Properties

Label 3420.2.bj.c.2629.2
Level $3420$
Weight $2$
Character 3420.2629
Analytic conductor $27.309$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3420,2,Mod(1189,3420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3420, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3420.1189");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3420 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3420.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.3088374913\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 20 x^{18} + 261 x^{16} - 1994 x^{14} + 11074 x^{12} - 39211 x^{10} + 99376 x^{8} - 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2629.2
Root \(-1.08802 + 0.628167i\) of defining polynomial
Character \(\chi\) \(=\) 3420.2629
Dual form 3420.2.bj.c.1189.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.87507 + 1.21824i) q^{5} -4.97100i q^{7} +3.85491 q^{11} +(-2.31178 - 1.33470i) q^{13} +(-2.24337 + 1.29521i) q^{17} +(1.24479 - 4.17738i) q^{19} +(1.88243 + 1.08682i) q^{23} +(2.03180 - 4.56857i) q^{25} +(-1.29432 + 2.24183i) q^{29} +7.76610 q^{31} +(6.05586 + 9.32100i) q^{35} +2.75768i q^{37} +(-3.66243 - 6.34351i) q^{41} +(-1.55033 + 0.895083i) q^{43} +(1.47942 + 0.854141i) q^{47} -17.7109 q^{49} +(-6.89738 - 3.98220i) q^{53} +(-7.22823 + 4.69619i) q^{55} +(0.127300 + 0.220490i) q^{59} +(-1.66702 + 2.88737i) q^{61} +(5.96073 - 0.313624i) q^{65} +(-11.4356 - 6.60237i) q^{67} +(-3.85760 - 6.68156i) q^{71} +(3.90558 - 2.25489i) q^{73} -19.1628i q^{77} +(5.52715 + 9.57330i) q^{79} +3.04360i q^{83} +(2.62861 - 5.16157i) q^{85} +(-4.76212 + 8.24824i) q^{89} +(-6.63482 + 11.4918i) q^{91} +(2.75497 + 9.34934i) q^{95} +(9.72851 - 5.61676i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{5} + 14 q^{19} + 9 q^{25} + 16 q^{29} + 8 q^{31} + 2 q^{35} - 26 q^{41} - 44 q^{49} - 12 q^{55} - 4 q^{59} + 2 q^{61} + 18 q^{65} + 2 q^{71} - 16 q^{79} - 39 q^{85} + 40 q^{89} - 4 q^{91} + 43 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3420\mathbb{Z}\right)^\times\).

\(n\) \(1711\) \(1901\) \(2737\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.87507 + 1.21824i −0.838558 + 0.544812i
\(6\) 0 0
\(7\) 4.97100i 1.87886i −0.342736 0.939432i \(-0.611354\pi\)
0.342736 0.939432i \(-0.388646\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.85491 1.16230 0.581149 0.813797i \(-0.302603\pi\)
0.581149 + 0.813797i \(0.302603\pi\)
\(12\) 0 0
\(13\) −2.31178 1.33470i −0.641171 0.370180i 0.143894 0.989593i \(-0.454037\pi\)
−0.785066 + 0.619413i \(0.787371\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.24337 + 1.29521i −0.544097 + 0.314135i −0.746738 0.665118i \(-0.768381\pi\)
0.202641 + 0.979253i \(0.435048\pi\)
\(18\) 0 0
\(19\) 1.24479 4.17738i 0.285574 0.958357i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.88243 + 1.08682i 0.392514 + 0.226618i 0.683249 0.730186i \(-0.260566\pi\)
−0.290735 + 0.956804i \(0.593900\pi\)
\(24\) 0 0
\(25\) 2.03180 4.56857i 0.406359 0.913713i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.29432 + 2.24183i −0.240350 + 0.416298i −0.960814 0.277194i \(-0.910595\pi\)
0.720464 + 0.693492i \(0.243929\pi\)
\(30\) 0 0
\(31\) 7.76610 1.39483 0.697417 0.716666i \(-0.254333\pi\)
0.697417 + 0.716666i \(0.254333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.05586 + 9.32100i 1.02363 + 1.57554i
\(36\) 0 0
\(37\) 2.75768i 0.453359i 0.973969 + 0.226680i \(0.0727870\pi\)
−0.973969 + 0.226680i \(0.927213\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.66243 6.34351i −0.571975 0.990690i −0.996363 0.0852097i \(-0.972844\pi\)
0.424388 0.905481i \(-0.360489\pi\)
\(42\) 0 0
\(43\) −1.55033 + 0.895083i −0.236423 + 0.136499i −0.613532 0.789670i \(-0.710252\pi\)
0.377109 + 0.926169i \(0.376918\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.47942 + 0.854141i 0.215795 + 0.124589i 0.604002 0.796983i \(-0.293572\pi\)
−0.388207 + 0.921572i \(0.626905\pi\)
\(48\) 0 0
\(49\) −17.7109 −2.53013
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.89738 3.98220i −0.947428 0.546998i −0.0551469 0.998478i \(-0.517563\pi\)
−0.892281 + 0.451480i \(0.850896\pi\)
\(54\) 0 0
\(55\) −7.22823 + 4.69619i −0.974654 + 0.633234i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.127300 + 0.220490i 0.0165730 + 0.0287053i 0.874193 0.485579i \(-0.161391\pi\)
−0.857620 + 0.514284i \(0.828058\pi\)
\(60\) 0 0
\(61\) −1.66702 + 2.88737i −0.213441 + 0.369690i −0.952789 0.303633i \(-0.901800\pi\)
0.739349 + 0.673323i \(0.235134\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.96073 0.313624i 0.739338 0.0389002i
\(66\) 0 0
\(67\) −11.4356 6.60237i −1.39708 0.806607i −0.402999 0.915201i \(-0.632032\pi\)
−0.994086 + 0.108593i \(0.965365\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.85760 6.68156i −0.457813 0.792955i 0.541032 0.841002i \(-0.318034\pi\)
