Properties

Label 342.6.g.a.235.1
Level $342$
Weight $6$
Character 342.235
Analytic conductor $54.851$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [342,6,Mod(163,342)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("342.163"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(342, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 342.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,0,-48,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(54.8512663760\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 133x^{4} - 60x^{3} + 17689x^{2} - 3990x + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(5.70904 + 9.88835i\) of defining polynomial
Character \(\chi\) \(=\) 342.235
Dual form 342.6.g.a.163.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(-34.6044 - 59.9365i) q^{5} -195.345 q^{7} +64.0000 q^{8} +(-138.418 + 239.746i) q^{10} +137.464 q^{11} +(-398.203 + 689.707i) q^{13} +(390.689 + 676.694i) q^{14} +(-128.000 - 221.703i) q^{16} +(784.745 + 1359.22i) q^{17} +(1559.98 + 206.280i) q^{19} +1107.34 q^{20} +(-274.927 - 476.188i) q^{22} +(-208.667 + 361.422i) q^{23} +(-832.426 + 1441.80i) q^{25} +3185.62 q^{26} +(1562.76 - 2706.77i) q^{28} +(-155.900 + 270.026i) q^{29} -10315.8 q^{31} +(-512.000 + 886.810i) q^{32} +(3138.98 - 5436.87i) q^{34} +(6759.78 + 11708.3i) q^{35} +3321.22 q^{37} +(-2405.39 - 5816.50i) q^{38} +(-2214.68 - 3835.94i) q^{40} +(-2540.31 - 4399.95i) q^{41} +(-4087.84 - 7080.34i) q^{43} +(-1099.71 + 1904.75i) q^{44} +1669.34 q^{46} +(1016.67 - 1760.93i) q^{47} +21352.5 q^{49} +6659.41 q^{50} +(-6371.24 - 11035.3i) q^{52} +(6079.79 - 10530.5i) q^{53} +(-4756.84 - 8239.09i) q^{55} -12502.1 q^{56} +1247.20 q^{58} +(-2362.86 - 4092.60i) q^{59} +(-4312.63 + 7469.69i) q^{61} +(20631.6 + 35735.0i) q^{62} +4096.00 q^{64} +55118.2 q^{65} +(-6734.67 + 11664.8i) q^{67} -25111.8 q^{68} +(27039.1 - 46833.1i) q^{70} +(-35075.5 - 60752.5i) q^{71} +(9043.17 + 15663.2i) q^{73} +(-6642.45 - 11505.1i) q^{74} +(-15338.2 + 19965.5i) q^{76} -26852.8 q^{77} +(44040.8 + 76280.8i) q^{79} +(-8858.72 + 15343.8i) q^{80} +(-10161.3 + 17599.8i) q^{82} +115557. q^{83} +(54311.2 - 94069.8i) q^{85} +(-16351.3 + 28321.4i) q^{86} +8797.67 q^{88} +(12947.3 - 22425.3i) q^{89} +(77786.8 - 134731. i) q^{91} +(-3338.67 - 5782.75i) q^{92} -8133.37 q^{94} +(-41618.5 - 100638. i) q^{95} +(-65048.1 - 112667. i) q^{97} +(-42705.1 - 73967.3i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} - 48 q^{4} - 14 q^{5} - 624 q^{7} + 384 q^{8} - 56 q^{10} + 938 q^{11} - 736 q^{13} + 1248 q^{14} - 768 q^{16} + 1000 q^{17} + 5681 q^{19} + 448 q^{20} - 1876 q^{22} + 2168 q^{23} - 3187 q^{25}+ \cdots + 3796 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/342\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) 0 0
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −34.6044 59.9365i −0.619022 1.07218i −0.989665 0.143402i \(-0.954196\pi\)
