Properties

Label 3420.2.a.g.1.1
Level $3420$
Weight $2$
Character 3420.1
Self dual yes
Analytic conductor $27.309$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3420,2,Mod(1,3420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3420.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3420 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3420.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.3088374913\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 380)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 3420.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -4.82843 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} -4.82843 q^{7} +2.00000 q^{11} +2.24264 q^{13} +4.82843 q^{17} -1.00000 q^{19} +6.00000 q^{23} +1.00000 q^{25} -10.4853 q^{29} -1.17157 q^{31} +4.82843 q^{35} -10.2426 q^{37} +7.65685 q^{41} -0.828427 q^{43} -0.828427 q^{47} +16.3137 q^{49} +5.07107 q^{53} -2.00000 q^{55} -2.34315 q^{59} -2.34315 q^{61} -2.24264 q^{65} -0.585786 q^{67} -10.8284 q^{71} +14.4853 q^{73} -9.65685 q^{77} -9.65685 q^{79} -9.31371 q^{83} -4.82843 q^{85} -10.4853 q^{89} -10.8284 q^{91} +1.00000 q^{95} -1.75736 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{5} - 4 q^{7} + 4 q^{11} - 4 q^{13} + 4 q^{17} - 2 q^{19} + 12 q^{23} + 2 q^{25} - 4 q^{29} - 8 q^{31} + 4 q^{35} - 12 q^{37} + 4 q^{41} + 4 q^{43} + 4 q^{47} + 10 q^{49} - 4 q^{53} - 4 q^{55} - 16 q^{59} - 16 q^{61} + 4 q^{65} - 4 q^{67} - 16 q^{71} + 12 q^{73} - 8 q^{77} - 8 q^{79} + 4 q^{83} - 4 q^{85} - 4 q^{89} - 16 q^{91} + 2 q^{95} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.82843 −1.82497 −0.912487 0.409106i \(-0.865841\pi\)
−0.912487 + 0.409106i \(0.865841\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 2.24264 0.621997 0.310998 0.950410i \(-0.399337\pi\)
0.310998 + 0.950410i \(0.399337\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.82843 1.17107 0.585533 0.810649i \(-0.300885\pi\)
0.585533 + 0.810649i \(0.300885\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.4853 −1.94707 −0.973534 0.228543i \(-0.926604\pi\)
−0.973534 + 0.228543i \(0.926604\pi\)
\(30\) 0 0
\(31\) −1.17157 −0.210421 −0.105210 0.994450i \(-0.533552\pi\)
−0.105210 + 0.994450i \(0.533552\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.82843 0.816153
\(36\) 0 0
\(37\) −10.2426 −1.68388 −0.841940 0.539571i \(-0.818586\pi\)
−0.841940 + 0.539571i \(0.818586\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.65685 1.19580 0.597900 0.801571i \(-0.296002\pi\)
0.597900 + 0.801571i \(0.296002\pi\)
\(42\) 0 0
\(43\) −0.828427 −0.126334 −0.0631670 0.998003i \(-0.520120\pi\)
−0.0631670 + 0.998003i \(0.520120\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.828427 −0.120839 −0.0604193 0.998173i \(-0.519244\pi\)
−0.0604193 + 0.998173i \(0.519244\pi\)
\(48\) 0 0
\(49\) 16.3137 2.33053
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.07107 0.696565 0.348282 0.937390i \(-0.386765\pi\)
0.348282 + 0.937390i \(0.386765\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.34315 −0.305052 −0.152526 0.988299i \(-0.548741\pi\)
−0.152526 + 0.988299i \(0.548741\pi\)
\(60\) 0 0
\(61\) −2.34315 −0.300009 −0.150005 0.988685i \(-0.547929\pi\)
−0.150005 + 0.988685i \(0.547929\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.24264 −0.278165
\(66\) 0 0
\(67\) −0.585786 −0.0715652 −0.0357826 0.999360i \(-0.511392\pi\)
−0.0357826 + 0.999360i \(0.511392\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.8284 −1.28510 −0.642549 0.766245i \(-0.722123\pi\)
−0.642549 + 0.766245i \(0.722123\pi\)
\(72\) 0 0
\(73\) 14.4853 1.69537 0.847687 0.530497i \(-0.177995\pi\)
0.847687 + 0.530497i \(0.177995\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.65685 −1.10050
\(78\) 0 0
\(79\) −9.65685 −1.08648 −0.543240 0.839577i \(-0.682803\pi\)