−0.998845 + 0.0480468i \(0.984700\pi\)
\(72\) 0 0
\(73\) 3.90558 2.25489i 0.457114 0.263915i −0.253716 0.967279i \(-0.581653\pi\)
0.710830 + 0.703364i \(0.248320\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 19.1628i 2.18380i
\(78\) 0 0
\(79\) 5.52715 + 9.57330i 0.621852 + 1.07708i 0.989141 + 0.146973i \(0.0469530\pi\)
−0.367288 + 0.930107i \(0.619714\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.04360i 0.334079i 0.985950 + 0.167040i \(0.0534207\pi\)
−0.985950 + 0.167040i \(0.946579\pi\)
\(84\) 0 0
\(85\) 2.62861 5.16157i 0.285113 0.559851i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.76212 + 8.24824i −0.504784 + 0.874311i 0.495201 + 0.868779i \(0.335094\pi\)
−0.999985 + 0.00553277i \(0.998239\pi\)
\(90\) 0 0
\(91\) −6.63482 + 11.4918i −0.695518 + 1.20467i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.75497 + 9.34934i 0.282654 + 0.959222i
\(96\) 0 0
\(97\) 9.72851 5.61676i 0.987780 0.570295i 0.0831703 0.996535i \(-0.473495\pi\)
0.904610 + 0.426240i \(0.140162\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.45345 + 9.44564i −0.542638 + 0.939877i 0.456113 + 0.889922i \(0.349241\pi\)
−0.998751 + 0.0499550i \(0.984092\pi\)
\(102\) 0 0
\(103\) 11.4532i 1.12852i 0.825597 + 0.564260i \(0.190839\pi\)
−0.825597 + 0.564260i \(0.809161\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.3401i 1.77300i −0.462725 0.886502i \(-0.653128\pi\)
0.462725 0.886502i \(-0.346872\pi\)
\(108\) 0 0
\(109\) −6.55467 11.3530i −0.627824 1.08742i −0.987988 0.154533i \(-0.950613\pi\)
0.360164 0.932889i \(-0.382721\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.696954i 0.0655640i −0.999463 0.0327820i \(-0.989563\pi\)
0.999463 0.0327820i \(-0.0104367\pi\)
\(114\) 0 0
\(115\) −4.85370 + 0.255377i −0.452610 + 0.0238140i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.43850 + 11.1518i 0.590216 + 1.02228i
\(120\) 0 0
\(121\) 3.86029 0.350936
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.75583 + 11.0416i 0.157047 + 0.987591i
\(126\) 0 0
\(127\) −11.9968 6.92636i −1.06454 0.614615i −0.137859 0.990452i \(-0.544022\pi\)
−0.926686 + 0.375837i \(0.877355\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.11533 10.5921i −0.534299 0.925433i −0.999197 0.0400690i \(-0.987242\pi\)
0.464898 0.885364i \(-0.346091\pi\)
\(132\) 0 0
\(133\) −20.7658 6.18785i −1.80062 0.536554i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.96493 4.59855i −0.680490 0.392881i 0.119550 0.992828i \(-0.461855\pi\)
−0.800039 + 0.599947i \(0.795188\pi\)
\(138\) 0 0
\(139\) −3.22178 + 5.58028i −0.273267 + 0.473313i −0.969697 0.244312i \(-0.921438\pi\)
0.696429 + 0.717626i \(0.254771\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.91168 5.14516i −0.745232 0.430260i
\(144\) 0 0
\(145\) −0.304135 5.78039i −0.0252570 0.480036i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.5381 19.9846i −0.945239 1.63720i −0.755272 0.655411i \(-0.772495\pi\)
−0.189966 0.981791i \(-0.560838\pi\)
\(150\) 0 0
\(151\) 20.1613 1.64071 0.820353 0.571858i \(-0.193777\pi\)
0.820353 + 0.571858i \(0.193777\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.5620 + 9.46096i −1.16965 + 0.759922i
\(156\) 0 0
\(157\) −10.2803 + 5.93532i −0.820456 + 0.473690i −0.850574 0.525856i \(-0.823745\pi\)
0.0301179 + 0.999546i \(0.490412\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.40259 9.35757i 0.425784 0.737480i
\(162\) 0 0
\(163\) 13.1763i 1.03205i −0.856575 0.516023i \(-0.827412\pi\)
0.856575 0.516023i \(-0.172588\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.17459 1.83285i −0.245657 0.141830i 0.372117 0.928186i \(-0.378632\pi\)
−0.617774 + 0.786356i \(0.711965\pi\)
\(168\) 0 0
\(169\) −2.93713 5.08726i −0.225933 0.391327i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.0739334 + 0.0426855i −0.00562105 + 0.00324532i −0.502808 0.864398i \(-0.667700\pi\)
0.497187 + 0.867644i \(0.334366\pi\)
\(174\) 0 0
\(175\) −22.7104 10.1001i −1.71674 0.763493i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.2256 −1.21276 −0.606380 0.795175i \(-0.707379\pi\)
−0.606380 + 0.795175i \(0.707379\pi\)
\(180\) 0 0
\(181\) −10.1549 + 17.5888i −0.754808 + 1.30737i 0.190662 + 0.981656i \(0.438937\pi\)
−0.945470 + 0.325710i \(0.894397\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.35950 5.17084i −0.246996 0.380168i
\(186\) 0 0
\(187\) −8.64798 + 4.99291i −0.632403 + 0.365118i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.9157 1.58576 0.792881 0.609377i \(-0.208580\pi\)
0.792881 + 0.609377i \(0.208580\pi\)
\(192\) 0 0
\(193\) 4.35575 2.51480i 0.313534 0.181019i −0.334973 0.942228i \(-0.608727\pi\)
0.648507 + 0.761209i \(0.275394\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.1189i 1.36217i 0.732205 + 0.681084i \(0.238491\pi\)