0.370643 0.928776i \(-0.379137\pi\)
\(6\) 0 0
\(7\) −195.345 −1.50680 −0.753401 0.657561i \(-0.771588\pi\)
−0.753401 + 0.657561i \(0.771588\pi\)
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −138.418 + 239.746i −0.437715 + 0.758144i
\(11\) 137.464 0.342536 0.171268 0.985224i \(-0.445214\pi\)
0.171268 + 0.985224i \(0.445214\pi\)
\(12\) 0 0
\(13\) −398.203 + 689.707i −0.653500 + 1.13190i 0.328767 + 0.944411i \(0.393367\pi\)
−0.982268 + 0.187485i \(0.939966\pi\)
\(14\) 390.689 + 676.694i 0.532735 + 0.922725i
\(15\) 0 0
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) 784.745 + 1359.22i 0.658577 + 1.14069i 0.980984 + 0.194087i \(0.0621745\pi\)
−0.322408 + 0.946601i \(0.604492\pi\)
\(18\) 0 0
\(19\) 1559.98 + 206.280i 0.991370 + 0.131091i
\(20\) 1107.34 0.619022
\(21\) 0 0
\(22\) −274.927 476.188i −0.121105 0.209759i
\(23\) −208.667 + 361.422i −0.0822497 + 0.142461i −0.904216 0.427076i \(-0.859544\pi\)
0.821966 + 0.569536i \(0.192877\pi\)
\(24\) 0 0
\(25\) −832.426 + 1441.80i −0.266376 + 0.461377i
\(26\) 3185.62 0.924189
\(27\) 0 0
\(28\) 1562.76 2706.77i 0.376701 0.652465i
\(29\) −155.900 + 270.026i −0.0344231 + 0.0596225i −0.882724 0.469892i \(-0.844293\pi\)
0.848301 + 0.529515i \(0.177626\pi\)
\(30\) 0 0
\(31\) −10315.8 −1.92796 −0.963981 0.265971i \(-0.914307\pi\)
−0.963981 + 0.265971i \(0.914307\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 3138.98 5436.87i 0.465684 0.806588i
\(35\) 6759.78 + 11708.3i 0.932744 + 1.61556i
\(36\) 0 0
\(37\) 3321.22 0.398836 0.199418 0.979915i \(-0.436095\pi\)
0.199418 + 0.979915i \(0.436095\pi\)
\(38\) −2405.39 5816.50i −0.270226 0.653436i
\(39\) 0 0
\(40\) −2214.68 3835.94i −0.218857 0.379072i
\(41\) −2540.31 4399.95i −0.236008 0.408779i 0.723557 0.690265i \(-0.242506\pi\)
−0.959565 + 0.281486i \(0.909173\pi\)
\(42\) 0 0
\(43\) −4087.84 7080.34i −0.337149 0.583960i 0.646746 0.762705i \(-0.276129\pi\)
−0.983895 + 0.178746i \(0.942796\pi\)
\(44\) −1099.71 + 1904.75i −0.0856339 + 0.148322i
\(45\) 0 0
\(46\) 1669.34 0.116319
\(47\) 1016.67 1760.93i 0.0671330 0.116278i −0.830505 0.557011i \(-0.811948\pi\)
0.897638 + 0.440733i \(0.145281\pi\)
\(48\) 0 0
\(49\) 21352.5 1.27045
\(50\) 6659.41 0.376713
\(51\) 0 0
\(52\) −6371.24 11035.3i −0.326750 0.565948i
\(53\) 6079.79 10530.5i 0.297303 0.514943i −0.678215 0.734863i \(-0.737246\pi\)
0.975518 + 0.219920i \(0.0705796\pi\)
\(54\) 0 0
\(55\) −4756.84 8239.09i −0.212037 0.367259i
\(56\) −12502.1 −0.532735
\(57\) 0 0
\(58\) 1247.20 0.0486816
\(59\) −2362.86 4092.60i −0.0883708 0.153063i 0.818452 0.574575i \(-0.194833\pi\)
−0.906823 + 0.421512i \(0.861499\pi\)
\(60\) 0 0
\(61\) −4312.63 + 7469.69i −0.148394 + 0.257027i −0.930634 0.365951i \(-0.880744\pi\)
0.782240 + 0.622977i \(0.214077\pi\)
\(62\) 20631.6 + 35735.0i 0.681637 + 1.18063i