−0.543240 + 0.839577i \(0.682803\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.31371 −1.02231 −0.511156 0.859488i \(-0.670783\pi\)
−0.511156 + 0.859488i \(0.670783\pi\)
\(84\) 0 0
\(85\) −4.82843 −0.523716
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.4853 −1.11144 −0.555719 0.831370i \(-0.687557\pi\)
−0.555719 + 0.831370i \(0.687557\pi\)
\(90\) 0 0
\(91\) −10.8284 −1.13513
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −1.75736 −0.178433 −0.0892164 0.996012i \(-0.528436\pi\)
−0.0892164 + 0.996012i \(0.528436\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −15.8995 −1.56662 −0.783312 0.621629i \(-0.786471\pi\)
−0.783312 + 0.621629i \(0.786471\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.58579 −0.443325 −0.221662 0.975123i \(-0.571148\pi\)
−0.221662 + 0.975123i \(0.571148\pi\)
\(108\) 0 0
\(109\) −8.82843 −0.845610 −0.422805 0.906221i \(-0.638954\pi\)
−0.422805 + 0.906221i \(0.638954\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.07107 −0.477046 −0.238523 0.971137i \(-0.576663\pi\)
−0.238523 + 0.971137i \(0.576663\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −23.3137 −2.13716
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −21.5563 −1.91282 −0.956408 0.292033i \(-0.905668\pi\)
−0.956408 + 0.292033i \(0.905668\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.65685 0.494242 0.247121 0.968985i \(-0.420516\pi\)
0.247121 + 0.968985i \(0.420516\pi\)
\(132\) 0 0
\(133\) 4.82843 0.418678
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.1421 1.72086 0.860429 0.509570i \(-0.170195\pi\)
0.860429 + 0.509570i \(0.170195\pi\)
\(138\) 0 0
\(139\) −17.3137 −1.46853 −0.734265 0.678863i \(-0.762473\pi\)
−0.734265 + 0.678863i \(0.762473\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.48528 0.375078
\(144\) 0 0
\(145\) 10.4853 0.870755
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.00000 0.655386 0.327693 0.944784i \(-0.393729\pi\)
0.327693 + 0.944784i \(0.393729\pi\)
\(150\) 0 0
\(151\) 18.1421 1.47639 0.738193 0.674590i \(-0.235679\pi\)
0.738193 + 0.674590i \(0.235679\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.17157 0.0941030
\(156\) 0 0
\(157\) 3.17157 0.253119 0.126560 0.991959i \(-0.459607\pi\)
0.126560 + 0.991959i \(0.459607\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −28.9706 −2.28320
\(162\) 0 0
\(163\) −2.48528 −0.194662 −0.0973311 0.995252i \(-0.531031\pi\)
−0.0973311 + 0.995252i \(0.531031\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.7279 0.830152 0.415076 0.909787i \(-0.363755\pi\)
0.415076 + 0.909787i \(0.363755\pi\)
\(168\) 0 0
\(169\) −7.97056 −0.613120
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.89949 0.296473 0.148237 0.988952i \(-0.452640\pi\)
0.148237 + 0.988952i \(0.452640\pi\)
\(174\) 0 0
\(175\) −4.82843 −0.364995
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −21.6569 −1.61871 −0.809355 0.587320i \(-0.800183\pi\)
−0.809355 + 0.587320i \(0.800183\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.2426 0.753054
\(186\) 0 0
\(187\) 9.65685 0.706179
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 0.585786 0.0421658 0.0210829 0.999778i \(-0.493289\pi\)
0.0210829 + 0.999778i \(0.493289\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.31371 0.378586 0.189293 0.981921i \(-0.439380\pi\)
0.189293 + 0.981921i \(0.439380\pi\)
\(198\) 0 0
\(199\) −10.3431 −0.733206 −0.366603 0.930377i \(-0.619479\pi\)
−0.366603 + 0.930377i \(0.619479\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 50.6274 3.55335
\(204\) 0 0
\(205\) −7.65685 −0.534778
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −11.5147 −0.792706 −0.396353 0.918098i \(-0.629724\pi\)
−0.396353 + 0.918098i \(0.629724\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.828427 0.0564983