−0.732205 + 0.681084i \(0.761509\pi\)
\(198\) 0 0
\(199\) 9.04425 15.6651i 0.641130 1.11047i −0.344051 0.938951i \(-0.611799\pi\)
0.985181 0.171518i \(-0.0548672\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 11.1442 + 6.43409i 0.782167 + 0.451584i
\(204\) 0 0
\(205\) 14.5952 + 7.43284i 1.01937 + 0.519132i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.79854 16.1034i 0.331922 1.11390i
\(210\) 0 0
\(211\) −8.03757 13.9215i −0.553329 0.958394i −0.998031 0.0627157i \(-0.980024\pi\)
0.444702 0.895678i \(-0.353309\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.81656 3.56702i 0.123888 0.243268i
\(216\) 0 0
\(217\) 38.6053i 2.62070i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.91489 0.465146
\(222\) 0 0
\(223\) 15.0002 8.66036i 1.00449 0.579941i 0.0949140 0.995485i \(-0.469742\pi\)
0.909573 + 0.415545i \(0.136409\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.7579i 1.57687i −0.615120 0.788434i \(-0.710892\pi\)
0.615120 0.788434i \(-0.289108\pi\)
\(228\) 0 0
\(229\) −0.732245 −0.0483881 −0.0241941 0.999707i \(-0.507702\pi\)
−0.0241941 + 0.999707i \(0.507702\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.2328 + 9.94933i −1.12896 + 0.651803i −0.943672 0.330883i \(-0.892654\pi\)
−0.185283 + 0.982685i \(0.559320\pi\)
\(234\) 0 0
\(235\) −3.81456 + 0.200703i −0.248834 + 0.0130924i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −28.9063 −1.86979 −0.934897 0.354919i \(-0.884508\pi\)
−0.934897 + 0.354919i \(0.884508\pi\)
\(240\) 0 0
\(241\) 11.8979 20.6077i 0.766409 1.32746i −0.173090 0.984906i \(-0.555375\pi\)
0.939499 0.342553i \(-0.111292\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 33.2092 21.5761i 2.12166 1.37844i
\(246\) 0 0
\(247\) −8.45324 + 7.99574i −0.537867 + 0.508757i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.44694 + 5.97028i −0.217569 + 0.376840i −0.954064 0.299602i \(-0.903146\pi\)
0.736495 + 0.676443i \(0.236479\pi\)
\(252\) 0 0
\(253\) 7.25659 + 4.18959i 0.456218 + 0.263397i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.9617 + 6.32874i 0.683772 + 0.394776i 0.801275 0.598296i \(-0.204155\pi\)
−0.117502 + 0.993073i \(0.537489\pi\)
\(258\) 0 0
\(259\) 13.7084 0.851800
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −21.6062 + 12.4743i −1.33229 + 0.769200i −0.985651 0.168797i \(-0.946012\pi\)
−0.346643 + 0.937997i \(0.612678\pi\)
\(264\) 0 0
\(265\) 17.7844 0.935723i 1.09248 0.0574810i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.54155 + 16.5265i 0.581759 + 1.00764i 0.995271 + 0.0971371i \(0.0309685\pi\)
−0.413512 + 0.910499i \(0.635698\pi\)
\(270\) 0 0
\(271\) −1.48490 2.57192i −0.0902012 0.156233i 0.817395 0.576078i \(-0.195418\pi\)
−0.907596 + 0.419845i \(0.862084\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.83238 17.6114i 0.472310 1.06201i
\(276\) 0 0
\(277\) 5.51535i 0.331385i 0.986177 + 0.165693i \(0.0529860\pi\)
−0.986177 + 0.165693i \(0.947014\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.4800 + 21.6159i −0.744493 + 1.28950i 0.205939 + 0.978565i \(0.433975\pi\)
−0.950431 + 0.310934i \(0.899358\pi\)
\(282\) 0 0
\(283\) −11.6526 + 6.72761i −0.692673 + 0.399915i −0.804613 0.593800i \(-0.797627\pi\)
0.111939 + 0.993715i \(0.464294\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −31.5336 + 18.2060i −1.86137 + 1.07466i
\(288\) 0 0
\(289\) −5.14486 + 8.91116i −0.302639 + 0.524186i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.7710i 1.38871i −0.719630 0.694357i \(-0.755689\pi\)
0.719630 0.694357i \(-0.244311\pi\)
\(294\) 0 0
\(295\) −0.507305 0.258353i −0.0295364 0.0150419i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.90117 5.02497i −0.167779 0.290602i
\(300\) 0 0
\(301\) 4.44946 + 7.70670i 0.256463 + 0.444207i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.391711 7.44486i −0.0224293 0.426291i
\(306\) 0 0
\(307\) −5.84122 + 3.37243i −0.333376 + 0.192475i −0.657339 0.753595i \(-0.728318\pi\)
0.323963 + 0.946070i \(0.394985\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.6908 0.662924 0.331462 0.943468i \(-0.392458\pi\)
0.331462 + 0.943468i \(0.392458\pi\)
\(312\) 0 0
\(313\) −15.2101 8.78157i −0.859727 0.496364i 0.00419387 0.999991i \(-0.498665\pi\)
−0.863921 + 0.503628i \(0.831998\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.5399 + 16.4775i 1.60296 + 0.925469i 0.990891 + 0.134663i \(0.0429952\pi\)
0.612067 + 0.790806i \(0.290338\pi\)
\(318\) 0 0
\(319\) −4.98949 + 8.64206i −0.279358 + 0.483862i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.61807 + 10.9837i 0.145673 + 0.611148i
\(324\) 0 0
\(325\) −10.7947 + 7.84966i −0.598785 + 0.435421i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.24594 7.35418i 0.234086 0.405449i
\(330\) 0 0
\(331\) −4.54726 −0.249940 −0.124970 0.992161i \(-0.539883\pi\)