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 55118.2 1.61812
\(66\) 0 0
\(67\) −6734.67 + 11664.8i −0.183286 + 0.317461i −0.942998 0.332800i \(-0.892007\pi\)
0.759712 + 0.650260i \(0.225340\pi\)
\(68\) −25111.8 −0.658577
\(69\) 0 0
\(70\) 27039.1 46833.1i 0.659550 1.14237i
\(71\) −35075.5 60752.5i −0.825767 1.43027i −0.901331 0.433130i \(-0.857409\pi\)
0.0755640 0.997141i \(-0.475924\pi\)
\(72\) 0 0
\(73\) 9043.17 + 15663.2i 0.198616 + 0.344013i 0.948080 0.318032i \(-0.103022\pi\)
−0.749464 + 0.662045i \(0.769689\pi\)
\(74\) −6642.45 11505.1i −0.141010 0.244236i
\(75\) 0 0
\(76\) −15338.2 + 19965.5i −0.304607 + 0.396503i
\(77\) −26852.8 −0.516134
\(78\) 0 0
\(79\) 44040.8 + 76280.8i 0.793939 + 1.37514i 0.923511 + 0.383572i \(0.125306\pi\)
−0.129572 + 0.991570i \(0.541360\pi\)
\(80\) −8858.72 + 15343.8i −0.154755 + 0.268044i
\(81\) 0 0
\(82\) −10161.3 + 17599.8i −0.166883 + 0.289050i
\(83\) 115557. 1.84120 0.920600 0.390507i \(-0.127700\pi\)
0.920600 + 0.390507i \(0.127700\pi\)
\(84\) 0 0
\(85\) 54311.2 94069.8i 0.815347 1.41222i
\(86\) −16351.3 + 28321.4i −0.238401 + 0.412922i
\(87\) 0 0
\(88\) 8797.67 0.121105
\(89\) 12947.3 22425.3i 0.173262 0.300099i −0.766296 0.642487i \(-0.777903\pi\)
0.939558 + 0.342389i \(0.111236\pi\)
\(90\) 0 0
\(91\) 77786.8 134731.i 0.984696 1.70554i
\(92\) −3338.67 5782.75i −0.0411249 0.0712304i
\(93\) 0 0
\(94\) −8133.37 −0.0949403
\(95\) −41618.5 100638.i −0.473127 1.14407i
\(96\) 0 0
\(97\) −65048.1 112667.i −0.701948 1.21581i −0.967782 0.251791i \(-0.918980\pi\)
0.265833 0.964019i \(-0.414353\pi\)
\(98\) −42705.1 73967.3i −0.449174 0.777991i
\(99\) 0 0
\(100\) −13318.8 23068.9i −0.133188 0.230689i
\(101\) −1127.90 + 1953.59i −0.0110019 + 0.0190559i −0.871474 0.490442i \(-0.836835\pi\)
0.860472 + 0.509498i \(0.170169\pi\)
\(102\) 0 0
\(103\) 17334.3 0.160995 0.0804976 0.996755i \(-0.474349\pi\)
0.0804976 + 0.996755i \(0.474349\pi\)
\(104\) −25485.0 + 44141.3i −0.231047 + 0.400186i
\(105\) 0 0
\(106\) −48638.3 −0.420449
\(107\) 90084.1 0.760656 0.380328 0.924852i \(-0.375811\pi\)
0.380328 + 0.924852i \(0.375811\pi\)
\(108\) 0 0
\(109\) 14064.4 + 24360.3i 0.113385 + 0.196388i 0.917133 0.398581i \(-0.130497\pi\)
−0.803748 + 0.594970i \(0.797164\pi\)
\(110\) −19027.4 + 32956.4i −0.149933 + 0.259691i
\(111\) 0 0
\(112\) 25004.1 + 43308.4i 0.188350 + 0.326232i
\(113\) −50275.4 −0.370390 −0.185195 0.982702i \(-0.559292\pi\)
−0.185195 + 0.982702i \(0.559292\pi\)
\(114\) 0 0
\(115\) 28883.2 0.203658
\(116\) −2494.39 4320.42i −0.0172115 0.0298113i
\(117\) 0 0
\(118\) −9451.46 + 16370.4i −0.0624876 + 0.108232i
\(119\) −153296. 265516.i −0.992345 1.71879i
\(120\) 0 0
\(121\) −142155. −0.882669
\(122\) 34501.0 0.209861
\(123\) 0 0
\(124\) 82526.4 142940.i 0.481990 0.834832i
\(125\) −101055. −0.578473
\(126\) 0 0