\(216\) 0 0
\(217\) 5.65685 0.384012
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.8284 0.728399
\(222\) 0 0
\(223\) 19.2132 1.28661 0.643306 0.765609i \(-0.277562\pi\)
0.643306 + 0.765609i \(0.277562\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.5858 −1.36633 −0.683163 0.730266i \(-0.739396\pi\)
−0.683163 + 0.730266i \(0.739396\pi\)
\(228\) 0 0
\(229\) −21.6569 −1.43113 −0.715563 0.698549i \(-0.753830\pi\)
−0.715563 + 0.698549i \(0.753830\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) 0.828427 0.0540406
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.3431 −0.669042 −0.334521 0.942388i \(-0.608575\pi\)
−0.334521 + 0.942388i \(0.608575\pi\)
\(240\) 0 0
\(241\) −30.2843 −1.95078 −0.975391 0.220484i \(-0.929236\pi\)
−0.975391 + 0.220484i \(0.929236\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −16.3137 −1.04224
\(246\) 0 0
\(247\) −2.24264 −0.142696
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.6569 0.862013 0.431006 0.902349i \(-0.358159\pi\)
0.431006 + 0.902349i \(0.358159\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.24264 0.139892 0.0699460 0.997551i \(-0.477717\pi\)
0.0699460 + 0.997551i \(0.477717\pi\)
\(258\) 0 0
\(259\) 49.4558 3.07304
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.65685 −0.225491 −0.112746 0.993624i \(-0.535965\pi\)
−0.112746 + 0.993624i \(0.535965\pi\)
\(264\) 0 0
\(265\) −5.07107 −0.311513
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.4853 1.37095 0.685476 0.728095i \(-0.259594\pi\)
0.685476 + 0.728095i \(0.259594\pi\)
\(270\) 0 0
\(271\) 23.6569 1.43705 0.718526 0.695500i \(-0.244817\pi\)
0.718526 + 0.695500i \(0.244817\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 0.120605
\(276\) 0 0
\(277\) 16.8284 1.01112 0.505561 0.862791i \(-0.331286\pi\)
0.505561 + 0.862791i \(0.331286\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.9706 −1.13169 −0.565844 0.824512i \(-0.691450\pi\)
−0.565844 + 0.824512i \(0.691450\pi\)
\(282\) 0 0
\(283\) −2.68629 −0.159683 −0.0798417 0.996808i \(-0.525441\pi\)
−0.0798417 + 0.996808i \(0.525441\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −36.9706 −2.18230
\(288\) 0 0
\(289\) 6.31371 0.371395
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.4142 1.36787 0.683936 0.729542i \(-0.260267\pi\)
0.683936 + 0.729542i \(0.260267\pi\)
\(294\) 0 0
\(295\) 2.34315 0.136423
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.4558 0.778172
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.34315 0.134168
\(306\) 0 0
\(307\) 7.89949 0.450848 0.225424 0.974261i \(-0.427623\pi\)
0.225424 + 0.974261i \(0.427623\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 14.0000 0.793867 0.396934 0.917847i \(-0.370074\pi\)
0.396934 + 0.917847i \(0.370074\pi\)
\(312\) 0 0
\(313\) 18.0000 1.01742 0.508710 0.860938i \(-0.330123\pi\)
0.508710 + 0.860938i \(0.330123\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.75736 0.323366 0.161683 0.986843i \(-0.448308\pi\)
0.161683 + 0.986843i \(0.448308\pi\)
\(318\) 0 0
\(319\) −20.9706 −1.17413
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.82843 −0.268661
\(324\) 0 0
\(325\) 2.24264 0.124399
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) 1.17157 0.0643955 0.0321977 0.999482i \(-0.489749\pi\)
0.0321977 + 0.999482i \(0.489749\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.585786 0.0320049
\(336\) 0 0
\(337\) 17.7574 0.967305 0.483652 0.875260i \(-0.339310\pi\)
0.483652 + 0.875260i \(0.339310\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.34315 −0.126888
\(342\) 0 0
\(343\) −44.9706 −2.42818
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.9706 −1.23312 −0.616562 0.787306i \(-0.711475\pi\)
−0.616562 + 0.787306i \(0.711475\pi\)
\(348\) 0 0