−0.124970 + 0.992161i \(0.539883\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 29.4859 1.55140i 1.61099 0.0847619i
\(336\) 0 0
\(337\) 19.0180 10.9801i 1.03598 0.598122i 0.117286 0.993098i \(-0.462581\pi\)
0.918691 + 0.394976i \(0.129247\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 29.9376 1.62121
\(342\) 0 0
\(343\) 53.2439i 2.87490i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.28915 3.63104i 0.337619 0.194925i −0.321599 0.946876i \(-0.604220\pi\)
0.659219 + 0.751951i \(0.270887\pi\)
\(348\) 0 0
\(349\) 16.0910 0.861329 0.430665 0.902512i \(-0.358279\pi\)
0.430665 + 0.902512i \(0.358279\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 33.4331i 1.77947i −0.456481 0.889733i \(-0.650890\pi\)
0.456481 0.889733i \(-0.349110\pi\)
\(354\) 0 0
\(355\) 15.3730 + 7.82894i 0.815914 + 0.415517i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.97814 17.2826i −0.526626 0.912143i −0.999519 0.0310231i \(-0.990123\pi\)
0.472893 0.881120i \(-0.343210\pi\)
\(360\) 0 0
\(361\) −15.9010 10.3999i −0.836895 0.547363i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.57626 + 8.98600i −0.239532 + 0.470349i
\(366\) 0 0
\(367\) 6.60735 + 3.81476i 0.344901 + 0.199129i 0.662437 0.749117i \(-0.269522\pi\)
−0.317536 + 0.948246i \(0.602856\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −19.7956 + 34.2869i −1.02773 + 1.78009i
\(372\) 0 0
\(373\) 2.22095i 0.114996i −0.998346 0.0574982i \(-0.981688\pi\)
0.998346 0.0574982i \(-0.0183123\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.98437 3.45508i 0.308211 0.177946i
\(378\) 0 0
\(379\) −6.92717 −0.355825 −0.177912 0.984046i \(-0.556934\pi\)
−0.177912 + 0.984046i \(0.556934\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.6386 9.60631i 0.850193 0.490859i −0.0105227 0.999945i \(-0.503350\pi\)
0.860716 + 0.509085i \(0.170016\pi\)
\(384\) 0 0
\(385\) 23.3448 + 35.9316i 1.18976 + 1.83124i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.4261 + 23.2547i −0.680730 + 1.17906i 0.294029 + 0.955797i \(0.405004\pi\)
−0.974758 + 0.223262i \(0.928329\pi\)
\(390\) 0 0
\(391\) −5.63065 −0.284754
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −22.0263 11.2173i −1.10827 0.564401i
\(396\) 0 0
\(397\) −6.42312 + 3.70839i −0.322367 + 0.186119i −0.652447 0.757834i \(-0.726258\pi\)
0.330080 + 0.943953i \(0.392924\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.66556 4.61689i −0.133112 0.230557i 0.791763 0.610829i \(-0.209164\pi\)
−0.924875 + 0.380272i \(0.875830\pi\)
\(402\) 0 0
\(403\) −17.9535 10.3655i −0.894327 0.516340i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.6306i 0.526938i
\(408\) 0 0
\(409\) −5.70960 + 9.88933i −0.282322 + 0.488996i −0.971956 0.235162i \(-0.924438\pi\)
0.689634 + 0.724158i \(0.257771\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.09605 0.632807i 0.0539333 0.0311384i
\(414\) 0 0
\(415\) −3.70783 5.70698i −0.182010 0.280145i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.2311 −0.597529 −0.298765 0.954327i \(-0.596575\pi\)
−0.298765 + 0.954327i \(0.596575\pi\)
\(420\) 0 0
\(421\) 6.63359 + 11.4897i 0.323301 + 0.559974i 0.981167 0.193161i \(-0.0618739\pi\)
−0.657866 + 0.753135i \(0.728541\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.35919 + 12.8806i 0.0659302 + 0.624801i
\(426\) 0 0
\(427\) 14.3531 + 8.28678i 0.694597 + 0.401026i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.19094 14.1871i 0.394544 0.683370i −0.598499 0.801124i \(-0.704236\pi\)
0.993043 + 0.117754i \(0.0375693\pi\)
\(432\) 0 0
\(433\) 13.0054 + 7.50864i 0.624997 + 0.360842i 0.778812 0.627257i \(-0.215823\pi\)
−0.153815 + 0.988100i \(0.549156\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.88329 6.51076i 0.329272 0.311452i
\(438\) 0 0
\(439\) 7.68192 + 13.3055i 0.366638 + 0.635035i 0.989038 0.147664i \(-0.0471755\pi\)
−0.622400 + 0.782700i \(0.713842\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.9890 12.1180i −0.997219 0.575745i −0.0897946 0.995960i \(-0.528621\pi\)
−0.907424 + 0.420216i \(0.861954\pi\)
\(444\) 0 0
\(445\) −1.11898 21.2674i −0.0530450 1.00817i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.8854 0.796873 0.398436 0.917196i \(-0.369553\pi\)
0.398436 + 0.917196i \(0.369553\pi\)
\(450\) 0 0
\(451\) −14.1183 24.4536i −0.664805 1.15148i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.55902 29.6308i −0.0730882 1.38912i
\(456\) 0 0
\(457\) 29.1914i 1.36551i 0.730645 + 0.682757i \(0.239219\pi\)
−0.730645 + 0.682757i \(0.760781\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.87254 + 3.24333i 0.0872127 + 0.151057i 0.906332 0.422566i \(-0.138871\pi\)
−0.819119 + 0.573623i \(0.805537\pi\)
\(462\) 0 0
\(463\) 21.4714i 0.997860i −0.866642 0.498930i \(-0.833727\pi\)