\(127\) 134351. 232703.i 0.739150 1.28025i −0.213728 0.976893i \(-0.568561\pi\)
0.952878 0.303353i \(-0.0981060\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −110236. 190935.i −0.572093 0.990895i
\(131\) −3365.72 5829.60i −0.0171356 0.0296798i 0.857330 0.514766i \(-0.172121\pi\)
−0.874466 + 0.485087i \(0.838788\pi\)
\(132\) 0 0
\(133\) −304734. 40295.8i −1.49380 0.197529i
\(134\) 53877.4 0.259206
\(135\) 0 0
\(136\) 50223.7 + 86990.0i 0.232842 + 0.403294i
\(137\) 28595.9 49529.6i 0.130168 0.225457i −0.793573 0.608474i \(-0.791782\pi\)
0.923741 + 0.383018i \(0.125115\pi\)
\(138\) 0 0
\(139\) 168506. 291860.i 0.739738 1.28126i −0.212876 0.977079i \(-0.568283\pi\)
0.952613 0.304184i \(-0.0983837\pi\)
\(140\) −216313. −0.932744
\(141\) 0 0
\(142\) −140302. + 243010.i −0.583906 + 1.01135i
\(143\) −54738.4 + 94809.6i −0.223847 + 0.387715i
\(144\) 0 0
\(145\) 21579.2 0.0852346
\(146\) 36172.7 62652.9i 0.140443 0.243254i
\(147\) 0 0
\(148\) −26569.8 + 46020.2i −0.0997089 + 0.172701i
\(149\) −123942. 214674.i −0.457354 0.792161i 0.541466 0.840723i \(-0.317870\pi\)
−0.998820 + 0.0485618i \(0.984536\pi\)
\(150\) 0 0
\(151\) −255187. −0.910785 −0.455393 0.890291i \(-0.650501\pi\)
−0.455393 + 0.890291i \(0.650501\pi\)
\(152\) 99838.9 + 13201.9i 0.350502 + 0.0463478i
\(153\) 0 0
\(154\) 53705.5 + 93020.7i 0.182481 + 0.316066i
\(155\) 356972. + 618293.i 1.19345 + 2.06712i
\(156\) 0 0
\(157\) 113550. + 196675.i 0.367654 + 0.636795i 0.989198 0.146584i \(-0.0468279\pi\)
−0.621545 + 0.783379i \(0.713495\pi\)
\(158\) 176163. 305123.i 0.561400 0.972373i
\(159\) 0 0
\(160\) 70869.8 0.218857
\(161\) 40762.0 70601.9i 0.123934 0.214660i
\(162\) 0 0
\(163\) −62036.8 −0.182886 −0.0914430 0.995810i \(-0.529148\pi\)
−0.0914430 + 0.995810i \(0.529148\pi\)
\(164\) 81290.0 0.236008
\(165\) 0 0
\(166\) −231114. 400301.i −0.650962 1.12750i
\(167\) 183887. 318502.i 0.510224 0.883734i −0.489706 0.871888i \(-0.662896\pi\)
0.999930 0.0118460i \(-0.00377077\pi\)
\(168\) 0 0
\(169\) −131484. 227737.i −0.354125 0.613363i
\(170\) −434490. −1.15307
\(171\) 0 0
\(172\) 130811. 0.337149
\(173\) 280672. + 486139.i 0.712992 + 1.23494i 0.963729 + 0.266883i \(0.0859936\pi\)
−0.250737 + 0.968055i \(0.580673\pi\)
\(174\) 0 0
\(175\) 162610. 281649.i 0.401376 0.695204i
\(176\) −17595.3 30476.0i −0.0428170 0.0741612i
\(177\) 0 0
\(178\) −103578. −0.245029
\(179\) 697014. 1.62596 0.812978 0.582295i \(-0.197845\pi\)
0.812978 + 0.582295i \(0.197845\pi\)
\(180\) 0 0
\(181\) 338744. 586722.i 0.768556 1.33118i −0.169790 0.985480i \(-0.554309\pi\)
0.938346 0.345697i \(-0.112358\pi\)
\(182\) −622294. −1.39257
\(183\) 0 0
\(184\) −13354.7 + 23131.0i −0.0290797 + 0.0503675i
\(185\) −114929. 199063.i −0.246888 0.427623i
\(186\) 0 0
\(187\) 107874. + 186843.i 0.225586 + 0.390727i
\(188\) 16266.7 + 28174.8i 0.0335665 + 0.0581388i
\(189\) 0 0