\(349\) −0.343146 −0.0183682 −0.00918409 0.999958i \(-0.502923\pi\)
−0.00918409 + 0.999958i \(0.502923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.85786 0.205333 0.102667 0.994716i \(-0.467262\pi\)
0.102667 + 0.994716i \(0.467262\pi\)
\(354\) 0 0
\(355\) 10.8284 0.574713
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.3137 1.12489 0.562447 0.826833i \(-0.309860\pi\)
0.562447 + 0.826833i \(0.309860\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.4853 −0.758194
\(366\) 0 0
\(367\) −28.1421 −1.46901 −0.734504 0.678605i \(-0.762585\pi\)
−0.734504 + 0.678605i \(0.762585\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.4853 −1.27121
\(372\) 0 0
\(373\) 9.55635 0.494809 0.247405 0.968912i \(-0.420422\pi\)
0.247405 + 0.968912i \(0.420422\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −23.5147 −1.21107
\(378\) 0 0
\(379\) 22.3431 1.14769 0.573845 0.818964i \(-0.305451\pi\)
0.573845 + 0.818964i \(0.305451\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.92893 −0.149661 −0.0748307 0.997196i \(-0.523842\pi\)
−0.0748307 + 0.997196i \(0.523842\pi\)
\(384\) 0 0
\(385\) 9.65685 0.492159
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.6274 1.45147 0.725734 0.687976i \(-0.241500\pi\)
0.725734 + 0.687976i \(0.241500\pi\)
\(390\) 0 0
\(391\) 28.9706 1.46510
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.65685 0.485889
\(396\) 0 0
\(397\) −32.1421 −1.61317 −0.806584 0.591120i \(-0.798686\pi\)
−0.806584 + 0.591120i \(0.798686\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.68629 0.333897 0.166949 0.985966i \(-0.446609\pi\)
0.166949 + 0.985966i \(0.446609\pi\)
\(402\) 0 0
\(403\) −2.62742 −0.130881
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.4853 −1.01542
\(408\) 0 0
\(409\) 9.51472 0.470473 0.235236 0.971938i \(-0.424414\pi\)
0.235236 + 0.971938i \(0.424414\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.3137 0.556711
\(414\) 0 0
\(415\) 9.31371 0.457192
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.65685 −0.471768 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(420\) 0 0
\(421\) −8.34315 −0.406620 −0.203310 0.979114i \(-0.565170\pi\)
−0.203310 + 0.979114i \(0.565170\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.82843 0.234213
\(426\) 0 0
\(427\) 11.3137 0.547509
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −33.4558 −1.61151 −0.805756 0.592248i \(-0.798241\pi\)
−0.805756 + 0.592248i \(0.798241\pi\)
\(432\) 0 0
\(433\) −15.2132 −0.731100 −0.365550 0.930792i \(-0.619119\pi\)
−0.365550 + 0.930792i \(0.619119\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) −29.6569 −1.41544 −0.707722 0.706491i \(-0.750277\pi\)
−0.707722 + 0.706491i \(0.750277\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −34.2843 −1.62889 −0.814447 0.580237i \(-0.802960\pi\)
−0.814447 + 0.580237i \(0.802960\pi\)
\(444\) 0 0
\(445\) 10.4853 0.497050
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13.5147 0.637799 0.318900 0.947789i \(-0.396687\pi\)
0.318900 + 0.947789i \(0.396687\pi\)
\(450\) 0 0
\(451\) 15.3137 0.721094
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.8284 0.507644
\(456\) 0 0
\(457\) 18.9706 0.887405 0.443703 0.896174i \(-0.353665\pi\)
0.443703 + 0.896174i \(0.353665\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.31371 0.247484 0.123742 0.992314i \(-0.460510\pi\)
0.123742 + 0.992314i \(0.460510\pi\)
\(462\) 0 0
\(463\) −9.31371 −0.432845 −0.216422 0.976300i \(-0.569439\pi\)
−0.216422 + 0.976300i \(0.569439\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.31371 −0.430987 −0.215494 0.976505i \(-0.569136\pi\)
−0.215494 + 0.976505i \(0.569136\pi\)
\(468\) 0 0
\(469\) 2.82843 0.130605
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.65685 −0.0761822