0.866642 0.498930i \(-0.166273\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 29.1079i 1.34695i 0.739209 + 0.673476i \(0.235200\pi\)
−0.739209 + 0.673476i \(0.764800\pi\)
\(468\) 0 0
\(469\) −32.8204 + 56.8466i −1.51550 + 2.62493i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.97637 + 3.45046i −0.274794 + 0.158652i
\(474\) 0 0
\(475\) −16.5555 14.1745i −0.759618 0.650370i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.258348 0.447471i 0.0118042 0.0204455i −0.860063 0.510188i \(-0.829576\pi\)
0.871867 + 0.489742i \(0.162909\pi\)
\(480\) 0 0
\(481\) 3.68068 6.37513i 0.167825 0.290681i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.3991 + 22.3835i −0.517607 + 1.01638i
\(486\) 0 0
\(487\) 10.6668i 0.483358i 0.970356 + 0.241679i \(0.0776981\pi\)
−0.970356 + 0.241679i \(0.922302\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0852 + 20.9322i 0.545398 + 0.944656i 0.998582 + 0.0532395i \(0.0169547\pi\)
−0.453184 + 0.891417i \(0.649712\pi\)
\(492\) 0 0
\(493\) 6.70569i 0.302009i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −33.2141 + 19.1761i −1.48985 + 0.860168i
\(498\) 0 0
\(499\) −2.38934 4.13846i −0.106962 0.185263i 0.807576 0.589763i \(-0.200779\pi\)
−0.914538 + 0.404500i \(0.867446\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.4577 + 8.92453i 0.689227 + 0.397925i 0.803322 0.595545i \(-0.203064\pi\)
−0.114096 + 0.993470i \(0.536397\pi\)
\(504\) 0 0
\(505\) −1.28143 24.3549i −0.0570229 1.08378i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.57492 + 6.19194i −0.158455 + 0.274453i −0.934312 0.356457i \(-0.883985\pi\)
0.775856 + 0.630909i \(0.217318\pi\)
\(510\) 0 0
\(511\) −11.2091 19.4147i −0.495860 0.858854i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.9528 21.4757i −0.614832 0.946330i
\(516\) 0 0
\(517\) 5.70301 + 3.29263i 0.250818 + 0.144810i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.7280 0.864301 0.432151 0.901801i \(-0.357755\pi\)
0.432151 + 0.901801i \(0.357755\pi\)
\(522\) 0 0
\(523\) 31.4070 + 18.1328i 1.37333 + 0.792894i 0.991346 0.131274i \(-0.0419069\pi\)
0.381986 + 0.924168i \(0.375240\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.4222 + 10.0587i −0.758925 + 0.438166i
\(528\) 0 0
\(529\) −9.13764 15.8269i −0.397289 0.688124i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.5530i 0.846936i
\(534\) 0 0
\(535\) 22.3426 + 34.3890i 0.965954 + 1.48677i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −68.2738 −2.94076
\(540\) 0 0
\(541\) 11.4419 19.8180i 0.491927 0.852043i −0.508029 0.861340i \(-0.669626\pi\)
0.999957 + 0.00929658i \(0.00295924\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.1212 + 13.3026i 1.11891 + 0.569821i
\(546\) 0 0
\(547\) −11.0134 6.35861i −0.470901 0.271875i 0.245716 0.969342i \(-0.420977\pi\)
−0.716617 + 0.697467i \(0.754310\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.75383 + 8.19749i 0.330324 + 0.349225i
\(552\) 0 0
\(553\) 47.5889 27.4755i 2.02369 1.16838i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.3648 + 11.1803i 0.820511 + 0.473722i 0.850593 0.525825i \(-0.176243\pi\)
−0.0300814 + 0.999547i \(0.509577\pi\)
\(558\) 0 0
\(559\) 4.77869 0.202117
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.6447i 0.448619i −0.974518 0.224310i \(-0.927987\pi\)
0.974518 0.224310i \(-0.0720127\pi\)
\(564\) 0 0
\(565\) 0.849056 + 1.30684i 0.0357201 + 0.0549792i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.13498 −0.131425 −0.0657126 0.997839i \(-0.520932\pi\)
−0.0657126 + 0.997839i \(0.520932\pi\)
\(570\) 0 0
\(571\) 1.29260 0.0540938 0.0270469 0.999634i \(-0.491390\pi\)
0.0270469 + 0.999634i \(0.491390\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.78993 6.39181i 0.366565 0.266557i
\(576\) 0 0
\(577\) 8.18544i 0.340764i 0.985378 + 0.170382i \(0.0545002\pi\)
−0.985378 + 0.170382i \(0.945500\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 15.1298 0.627689
\(582\) 0 0
\(583\) −26.5887 15.3510i −1.10119 0.635774i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.7359 9.08512i 0.649490 0.374983i −0.138771 0.990325i \(-0.544315\pi\)
0.788261 + 0.615341i \(0.210982\pi\)
\(588\) 0 0
\(589\) 9.66715 32.4420i 0.398328 1.33675i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −7.69621 4.44341i −0.316046 0.182469i 0.333583 0.942721i \(-0.391742\pi\)
−0.649629 + 0.760252i \(0.725076\pi\)
\(594\) 0 0
\(595\) −25.6582 13.0668i −1.05188 0.535688i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.18264 3.78044i 0.0891801 0.154465i −0.817985 0.575240i \(-0.804909\pi\)
0.907165 + 0.420775i \(0.138242\pi\)
\(600\) 0 0
\(601\) −4.25303 −0.173485 −0.0867424 0.996231i \(-0.527646\pi\)
−0.0867424 + 0.996231i \(0.527646\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.23833 + 4.70275i −0.294280 + 0.191194i
\(606\) 0 0
