + 0.310608i
\(738\) 0 0
\(739\) 12.8643 + 22.2817i 0.473222 + 0.819645i 0.999530 0.0306492i \(-0.00975746\pi\)
−0.526308 + 0.850294i \(0.676424\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.70400 + 2.13851i −0.135887 + 0.0784542i −0.566402 0.824129i \(-0.691665\pi\)
0.430516 + 0.902583i \(0.358332\pi\)
\(744\) 0 0
\(745\) 21.3709 + 3.14126i 0.782970 + 0.115087i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 32.3455 1.18188
\(750\) 0 0
\(751\) −7.26869 + 12.5897i −0.265238 + 0.459406i −0.967626 0.252388i \(-0.918784\pi\)
0.702388 + 0.711795i \(0.252117\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.6887 21.0847i 0.607364 0.767351i
\(756\) 0 0
\(757\) −14.1482 + 8.16844i −0.514224 + 0.296887i −0.734568 0.678535i \(-0.762615\pi\)
0.220345 + 0.975422i \(0.429282\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 21.9812 0.796819 0.398409 0.917208i \(-0.369562\pi\)
0.398409 + 0.917208i \(0.369562\pi\)
\(762\) 0 0
\(763\) −46.5034 + 26.8488i −1.68354 + 0.971990i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.17513i 0.222971i
\(768\) 0 0
\(769\) 23.1977 40.1796i 0.836530 1.44891i −0.0562477 0.998417i \(-0.517914\pi\)
0.892778 0.450496i \(-0.148753\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.6426 + 12.4954i 0.778431 + 0.449428i 0.835874 0.548921i \(-0.184961\pi\)
−0.0574426 + 0.998349i \(0.518295\pi\)
\(774\) 0 0
\(775\) 1.96203 + 8.31538i 0.0704781 + 0.298697i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 26.5176 23.4026i 0.950093 0.838486i
\(780\) 0 0
\(781\) 5.34493 + 9.25769i 0.191257 + 0.331266i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.512953 3.48977i 0.0183081 0.124555i
\(786\) 0 0
\(787\) 36.4986i 1.30103i −0.759492 0.650517i \(-0.774552\pi\)
0.759492 0.650517i \(-0.225448\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.8169 −0.562385
\(792\) 0 0
\(793\) 15.7548 9.09604i 0.559470 0.323010i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.9753i 0.424188i 0.977249 + 0.212094i \(0.0680283\pi\)
−0.977249 + 0.212094i \(0.931972\pi\)
\(798\) 0 0
\(799\) −10.7829 −0.381472
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.13342 + 2.96378i −0.181154 + 0.104590i
\(804\) 0 0
\(805\) −24.6442 62.1235i −0.868595 2.18956i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29.4153 1.03419 0.517093 0.855929i \(-0.327014\pi\)
0.517093 + 0.855929i \(0.327014\pi\)
\(810\) 0 0
\(811\) −27.4062 + 47.4690i −0.962363 + 1.66686i −0.245825 + 0.969314i \(0.579059\pi\)
−0.716538 + 0.697548i \(0.754274\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −28.1654 22.2931i −0.986590 0.780894i
\(816\) 0 0
\(817\) 14.5000 + 16.4300i 0.507289 + 0.574812i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.32200 + 7.48592i −0.150839 + 0.261260i −0.931536 0.363649i \(-0.881531\pi\)
0.780697 + 0.624909i \(0.214864\pi\)
\(822\) 0 0
\(823\) 35.1614 + 20.3004i 1.22565 + 0.707628i 0.966117 0.258106i \(-0.0830985\pi\)
0.259532 + 0.965735i \(0.416432\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.64002 0.946864i −0.0570290 0.0329257i 0.471214 0.882019i \(-0.343816\pi\)
−0.528243 + 0.849093i \(0.677149\pi\)
\(828\) 0 0
\(829\) 54.2488 1.88414 0.942070 0.335416i \(-0.108877\pi\)
0.942070 + 0.335416i \(0.108877\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −38.5678 + 22.2671i −1.33630 + 0.771511i