\(190\) −265384. + 345447.i −0.533323 + 0.694221i
\(191\) 634241. 1.25797 0.628986 0.777417i \(-0.283470\pi\)
0.628986 + 0.777417i \(0.283470\pi\)
\(192\) 0 0
\(193\) 325070. + 563038.i 0.628180 + 1.08804i 0.987917 + 0.154986i \(0.0495331\pi\)
−0.359737 + 0.933054i \(0.617134\pi\)
\(194\) −260192. + 450666.i −0.496352 + 0.859707i
\(195\) 0 0
\(196\) −170820. + 295869.i −0.317614 + 0.550123i
\(197\) 20029.4 0.0367707 0.0183853 0.999831i \(-0.494147\pi\)
0.0183853 + 0.999831i \(0.494147\pi\)
\(198\) 0 0
\(199\) −79296.8 + 137346.i −0.141946 + 0.245857i −0.928229 0.372008i \(-0.878669\pi\)
0.786283 + 0.617866i \(0.212003\pi\)
\(200\) −53275.2 + 92275.4i −0.0941782 + 0.163121i
\(201\) 0 0
\(202\) 9023.24 0.0155591
\(203\) 30454.1 52748.1i 0.0518688 0.0898394i
\(204\) 0 0
\(205\) −175812. + 304515.i −0.292189 + 0.506086i
\(206\) −34668.6 60047.8i −0.0569204 0.0985891i
\(207\) 0 0
\(208\) 203880. 0.326750
\(209\) 214441. + 28356.0i 0.339580 + 0.0449035i
\(210\) 0 0
\(211\) 435962. + 755108.i 0.674128 + 1.16762i 0.976723 + 0.214504i \(0.0688136\pi\)
−0.302595 + 0.953119i \(0.597853\pi\)
\(212\) 97276.6 + 168488.i 0.148651 + 0.257472i
\(213\) 0 0
\(214\) −180168. 312060.i −0.268933 0.465805i
\(215\) −282914. + 490021.i −0.417406 + 0.722968i
\(216\) 0 0
\(217\) 2.01514e6 2.90506
\(218\) 56257.6 97441.0i 0.0801752 0.138867i
\(219\) 0 0
\(220\) 152219. 0.212037
\(221\) −1.24995e6 −1.72152
\(222\) 0 0
\(223\) 280487. + 485818.i 0.377703 + 0.654202i 0.990728 0.135863i \(-0.0433806\pi\)
−0.613024 + 0.790064i \(0.710047\pi\)
\(224\) 100016. 173234.i 0.133184 0.230681i
\(225\) 0 0
\(226\) 100551. + 174159.i 0.130953 + 0.226817i
\(227\) −67804.5 −0.0873361 −0.0436680 0.999046i \(-0.513904\pi\)
−0.0436680 + 0.999046i \(0.513904\pi\)
\(228\) 0 0
\(229\) −881714. −1.11106 −0.555532 0.831495i \(-0.687485\pi\)
−0.555532 + 0.831495i \(0.687485\pi\)
\(230\) −57766.4 100054.i −0.0720038 0.124714i
\(231\) 0 0
\(232\) −9977.57 + 17281.7i −0.0121704 + 0.0210798i
\(233\) 592429. + 1.02612e6i 0.714902 + 1.23825i 0.962998 + 0.269510i \(0.0868618\pi\)
−0.248096 + 0.968735i \(0.579805\pi\)
\(234\) 0 0
\(235\) −140725. −0.166227
\(236\) 75611.6 0.0883708
\(237\) 0 0
\(238\) −613183. + 1.06206e6i −0.701694 + 1.21537i
\(239\) 855643. 0.968943 0.484471 0.874807i \(-0.339012\pi\)
0.484471 + 0.874807i \(0.339012\pi\)
\(240\) 0 0
\(241\) −611851. + 1.05976e6i −0.678584 + 1.17534i 0.296824 + 0.954932i \(0.404073\pi\)
−0.975408 + 0.220409i \(0.929261\pi\)
\(242\) 284310. + 492439.i 0.312071 + 0.540522i
\(243\) 0 0
\(244\) −69002.0 119515.i −0.0741972 0.128513i
\(245\) −738891. 1.27980e6i −0.786439 1.36215i
\(246\) 0 0
\(247\) −763463. + 993790.i −0.796243 + 1.03646i
\(248\) −660211. −0.681637
\(249\) 0 0
\(250\) 202110. + 350065.i 0.204521 + 0.354241i
\(251\) −219769. + 380651.i −0.220182 + 0.381367i −0.954863 0.297046i \(-0.903999\pi\)