\(607\) 23.5995i 0.957876i 0.877849 + 0.478938i \(0.158978\pi\)
−0.877849 + 0.478938i \(0.841022\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.28005 3.94917i −0.0922410 0.159766i
\(612\) 0 0
\(613\) 17.6090 10.1665i 0.711220 0.410623i −0.100293 0.994958i \(-0.531978\pi\)
0.811512 + 0.584335i \(0.198645\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.0932 + 15.6422i 1.09073 + 0.629733i 0.933771 0.357872i \(-0.116498\pi\)
0.156959 + 0.987605i \(0.449831\pi\)
\(618\) 0 0
\(619\) −25.7635 −1.03552 −0.517761 0.855525i \(-0.673234\pi\)
−0.517761 + 0.855525i \(0.673234\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 41.0020 + 23.6725i 1.64271 + 0.948420i
\(624\) 0 0
\(625\) −16.7436 18.5648i −0.669744 0.742592i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.57177 6.18649i −0.142416 0.246671i
\(630\) 0 0
\(631\) −10.6458 + 18.4391i −0.423804 + 0.734050i −0.996308 0.0858517i \(-0.972639\pi\)
0.572504 + 0.819902i \(0.305972\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 30.9328 1.62753i 1.22753 0.0645865i
\(636\) 0 0
\(637\) 40.9436 + 23.6388i 1.62224 + 0.936603i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.5525 28.6698i −0.653785 1.13239i −0.982197 0.187854i \(-0.939847\pi\)
0.328412 0.944535i \(-0.393487\pi\)
\(642\) 0 0
\(643\) 26.1024 15.0702i 1.02938 0.594311i 0.112570 0.993644i \(-0.464092\pi\)
0.916806 + 0.399333i \(0.130758\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.5273i 0.413870i 0.978355 + 0.206935i \(0.0663489\pi\)
−0.978355 + 0.206935i \(0.933651\pi\)
\(648\) 0 0
\(649\) 0.490728 + 0.849966i 0.0192628 + 0.0333641i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.9511i 0.585081i −0.956253 0.292540i \(-0.905499\pi\)
0.956253 0.292540i \(-0.0945006\pi\)
\(654\) 0 0
\(655\) 24.3703 + 12.4110i 0.952228 + 0.484937i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.6909 28.9094i 0.650184 1.12615i −0.332894 0.942964i \(-0.608025\pi\)
0.983078 0.183187i \(-0.0586414\pi\)
\(660\) 0 0
\(661\) −12.7433 + 22.0720i −0.495655 + 0.858501i −0.999987 0.00500935i \(-0.998405\pi\)
0.504332 + 0.863510i \(0.331739\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 46.4756 13.6950i 1.80225 0.531069i
\(666\) 0 0
\(667\) −4.87295 + 2.81340i −0.188681 + 0.108935i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.42622 + 11.1305i −0.248081 + 0.429690i
\(672\) 0 0
\(673\) 9.87133i 0.380512i 0.981735 + 0.190256i \(0.0609318\pi\)
−0.981735 + 0.190256i \(0.939068\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.8367i 0.454922i 0.973787 + 0.227461i \(0.0730424\pi\)
−0.973787 + 0.227461i \(0.926958\pi\)
\(678\) 0 0
\(679\) −27.9209 48.3605i −1.07151 1.85590i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29.6716i 1.13535i 0.823253 + 0.567675i \(0.192157\pi\)
−0.823253 + 0.567675i \(0.807843\pi\)
\(684\) 0 0
\(685\) 20.5369 1.08055i 0.784676 0.0412857i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10.6301 + 18.4119i 0.404976 + 0.701438i
\(690\) 0 0
\(691\) 9.73437 0.370313 0.185156 0.982709i \(-0.440721\pi\)
0.185156 + 0.982709i \(0.440721\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.757040 14.3883i −0.0287162 0.545780i
\(696\) 0 0
\(697\) 16.4324 + 9.48723i 0.622420 + 0.359355i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −10.3345 17.8999i −0.390329 0.676070i 0.602164 0.798373i \(-0.294305\pi\)
−0.992493 + 0.122303i \(0.960972\pi\)
\(702\) 0 0
\(703\) 11.5199 + 3.43272i 0.434480 + 0.129468i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 46.9543 + 27.1091i 1.76590 + 1.01954i
\(708\) 0 0
\(709\) 10.0066 17.3319i 0.375806 0.650915i −0.614641 0.788807i \(-0.710699\pi\)
0.990447 + 0.137892i \(0.0440326\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.6191 + 8.44037i 0.547491 + 0.316094i
\(714\) 0 0
\(715\) 22.9781 1.20899i 0.859331 0.0452136i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −11.2807 19.5387i −0.420698 0.728671i 0.575309 0.817936i \(-0.304882\pi\)
−0.996008 + 0.0892647i \(0.971548\pi\)
\(720\) 0 0
\(721\) 56.9341 2.12034
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.61217 + 10.4682i 0.282709 + 0.388777i
\(726\) 0 0
\(727\) 4.81051 2.77735i 0.178412 0.103006i −0.408134 0.912922i \(-0.633821\pi\)
0.586546 + 0.809916i \(0.300487\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.31864 4.01601i 0.0857581 0.148537i
\(732\) 0 0
\(733\) 45.3490i 1.67500i 0.546436 + 0.837501i \(0.315984\pi\)
−0.546436 + 0.837501i \(0.684016\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −44.0833 25.4515i −1.62383 0.937518i
\(738\) 0 0
\(739\) −9.01081 15.6072i −0.331468 0.574119i 0.651332 0.758793i \(-0.274211\pi\)
−0.982800 + 0.184674i \(0.940877\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.9333 21.3235i 1.35495 0.782282i 0.366013 0.930610i \(-0.380723\pi\)