\(834\) 0 0
\(835\) 14.8041 5.87274i 0.512316 0.203235i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −19.4931 33.7630i −0.672976 1.16563i −0.977056 0.212982i \(-0.931682\pi\)
0.304080 0.952647i \(-0.401651\pi\)
\(840\) 0 0
\(841\) −22.3295 38.6758i −0.769982 1.33365i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.91268 + 0.869090i 0.203402 + 0.0298976i
\(846\) 0 0
\(847\) 27.3125i 0.938469i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −23.2070 + 40.1958i −0.795527 + 1.37789i
\(852\) 0 0
\(853\) 26.5103 15.3058i 0.907697 0.524059i 0.0280076 0.999608i \(-0.491084\pi\)
0.879689 + 0.475549i \(0.157750\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.6725 6.73913i 0.398726 0.230204i −0.287208 0.957868i \(-0.592727\pi\)
0.685934 + 0.727664i \(0.259394\pi\)
\(858\) 0 0
\(859\) −4.96411 + 8.59809i −0.169373 + 0.293363i −0.938200 0.346094i \(-0.887508\pi\)
0.768826 + 0.639458i \(0.220841\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.8000i 1.25269i −0.779547 0.626344i \(-0.784551\pi\)
0.779547 0.626344i \(-0.215449\pi\)
\(864\) 0 0
\(865\) 5.58562 38.0006i 0.189917 1.29206i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.79018 + 6.56479i 0.128573 + 0.222695i
\(870\) 0 0
\(871\) 14.9240 + 25.8491i 0.505679 + 0.875862i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.8071 + 35.9027i −0.568183 + 1.21373i
\(876\) 0 0
\(877\) 4.96267 2.86520i 0.167577 0.0967509i −0.413866 0.910338i \(-0.635822\pi\)
0.581443 + 0.813587i \(0.302488\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21.5926 −0.727474 −0.363737 0.931502i \(-0.618499\pi\)
−0.363737 + 0.931502i \(0.618499\pi\)
\(882\) 0 0
\(883\) 36.0904 + 20.8368i 1.21454 + 0.701214i 0.963745 0.266826i \(-0.0859749\pi\)
0.250794 + 0.968040i \(0.419308\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −43.9856 25.3951i −1.47689 0.852685i −0.477234 0.878776i \(-0.658361\pi\)
−0.999660 + 0.0260915i \(0.991694\pi\)
\(888\) 0 0
\(889\) −0.368839 + 0.638849i −0.0123705 + 0.0214263i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.87279 5.57434i 0.0626705 0.186538i
\(894\) 0 0
\(895\) 4.69784 5.93531i 0.157031 0.198395i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.33263 + 12.7005i −0.244557 + 0.423585i
\(900\) 0 0
\(901\) 17.7387 0.590962
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 17.1875 + 43.3265i 0.571333 + 1.44022i
\(906\) 0 0
\(907\) −17.4646 + 10.0832i −0.579902 + 0.334806i −0.761094 0.648641i \(-0.775338\pi\)
0.181193 + 0.983448i \(0.442004\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −47.2962 −1.56699 −0.783496 0.621397i \(-0.786566\pi\)
−0.783496 + 0.621397i \(0.786566\pi\)
\(912\) 0 0
\(913\) 11.4441i 0.378745i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 46.3919 26.7844i 1.53200 0.884498i
\(918\) 0 0
\(919\) 33.8678 1.11719 0.558597 0.829439i \(-0.311340\pi\)
0.558597 + 0.829439i \(0.311340\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 18.9195i 0.622744i
\(924\) 0 0
\(925\) 26.7946 6.32224i 0.881001 0.207874i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.457146 + 0.791800i 0.0149985 + 0.0259781i 0.873427 0.486955i \(-0.161892\pi\)
−0.858429 + 0.512933i \(0.828559\pi\)
\(930\) 0 0