0.734681 + 0.678413i \(0.237332\pi\)
\(252\) 0 0
\(253\) −28684.1 + 49682.4i −0.0281735 + 0.0487979i
\(254\) −1.07481e6 −1.04532
\(255\) 0 0
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) 98466.7 170549.i 0.0929944 0.161071i −0.815775 0.578369i \(-0.803689\pi\)
0.908770 + 0.417298i \(0.137023\pi\)
\(258\) 0 0
\(259\) −648783. −0.600967
\(260\) −440946. + 763741.i −0.404531 + 0.700668i
\(261\) 0 0
\(262\) −13462.9 + 23318.4i −0.0121167 + 0.0209868i
\(263\) −325274. 563390.i −0.289974 0.502250i 0.683829 0.729642i \(-0.260313\pi\)
−0.973803 + 0.227392i \(0.926980\pi\)
\(264\) 0 0
\(265\) −841549. −0.736147
\(266\) 469880. + 1.13622e6i 0.407177 + 0.984599i
\(267\) 0 0
\(268\) −107755. 186637.i −0.0916430 0.158730i
\(269\) −37675.3 65255.6i −0.0317451 0.0549841i 0.849716 0.527240i \(-0.176773\pi\)
−0.881461 + 0.472256i \(0.843440\pi\)
\(270\) 0 0
\(271\) −568959. 985465.i −0.470606 0.815113i 0.528829 0.848728i \(-0.322631\pi\)
−0.999435 + 0.0336150i \(0.989298\pi\)
\(272\) 200895. 347960.i 0.164644 0.285172i
\(273\) 0 0
\(274\) −228768. −0.184085
\(275\) −114428. + 198195.i −0.0912434 + 0.158038i
\(276\) 0 0
\(277\) 2.00027e6 1.56635 0.783175 0.621801i \(-0.213599\pi\)
0.783175 + 0.621801i \(0.213599\pi\)
\(278\) −1.34805e6 −1.04615
\(279\) 0 0
\(280\) 432626. + 749330.i 0.329775 + 0.571187i
\(281\) 584236. 1.01193e6i 0.441390 0.764509i −0.556403 0.830912i \(-0.687819\pi\)
0.997793 + 0.0664030i \(0.0211523\pi\)
\(282\) 0 0
\(283\) −627094. 1.08616e6i −0.465443 0.806171i 0.533778 0.845625i \(-0.320772\pi\)
−0.999221 + 0.0394533i \(0.987438\pi\)
\(284\) 1.12242e6 0.825767
\(285\) 0 0
\(286\) 437907. 0.316568
\(287\) 496237. + 859507.i 0.355618 + 0.615949i
\(288\) 0 0
\(289\) −521721. + 903648.i −0.367446 + 0.636436i
\(290\) −43158.5 74752.6i −0.0301350 0.0521953i
\(291\) 0 0
\(292\) −289382. −0.198616
\(293\) 1.55674e6 1.05937 0.529684 0.848195i \(-0.322310\pi\)
0.529684 + 0.848195i \(0.322310\pi\)
\(294\) 0 0
\(295\) −163531. + 283244.i −0.109407 + 0.189498i
\(296\) 212558. 0.141010
\(297\) 0 0
\(298\) −495768. + 858695.i −0.323398 + 0.560142i
\(299\) −166184. 287839.i −0.107500 0.186196i
\(300\) 0 0
\(301\) 798537. + 1.38311e6i 0.508018 + 0.879912i
\(302\) 510374. + 883993.i 0.322011 + 0.557740i
\(303\) 0 0
\(304\) −153945. 372256.i −0.0955392 0.231024i
\(305\) 596943. 0.367437
\(306\) 0 0
\(307\) −33575.0 58153.6i −0.0203315 0.0352152i 0.855681 0.517504i \(-0.173139\pi\)
−0.876012 + 0.482289i \(0.839806\pi\)
\(308\) 214822. 372083.i 0.129033 0.223493i
\(309\) 0 0
\(310\) 1.42789e6 2.47317e6i 0.843897 1.46167i
\(311\) −621579. −0.364414 −0.182207 0.983260i \(-0.558324\pi\)
−0.182207 + 0.983260i \(0.558324\pi\)
\(312\) 0 0
\(313\) 943255. 1.63376e6i 0.544212 0.942603i −0.454444 0.890775i \(-0.650162\pi\)
0.998656 0.0518275i \(-0.0165046\pi\)
\(314\) 454201. 786699.i 0.259970 0.450282i