0.988938 + 0.148328i \(0.0473892\pi\)
\(744\) 0 0
\(745\) 45.9808 + 23.4164i 1.68461 + 0.857911i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −91.1687 −3.33123
\(750\) 0 0
\(751\) −2.45338 + 4.24938i −0.0895252 + 0.155062i −0.907311 0.420461i \(-0.861868\pi\)
0.817785 + 0.575523i \(0.195202\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −37.8040 + 24.5613i −1.37583 + 0.893876i
\(756\) 0 0
\(757\) 24.2213 13.9842i 0.880339 0.508264i 0.00956884 0.999954i \(-0.496954\pi\)
0.870770 + 0.491690i \(0.163621\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.7443 0.425731 0.212866 0.977081i \(-0.431720\pi\)
0.212866 + 0.977081i \(0.431720\pi\)
\(762\) 0 0
\(763\) −56.4359 + 32.5833i −2.04312 + 1.17959i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.679630i 0.0245400i
\(768\) 0 0
\(769\) 8.22905 14.2531i 0.296747 0.513981i −0.678643 0.734469i \(-0.737432\pi\)
0.975390 + 0.220488i \(0.0707648\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −39.7578 22.9542i −1.42999 0.825605i −0.432871 0.901456i \(-0.642499\pi\)
−0.997119 + 0.0758511i \(0.975833\pi\)
\(774\) 0 0
\(775\) 15.7791 35.4800i 0.566803 1.27448i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.0582 + 7.40303i −1.11278 + 0.265241i
\(780\) 0 0
\(781\) −14.8707 25.7568i −0.532115 0.921650i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0456 23.6530i 0.429927 0.844211i
\(786\) 0 0
\(787\) 28.1763i 1.00438i 0.864758 + 0.502189i \(0.167472\pi\)
−0.864758 + 0.502189i \(0.832528\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.46456 −0.123186
\(792\) 0 0
\(793\) 7.70757 4.44997i 0.273704 0.158023i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.18117i 0.0418394i 0.999781 + 0.0209197i \(0.00665943\pi\)
−0.999781 + 0.0209197i \(0.993341\pi\)
\(798\) 0 0
\(799\) −4.42517 −0.156551
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 15.0556 8.69238i 0.531302 0.306747i
\(804\) 0 0
\(805\) 1.26948 + 24.1278i 0.0447433 + 0.850392i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.72471 0.166112 0.0830561 0.996545i \(-0.473532\pi\)
0.0830561 + 0.996545i \(0.473532\pi\)
\(810\) 0 0
\(811\) 18.7800 32.5280i 0.659456 1.14221i −0.321301 0.946977i \(-0.604120\pi\)
0.980757 0.195234i \(-0.0625465\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.0518 + 24.7065i 0.562272 + 0.865431i
\(816\) 0 0
\(817\) 1.80927 + 7.59050i 0.0632984 + 0.265558i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17.3453 30.0430i 0.605357 1.04851i −0.386638 0.922231i \(-0.626364\pi\)
0.991995 0.126277i \(-0.0403028\pi\)
\(822\) 0 0
\(823\) 2.19067 + 1.26478i 0.0763620 + 0.0440876i 0.537695 0.843140i \(-0.319295\pi\)
−0.461333 + 0.887227i \(0.652629\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.0721 10.4339i −0.628428 0.362823i 0.151715 0.988424i \(-0.451520\pi\)
−0.780143 + 0.625601i \(0.784854\pi\)
\(828\) 0 0
\(829\) −26.1170 −0.907081 −0.453540 0.891236i \(-0.649839\pi\)
−0.453540 + 0.891236i \(0.649839\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 39.7321 22.9393i 1.37664 0.794801i
\(834\) 0 0
\(835\) 8.18544 0.430676i 0.283269 0.0149042i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.69792 + 9.86908i 0.196714 + 0.340719i 0.947461 0.319871i \(-0.103640\pi\)
−0.750747 + 0.660590i \(0.770306\pi\)
\(840\) 0 0
\(841\) 11.1495 + 19.3114i 0.384464 + 0.665911i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.7048 + 5.96086i 0.402658 + 0.205060i
\(846\) 0 0
\(847\) 19.1895i 0.659360i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.99710 + 5.19113i −0.102739 + 0.177950i
\(852\) 0 0
\(853\) 5.39521 3.11493i 0.184728 0.106653i −0.404784 0.914412i \(-0.632653\pi\)
0.589512 + 0.807759i \(0.299320\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 43.9606 25.3807i 1.50166 0.866987i 0.501667 0.865061i \(-0.332720\pi\)
0.999998 0.00192568i \(-0.000612963\pi\)
\(858\) 0 0
\(859\) −4.07445 + 7.05715i −0.139018 + 0.240787i −0.927125 0.374751i \(-0.877728\pi\)
0.788107 + 0.615538i \(0.211061\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.20591i 0.0410498i 0.999789 + 0.0205249i \(0.00653373\pi\)
−0.999789 + 0.0205249i \(0.993466\pi\)
\(864\) 0 0
\(865\) 0.0866295 0.170107i 0.00294549 0.00578380i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 21.3066 + 36.9041i 0.722778 + 1.25189i
\(870\) 0 0
\(871\) 17.6244 + 30.5264i 0.597180 + 1.03435i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 54.8879 8.72826i 1.85555 0.295069i
\(876\) 0 0
\(877\) 14.2958 8.25368i 0.482735 0.278707i −0.238821 0.971064i \(-0.576761\pi\)
0.721555 + 0.692357i \(0.243428\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.9549 0.773370 0.386685 0.922212i \(-0.373620\pi\)
0.386685 + 0.922212i \(0.373620\pi\)
\(882\) 0 0
\(883\) 24.9234 + 14.3895i 0.838739 + 0.484246i 0.856835 0.515590i \(-0.172427\pi\)