\(931\) −4.81272 23.8054i −0.157731 0.780191i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.71930 + 32.1068i −0.154337 + 1.05000i
\(936\) 0 0
\(937\) −45.0186 25.9915i −1.47069 0.849106i −0.471236 0.882007i \(-0.656192\pi\)
−0.999459 + 0.0329014i \(0.989525\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.4228 + 21.5169i −0.404972 + 0.701432i −0.994318 0.106449i \(-0.966052\pi\)
0.589346 + 0.807880i \(0.299385\pi\)
\(942\) 0 0
\(943\) 68.3969i 2.22731i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0042 13.8588i 0.780032 0.450352i −0.0564097 0.998408i \(-0.517965\pi\)
0.836442 + 0.548056i \(0.184632\pi\)
\(948\) 0 0
\(949\) −10.4909 −0.340550
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.3605 8.29103i 0.465182 0.268573i −0.249039 0.968494i \(-0.580115\pi\)
0.714221 + 0.699921i \(0.246781\pi\)
\(954\) 0 0
\(955\) 6.36697 8.04411i 0.206030 0.260301i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.34072 + 16.1786i −0.301627 + 0.522434i
\(960\) 0 0
\(961\) −28.0802 −0.905813
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.54238 44.5098i 0.210607 1.43282i
\(966\) 0 0
\(967\) −16.5612 + 9.56159i −0.532571 + 0.307480i −0.742063 0.670330i \(-0.766152\pi\)
0.209492 + 0.977810i \(0.432819\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.56801 13.1082i −0.242869 0.420661i 0.718661 0.695360i \(-0.244755\pi\)
−0.961530 + 0.274699i \(0.911422\pi\)
\(972\) 0 0
\(973\) 20.7782 + 11.9963i 0.666120 + 0.384584i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.83858i 0.186793i −0.995629 0.0933964i \(-0.970228\pi\)
0.995629 0.0933964i \(-0.0297724\pi\)
\(978\) 0 0
\(979\) −4.96873 + 8.60609i −0.158801 + 0.275052i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.9231 + 10.3479i −0.571657 + 0.330047i −0.757811 0.652474i \(-0.773731\pi\)
0.186154 + 0.982521i \(0.440398\pi\)
\(984\) 0 0
\(985\) −1.72428 1.36478i −0.0549401 0.0434855i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 42.3778 1.34754
\(990\) 0 0
\(991\) −22.9776 39.7984i −0.729907 1.26424i −0.956922 0.290345i \(-0.906230\pi\)
0.227014 0.973891i \(-0.427104\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.63836 24.2965i −0.305556 0.770250i
\(996\) 0 0
\(997\) −6.31974 3.64870i −0.200148 0.115556i 0.396576 0.918002i \(-0.370198\pi\)
−0.596725 + 0.802446i \(0.703532\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3420.2.bj.c.2629.4 20
3.2 odd 2 380.2.r.a.349.1 yes 20
5.4 even 2 inner 3420.2.bj.c.2629.10 20
15.2 even 4 1900.2.i.g.501.10 20
15.8 even 4 1900.2.i.g.501.1 20
15.14 odd 2 380.2.r.a.349.10 yes 20
19.11 even 3 inner 3420.2.bj.c.1189.10 20
57.11 odd 6 380.2.r.a.49.10 yes 20
95.49 even 6 inner 3420.2.bj.c.1189.4 20
285.68 even 12 1900.2.i.g.201.1 20
285.182 even 12 1900.2.i.g.201.10 20
285.239 odd 6 380.2.r.a.49.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.1 20 285.239 odd 6
380.2.r.a.49.10 yes 20 57.11 odd 6
380.2.r.a.349.1 yes 20 3.2 odd 2
380.2.r.a.349.10 yes 20 15.14 odd 2
1900.2.i.g.201.1 20 285.68 even 12
1900.2.i.g.201.10 20 285.182 even 12
1900.2.i.g.501.1 20 15.8 even 4
1900.2.i.g.501.10 20 15.2 even 4
3420.2.bj.c.1189.4 20 95.49 even 6 inner
3420.2.bj.c.1189.10 20 19.11 even 3 inner
3420.2.bj.c.2629.4 20 1.1 even 1 trivial
3420.2.bj.c.2629.10 20 5.4 even 2 inner