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.0000 0.456912 0.228456 0.973554i \(-0.426632\pi\)
0.228456 + 0.973554i \(0.426632\pi\)
\(480\) 0 0
\(481\) −22.9706 −1.04737
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.75736 0.0797976
\(486\) 0 0
\(487\) 24.3848 1.10498 0.552490 0.833520i \(-0.313678\pi\)
0.552490 + 0.833520i \(0.313678\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −35.3137 −1.59369 −0.796843 0.604187i \(-0.793498\pi\)
−0.796843 + 0.604187i \(0.793498\pi\)
\(492\) 0 0
\(493\) −50.6274 −2.28014
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 52.2843 2.34527
\(498\) 0 0
\(499\) −26.9706 −1.20737 −0.603684 0.797224i \(-0.706301\pi\)
−0.603684 + 0.797224i \(0.706301\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.97056 −0.132451 −0.0662254 0.997805i \(-0.521096\pi\)
−0.0662254 + 0.997805i \(0.521096\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.7990 1.49811 0.749057 0.662506i \(-0.230507\pi\)
0.749057 + 0.662506i \(0.230507\pi\)
\(510\) 0 0
\(511\) −69.9411 −3.09401
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.8995 0.700615
\(516\) 0 0
\(517\) −1.65685 −0.0728684
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.3431 −1.24174 −0.620868 0.783915i \(-0.713220\pi\)
−0.620868 + 0.783915i \(0.713220\pi\)
\(522\) 0 0
\(523\) −6.72792 −0.294191 −0.147096 0.989122i \(-0.546993\pi\)
−0.147096 + 0.989122i \(0.546993\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.65685 −0.246416
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.1716 0.743783
\(534\) 0 0
\(535\) 4.58579 0.198261
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 32.6274 1.40536
\(540\) 0 0
\(541\) 11.3137 0.486414 0.243207 0.969974i \(-0.421801\pi\)
0.243207 + 0.969974i \(0.421801\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.82843 0.378168
\(546\) 0 0
\(547\) 36.3848 1.55570 0.777850 0.628450i \(-0.216310\pi\)
0.777850 + 0.628450i \(0.216310\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.4853 0.446688
\(552\) 0 0
\(553\) 46.6274 1.98280
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −41.7990 −1.77108 −0.885540 0.464563i \(-0.846211\pi\)
−0.885540 + 0.464563i \(0.846211\pi\)
\(558\) 0 0
\(559\) −1.85786 −0.0785793
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.4142 0.481052 0.240526 0.970643i \(-0.422680\pi\)
0.240526 + 0.970643i \(0.422680\pi\)
\(564\) 0 0
\(565\) 5.07107 0.213341
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.828427 −0.0347295 −0.0173647 0.999849i \(-0.505528\pi\)
−0.0173647 + 0.999849i \(0.505528\pi\)
\(570\) 0 0
\(571\) −14.6863 −0.614602 −0.307301 0.951612i \(-0.599426\pi\)
−0.307301 + 0.951612i \(0.599426\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 44.9706 1.86569
\(582\) 0 0
\(583\) 10.1421 0.420044
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.9706 0.617901 0.308951 0.951078i \(-0.400022\pi\)
0.308951 + 0.951078i \(0.400022\pi\)
\(588\) 0 0
\(589\) 1.17157 0.0482738
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.62742 −0.354286 −0.177143 0.984185i \(-0.556685\pi\)
−0.177143 + 0.984185i \(0.556685\pi\)
\(594\) 0 0
\(595\) 23.3137 0.955769
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.68629 0.191477 0.0957383 0.995407i \(-0.469479\pi\)
0.0957383 + 0.995407i \(0.469479\pi\)
\(600\) 0 0
\(601\) −18.0000 −0.734235 −0.367118 0.930175i \(-0.619655\pi\)
−0.367118 + 0.930175i \(0.619655\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 5.07107 0.205828 0.102914 0.994690i \(-0.467183\pi\)
0.102914 + 0.994690i \(0.467183\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.85786 −0.0751611
\(612\) 0 0
\(613\) 17.5147 0.707413 0.353706 0.935356i \(-0.384921\pi\)
0.353706 + 0.935356i \(0.384921\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.20101 0.249643 0.124822 0.992179i \(-0.460164\pi\)