−0.0180963 + 0.999836i \(0.505761\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −26.4482 15.2699i −0.888044 0.512712i −0.0147418 0.999891i \(-0.504693\pi\)
−0.873302 + 0.487179i \(0.838026\pi\)
\(888\) 0 0
\(889\) −34.4310 + 59.6362i −1.15478 + 2.00013i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.40963 5.11686i 0.181026 0.171229i
\(894\) 0 0
\(895\) 30.4242 19.7667i 1.01697 0.660727i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.0518 + 17.4103i −0.335248 + 0.580666i
\(900\) 0 0
\(901\) 20.6312 0.687324
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.38616 45.3514i −0.0793186 1.50753i
\(906\) 0 0
\(907\) −15.1811 + 8.76481i −0.504080 + 0.291031i −0.730397 0.683023i \(-0.760665\pi\)
0.226317 + 0.974054i \(0.427332\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.25152 −0.0414648 −0.0207324 0.999785i \(-0.506600\pi\)
−0.0207324 + 0.999785i \(0.506600\pi\)
\(912\) 0 0
\(913\) 11.7328i 0.388299i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −52.6532 + 30.3994i −1.73876 + 1.00388i
\(918\) 0 0
\(919\) −17.4588 −0.575912 −0.287956 0.957644i \(-0.592976\pi\)
−0.287956 + 0.957644i \(0.592976\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.5950i 0.677893i
\(924\) 0 0
\(925\) 12.5986 + 5.60303i 0.414240 + 0.184227i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.6100 49.5540i −0.938665 1.62582i −0.767964 0.640493i \(-0.778730\pi\)
−0.170701 0.985323i \(-0.554603\pi\)
\(930\) 0 0
\(931\) −22.0463 + 73.9851i −0.722538 + 2.42476i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10.1330 19.8974i 0.331386 0.650714i
\(936\) 0 0
\(937\) −8.38001 4.83820i −0.273763 0.158057i 0.356834 0.934168i \(-0.383856\pi\)
−0.630596 + 0.776111i \(0.717190\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 14.0336 24.3069i 0.457482 0.792383i −0.541345 0.840801i \(-0.682085\pi\)
0.998827 + 0.0484179i \(0.0154179\pi\)
\(942\) 0 0
\(943\) 15.9216i 0.518479i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.2228 15.1397i 0.852125 0.491975i −0.00924220 0.999957i \(-0.502942\pi\)
0.861367 + 0.507983i \(0.169609\pi\)
\(948\) 0 0
\(949\) −12.0384 −0.390784
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.82020 + 3.36029i −0.188535 + 0.108851i −0.591296 0.806454i \(-0.701384\pi\)
0.402762 + 0.915305i \(0.368050\pi\)
\(954\) 0 0
\(955\) −41.0935 + 26.6985i −1.32975 + 0.863942i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −22.8594 + 39.5937i −0.738169 + 1.27855i
\(960\) 0 0
\(961\) 29.3124 0.945560
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.10374 + 10.0218i −0.164295 + 0.322612i
\(966\) 0 0
\(967\) −34.3960 + 19.8585i −1.10610 + 0.638607i −0.937817 0.347131i \(-0.887156\pi\)
−0.168284 + 0.985739i \(0.553823\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.09379 + 12.2868i 0.227651 + 0.394302i 0.957111 0.289720i \(-0.0935623\pi\)
−0.729461 + 0.684023i \(0.760229\pi\)
\(972\) 0 0
\(973\) 27.7396 + 16.0155i 0.889291 + 0.513432i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.49394i 0.175767i −0.996131 0.0878833i \(-0.971990\pi\)
0.996131 0.0878833i \(-0.0280103\pi\)
\(978\) 0 0
\(979\) −18.3575 + 31.7962i −0.586709 + 1.01621i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.7834 18.9275i 1.04563 0.603695i 0.124207 0.992256i \(-0.460361\pi\)
0.921423 + 0.388562i \(0.127028\pi\)
\(984\) 0 0
\(985\) −23.2914 35.8494i −0.742126 1.14226i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.89118 −0.123732
\(990\) 0 0
\(991\) 22.6116 + 39.1645i 0.718282 + 1.24410i 0.961680 + 0.274175i \(0.0884047\pi\)
−0.243398 + 0.969927i \(0.578262\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.12518 + 40.3912i 0.0673728 + 1.28049i
\(996\) 0 0
\(997\) 42.8135 + 24.7184i 1.35592 + 0.782840i 0.989071 0.147441i \(-0.0471037\pi\)
0.366848 + 0.930281i \(0.380437\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3420.2.bj.c.2629.2 20
3.2 odd 2 380.2.r.a.349.4 yes 20
5.4 even 2 inner 3420.2.bj.c.2629.9 20
15.2 even 4 1900.2.i.g.501.7 20
15.8 even 4 1900.2.i.g.501.4 20
15.14 odd 2 380.2.r.a.349.7 yes 20
19.11 even 3 inner 3420.2.bj.c.1189.9 20
57.11 odd 6 380.2.r.a.49.7 yes 20
95.49 even 6 inner 3420.2.bj.c.1189.2 20
285.68 even 12 1900.2.i.g.201.4 20
285.182 even 12 1900.2.i.g.201.7 20
285.239 odd 6 380.2.r.a.49.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.4 20 285.239 odd 6
380.2.r.a.49.7 yes 20 57.11 odd 6
380.2.r.a.349.4 yes 20 3.2 odd 2
380.2.r.a.349.7 yes 20 15.14 odd 2
1900.2.i.g.201.4 20 285.68 even 12
1900.2.i.g.201.7 20 285.182 even 12
1900.2.i.g.501.4 20 15.8 even 4
1900.2.i.g.501.7 20 15.2 even 4
3420.2.bj.c.1189.2 20 95.49 even 6 inner
3420.2.bj.c.1189.9 20 19.11 even 3 inner
3420.2.bj.c.2629.2 20 1.1 even 1 trivial
3420.2.bj.c.2629.9 20 5.4 even 2 inner