\(315\) 0 0
\(316\) −1.40930e6 −0.793939
\(317\) 1.01585e6 1.75951e6i 0.567783 0.983429i −0.429002 0.903304i \(-0.641135\pi\)
0.996785 0.0801255i \(-0.0255321\pi\)
\(318\) 0 0
\(319\) −21430.5 + 37118.7i −0.0117911 + 0.0204229i
\(320\) −141740. 245500.i −0.0773777 0.134022i
\(321\) 0 0
\(322\) −326096. −0.175269
\(323\) 943809. + 2.28224e6i 0.503359 + 1.21718i
\(324\) 0 0
\(325\) −662948. 1.14826e6i −0.348154 0.603020i
\(326\) 124074. + 214902.i 0.0646599 + 0.111994i
\(327\) 0 0
\(328\) −162580. 281597.i −0.0834416 0.144525i
\(329\) −198601. + 343987.i −0.101156 + 0.175208i
\(330\) 0 0
\(331\) 2.29237e6 1.15004 0.575022 0.818138i \(-0.304994\pi\)
0.575022 + 0.818138i \(0.304994\pi\)
\(332\) −924456. + 1.60120e6i −0.460300 + 0.797263i
\(333\) 0 0
\(334\) −1.47110e6 −0.721565
\(335\) 932196. 0.453832
\(336\) 0 0
\(337\) 354307. + 613678.i 0.169944 + 0.294351i 0.938400 0.345551i \(-0.112308\pi\)
−0.768456 + 0.639903i \(0.778975\pi\)
\(338\) −525937. + 910950.i −0.250404 + 0.433713i
\(339\) 0 0
\(340\) 868980. + 1.50512e6i 0.407673 + 0.706111i
\(341\) −1.41805e6 −0.660396
\(342\) 0 0
\(343\) −887946. −0.407522
\(344\) −261621. 453142.i −0.119200 0.206461i
\(345\) 0 0
\(346\) 1.12269e6 1.94456e6i 0.504161 0.873233i
\(347\) 1.16998e6 + 2.02646e6i 0.521619 + 0.903471i 0.999684 + 0.0251462i \(0.00800512\pi\)
−0.478065 + 0.878325i \(0.658662\pi\)
\(348\) 0 0
\(349\) −1.37728e6 −0.605283 −0.302641 0.953105i \(-0.597868\pi\)
−0.302641 + 0.953105i \(0.597868\pi\)
\(350\) −1.30088e6 −0.567632
\(351\) 0 0
\(352\) −70381.4 + 121904.i −0.0302762 + 0.0524399i
\(353\) −3.29338e6 −1.40671 −0.703355 0.710839i \(-0.748316\pi\)
−0.703355 + 0.710839i \(0.748316\pi\)
\(354\) 0 0
\(355\) −2.42753e6 + 4.20461e6i −1.02234 + 1.77074i
\(356\) 207156. + 358805.i 0.0866310 + 0.150049i
\(357\) 0 0
\(358\) −1.39403e6 2.41453e6i −0.574862 0.995690i
\(359\) −791373. 1.37070e6i −0.324075 0.561314i 0.657250 0.753673i \(-0.271720\pi\)
−0.981325 + 0.192359i \(0.938386\pi\)
\(360\) 0 0
\(361\) 2.39100e6 + 643588.i 0.965630 + 0.259920i
\(362\) −2.70995e6 −1.08690
\(363\) 0 0
\(364\) 1.24459e6 + 2.15569e6i 0.492348 + 0.852772i
\(365\) 625867. 1.08403e6i 0.245895 0.425903i
\(366\) 0 0
\(367\) 572070. 990855.i 0.221709 0.384012i −0.733618 0.679562i \(-0.762170\pi\)
0.955327 + 0.295550i \(0.0955030\pi\)
\(368\) 106838. 0.0411249
\(369\) 0 0
\(370\) −459716. + 796251.i −0.174576 + 0.302375i
\(371\) −1.18765e6 + 2.05708e6i −0.447976 + 0.775918i
\(372\) 0 0
\(373\) −3.58049e6 −1.33251 −0.666255 0.745724i \(-0.732104\pi\)
−0.666255 + 0.745724i \(0.732104\pi\)
\(374\) 431495. 747372.i 0.159513 0.276285i
\(375\) 0 0
\(376\) 65066.9 112699.i 0.0237351 0.0411104i
\(377\) −124159. 215050.i −0.0449910 0.0779267i
\(378\) 0 0
\(379\) −863096. −0.308646 −0.154323 0.988020i \(-0.549320\pi\)
−0.154323 + 0.988020i \(0.549320\pi\)