0.124822 + 0.992179i \(0.460164\pi\)
\(618\) 0 0
\(619\) 18.0000 0.723481 0.361741 0.932279i \(-0.382183\pi\)
0.361741 + 0.932279i \(0.382183\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 50.6274 2.02834
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −49.4558 −1.97193
\(630\) 0 0
\(631\) −3.65685 −0.145577 −0.0727885 0.997347i \(-0.523190\pi\)
−0.0727885 + 0.997347i \(0.523190\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.5563 0.855438
\(636\) 0 0
\(637\) 36.5858 1.44958
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21.3137 0.841841 0.420920 0.907098i \(-0.361707\pi\)
0.420920 + 0.907098i \(0.361707\pi\)
\(642\) 0 0
\(643\) 24.6274 0.971211 0.485605 0.874178i \(-0.338599\pi\)
0.485605 + 0.874178i \(0.338599\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.68629 −0.262865 −0.131433 0.991325i \(-0.541958\pi\)
−0.131433 + 0.991325i \(0.541958\pi\)
\(648\) 0 0
\(649\) −4.68629 −0.183953
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.7990 −0.539996 −0.269998 0.962861i \(-0.587023\pi\)
−0.269998 + 0.962861i \(0.587023\pi\)
\(654\) 0 0
\(655\) −5.65685 −0.221032
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.6274 1.34889 0.674446 0.738324i \(-0.264382\pi\)
0.674446 + 0.738324i \(0.264382\pi\)
\(660\) 0 0
\(661\) −12.6274 −0.491150 −0.245575 0.969378i \(-0.578977\pi\)
−0.245575 + 0.969378i \(0.578977\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.82843 −0.187238
\(666\) 0 0
\(667\) −62.9117 −2.43595
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.68629 −0.180912
\(672\) 0 0
\(673\) 10.2426 0.394825 0.197412 0.980321i \(-0.436746\pi\)
0.197412 + 0.980321i \(0.436746\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.5563 −0.982210 −0.491105 0.871100i \(-0.663407\pi\)
−0.491105 + 0.871100i \(0.663407\pi\)
\(678\) 0 0
\(679\) 8.48528 0.325635
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 38.7279 1.48188 0.740941 0.671570i \(-0.234380\pi\)
0.740941 + 0.671570i \(0.234380\pi\)
\(684\) 0 0
\(685\) −20.1421 −0.769591
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11.3726 0.433261
\(690\) 0 0
\(691\) −15.6569 −0.595615 −0.297807 0.954626i \(-0.596255\pi\)
−0.297807 + 0.954626i \(0.596255\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.3137 0.656746
\(696\) 0 0
\(697\) 36.9706 1.40036
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −49.6569 −1.87551 −0.937757 0.347293i \(-0.887101\pi\)
−0.937757 + 0.347293i \(0.887101\pi\)
\(702\) 0 0
\(703\) 10.2426 0.386309
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.3137 0.726367
\(708\) 0 0
\(709\) 18.9706 0.712454 0.356227 0.934399i \(-0.384063\pi\)
0.356227 + 0.934399i \(0.384063\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.02944 −0.263254
\(714\) 0 0
\(715\) −4.48528 −0.167740
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −38.2843 −1.42776 −0.713881 0.700267i \(-0.753064\pi\)
−0.713881 + 0.700267i \(0.753064\pi\)
\(720\) 0 0
\(721\) 76.7696 2.85905
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.4853 −0.389414
\(726\) 0 0
\(727\) −29.5147 −1.09464 −0.547320 0.836923i \(-0.684352\pi\)
−0.547320 + 0.836923i \(0.684352\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) 39.6569 1.46476 0.732380 0.680896i \(-0.238410\pi\)
0.732380 + 0.680896i \(0.238410\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.17157 −0.0431554
\(738\) 0 0
\(739\) 34.6274 1.27379 0.636895 0.770951i \(-0.280218\pi\)
0.636895 + 0.770951i \(0.280218\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −14.0416 −0.515137 −0.257569 0.966260i \(-0.582921\pi\)
−0.257569 + 0.966260i \(0.582921\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 22.1421 0.809056
\(750\) 0 0
\(751\) 14.1421 0.516054 0.258027 0.966138i \(-0.416928\pi\)
0.258027 + 0.966138i \(0.416928\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.1421 −0.660260
\(756\) 0 0
\(757\) 19.6569 0.714441 0.357220 0.934020i \(-0.383725\pi\)
0.357220 + 0.934020i \(0.383725\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.6274 −1.11024 −0.555121 0.831769i \(-0.687328\pi\)
−0.555121 + 0.831769i \(0.687328\pi\)
\(762\) 0 0
\(763\) 42.6274 1.54322
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.25483 −0.189741
\(768\) 0 0
\(769\) 38.6274 1.39294 0.696470 0.717586i \(-0.254753\pi\)
0.696470 + 0.717586i \(0.254753\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.100505 0.00361492 0.00180746 0.999998i \(-0.499425\pi\)
0.00180746 + 0.999998i \(0.499425\pi\)
\(774\) 0 0
\(775\) −1.17157 −0.0420841
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.65685 −0.274335
\(780\) 0 0
\(781\) −21.6569 −0.774943
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.17157 −0.113198
\(786\) 0 0
\(787\) −41.8406 −1.49146 −0.745729 0.666250i \(-0.767898\pi\)
−0.745729 + 0.666250i \(0.767898\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.4853 0.870596
\(792\) 0 0
\(793\) −5.25483 −0.186605
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.8995 −0.421502 −0.210751 0.977540i \(-0.567591\pi\)
−0.210751 + 0.977540i \(0.567591\pi\)
\(798\) 0 0
\(799\) −4.00000 −0.141510
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.9706 1.02235
\(804\) 0 0
\(805\) 28.9706 1.02108
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39.2548 1.38013 0.690063 0.723749i \(-0.257583\pi\)
0.690063 + 0.723749i \(0.257583\pi\)
\(810\) 0 0
\(811\) 19.7990 0.695237 0.347618 0.937636i \(-0.386991\pi\)
0.347618 + 0.937636i \(0.386991\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.48528 0.0870556
\(816\) 0 0
\(817\) 0.828427 0.0289830
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 0 0
\(823\) −15.1716 −0.528848 −0.264424 0.964407i \(-0.585182\pi\)
−0.264424 + 0.964407i \(0.585182\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.0711 1.01090 0.505450 0.862856i \(-0.331326\pi\)
0.505450 + 0.862856i \(0.331326\pi\)
\(828\) 0 0
\(829\) −40.4264 −1.40407 −0.702034 0.712144i \(-0.747724\pi\)
−0.702034 + 0.712144i \(0.747724\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 78.7696 2.72920
\(834\) 0 0
\(835\) −10.7279 −0.371255
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −43.5980 −1.50517 −0.752585 0.658495i \(-0.771193\pi\)
−0.752585 + 0.658495i \(0.771193\pi\)
\(840\) 0 0
\(841\) 80.9411 2.79107
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 7.97056 0.274196
\(846\) 0 0
\(847\) 33.7990 1.16135
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −61.4558 −2.10668
\(852\) 0 0
\(853\) 42.0000 1.43805 0.719026 0.694983i \(-0.244588\pi\)
0.719026 + 0.694983i \(0.244588\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.2132 0.929585 0.464793 0.885420i \(-0.346129\pi\)
0.464793 + 0.885420i \(0.346129\pi\)
\(858\) 0 0
\(859\) −24.2843 −0.828569 −0.414284 0.910148i \(-0.635968\pi\)
−0.414284 + 0.910148i \(0.635968\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.89949 0.132740 0.0663702 0.997795i \(-0.478858\pi\)
0.0663702 + 0.997795i \(0.478858\pi\)
\(864\) 0 0
\(865\) −3.89949 −0.132587
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19.3137 −0.655173
\(870\) 0 0
\(871\) −1.31371 −0.0445133
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.82843 0.163231
\(876\) 0 0
\(877\) −37.0711 −1.25180 −0.625901 0.779903i \(-0.715268\pi\)
−0.625901 + 0.779903i \(0.715268\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −44.2843 −1.49198 −0.745988 0.665960i \(-0.768022\pi\)
−0.745988 + 0.665960i \(0.768022\pi\)
\(882\) 0 0
\(883\) −39.1716 −1.31823 −0.659114 0.752043i \(-0.729069\pi\)
−0.659114 + 0.752043i \(0.729069\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49.0711 1.64765 0.823823 0.566848i \(-0.191837\pi\)
0.823823 + 0.566848i \(0.191837\pi\)
\(888\) 0 0
\(889\) 104.083 3.49084
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.828427 0.0277223
\(894\) 0 0
\(895\) 21.6569 0.723909
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.2843 0.409703
\(900\) 0 0
\(901\) 24.4853 0.815723
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.0000 0.598340
\(906\) 0 0
\(907\) −20.3848 −0.676865 −0.338433 0.940991i \(-0.609897\pi\)
−0.338433 + 0.940991i \(0.609897\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.20101 −0.139186 −0.0695928 0.997575i \(-0.522170\pi\)
−0.0695928 + 0.997575i \(0.522170\pi\)
\(912\) 0 0
\(913\) −18.6274 −0.616478
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −27.3137 −0.901978
\(918\) 0 0
\(919\) 35.3137 1.16489 0.582446 0.812869i \(-0.302096\pi\)
0.582446 + 0.812869i \(0.302096\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −24.2843 −0.799327
\(924\) 0 0
\(925\) −10.2426 −0.336776
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.68629 −0.219370 −0.109685 0.993966i \(-0.534984\pi\)
−0.109685 + 0.993966i \(0.534984\pi\)
\(930\) 0 0
\(931\) −16.3137 −0.534660
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9.65685 −0.315813
\(936\) 0 0
\(937\) −40.1421 −1.31139 −0.655693 0.755027i \(-0.727624\pi\)
−0.655693 + 0.755027i \(0.727624\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.2843 0.987239 0.493620 0.869678i \(-0.335674\pi\)
0.493620 + 0.869678i \(0.335674\pi\)
\(942\) 0 0
\(943\) 45.9411 1.49605
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.34315 0.271116 0.135558 0.990769i \(-0.456717\pi\)
0.135558 + 0.990769i \(0.456717\pi\)
\(948\) 0 0
\(949\) 32.4853 1.05452
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.75736 −0.186499 −0.0932496 0.995643i \(-0.529725\pi\)
−0.0932496 + 0.995643i \(0.529725\pi\)
\(954\) 0 0
\(955\) 4.00000 0.129437
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −97.2548 −3.14052
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.585786 −0.0188571
\(966\) 0 0
\(967\) 20.6274 0.663333 0.331667 0.943397i \(-0.392389\pi\)
0.331667 + 0.943397i \(0.392389\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 35.1127 1.12682 0.563410 0.826177i \(-0.309489\pi\)
0.563410 + 0.826177i \(0.309489\pi\)
\(972\) 0 0
\(973\) 83.5980 2.68003
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.27208 −0.296640 −0.148320 0.988939i \(-0.547387\pi\)
−0.148320 + 0.988939i \(0.547387\pi\)
\(978\) 0 0
\(979\) −20.9706 −0.670222
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23.4142 0.746797 0.373399 0.927671i \(-0.378192\pi\)
0.373399 + 0.927671i \(0.378192\pi\)
\(984\) 0 0
\(985\) −5.31371 −0.169309
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.97056 −0.158055
\(990\) 0 0
\(991\) −51.1127 −1.62365 −0.811824 0.583902i \(-0.801525\pi\)
−0.811824 + 0.583902i \(0.801525\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.3431 0.327900
\(996\) 0 0
\(997\) −13.5147 −0.428015 −0.214008 0.976832i \(-0.568652\pi\)
−0.214008 + 0.976832i \(0.568652\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3420.2.a.g.1.1 2
3.2 odd 2 380.2.a.c.1.2 2
12.11 even 2 1520.2.a.o.1.1 2
15.2 even 4 1900.2.c.d.1749.3 4
15.8 even 4 1900.2.c.d.1749.2 4
15.14 odd 2 1900.2.a.e.1.1 2
24.5 odd 2 6080.2.a.bl.1.1 2
24.11 even 2 6080.2.a.y.1.2 2
57.56 even 2 7220.2.a.m.1.1 2
60.59 even 2 7600.2.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.a.c.1.2 2 3.2 odd 2
1520.2.a.o.1.1 2 12.11 even 2
1900.2.a.e.1.1 2 15.14 odd 2
1900.2.c.d.1749.2 4 15.8 even 4
1900.2.c.d.1749.3 4 15.2 even 4
3420.2.a.g.1.1 2 1.1 even 1 trivial
6080.2.a.y.1.2 2 24.11 even 2
6080.2.a.bl.1.1 2 24.5 odd 2
7220.2.a.m.1.1 2 57.56 even 2
7600.2.a.u.1.2 2 60.59 even 2