\(380\) 1.72743e6 + 228423.i 0.613680 + 0.0811484i
\(381\) 0 0
\(382\) −1.26848e6 2.19707e6i −0.444760 0.770347i
\(383\) −1.90764e6 3.30413e6i −0.664508 1.15096i −0.979419 0.201840i \(-0.935308\pi\)
0.314911 0.949121i \(-0.398025\pi\)
\(384\) 0 0
\(385\) 929223. + 1.60946e6i 0.319498 + 0.553387i
\(386\) 1.30028e6 2.25215e6i 0.444190 0.769360i
\(387\) 0 0
\(388\) 2.08154e6 0.701948
\(389\) −284345. + 492500.i −0.0952734 + 0.165018i −0.909723 0.415216i \(-0.863706\pi\)
0.814449 + 0.580235i \(0.197039\pi\)
\(390\) 0 0
\(391\) −655002. −0.216671
\(392\) 1.36656e6 0.449174
\(393\) 0 0
\(394\) −40058.7 69383.7i −0.0130004 0.0225173i
\(395\) 3.04801e6 5.27930e6i 0.982931 1.70249i
\(396\) 0 0
\(397\) 186885. + 323694.i 0.0595110 + 0.103076i 0.894246 0.447576i \(-0.147713\pi\)
−0.834735 + 0.550652i \(0.814379\pi\)
\(398\) 634374. 0.200742
\(399\) 0 0
\(400\) 426202. 0.133188
\(401\) 646797. + 1.12028e6i 0.200866 + 0.347910i 0.948808 0.315854i \(-0.102291\pi\)
−0.747942 + 0.663765i \(0.768958\pi\)
\(402\) 0 0
\(403\) 4.10778e6 7.11488e6i 1.25992 2.18225i
\(404\) −18046.5 31257.4i −0.00550097 0.00952796i
\(405\) 0 0
\(406\) −243633. −0.0733536
\(407\) 456547. 0.136615
\(408\) 0 0
\(409\) 381767. 661240.i 0.112847 0.195457i −0.804070 0.594535i \(-0.797336\pi\)
0.916917 + 0.399078i \(0.130670\pi\)
\(410\) 1.40650e6 0.413217
\(411\) 0 0
\(412\) −138674. + 240191.i −0.0402488 + 0.0697130i
\(413\) 461573. + 799468.i 0.133157 + 0.230635i
\(414\) 0 0
\(415\) −3.99878e6 6.92609e6i −1.13974 1.97409i
\(416\) −407760. 706260.i −0.115524 0.200093i
\(417\) 0 0
\(418\) −330654. 799557.i −0.0925619 0.223825i
\(419\) −4.04901e6 −1.12671 −0.563357 0.826214i \(-0.690490\pi\)
−0.563357 + 0.826214i \(0.690490\pi\)
\(420\) 0 0
\(421\) 2.00104e6 + 3.46591e6i 0.550239 + 0.953041i 0.998257 + 0.0590170i \(0.0187966\pi\)
−0.448018 + 0.894024i \(0.647870\pi\)
\(422\) 1.74385e6 3.02043e6i 0.476680 0.825634i
\(423\) 0 0
\(424\) 389106. 673952.i 0.105112 0.182060i
\(425\) −2.61297e6 −0.701717
\(426\) 0 0
\(427\) 842449. 1.45916e6i 0.223601 0.387288i
\(428\) −720673. + 1.24824e6i −0.190164 + 0.329374i
\(429\) 0 0
\(430\) 2.26331e6 0.590301
\(431\) 215387. 373061.i 0.0558504 0.0967358i −0.836748 0.547587i \(-0.815546\pi\)
0.892599 + 0.450852i \(0.148880\pi\)
\(432\) 0 0
\(433\) −155406. + 269171.i −0.0398335 + 0.0689937i −0.885255 0.465106i \(-0.846016\pi\)
0.845421 + 0.534100i \(0.179349\pi\)
\(434\) −4.03027e6 6.98063e6i −1.02709 1.77898i
\(435\) 0 0
\(436\) −450061. −0.113385
\(437\) −400072. + 520768.i −0.100215 + 0.130449i
\(438\) 0 0
\(439\) −1.90240e6 3.29506e6i −0.471130 0.816021i 0.528324 0.849043i \(-0.322820\pi\)
−0.999455 + 0.0330211i \(0.989487\pi\)
\(440\) −304438. 527302.i −0.0749664 0.129846i
\(441\) 0 0
\(442\) 2.49990e6 + 4.32996e6i 0.608649 + 1.05421i
\(443\) 3.47715e6 6.02260e6i 0.841810 1.45806i −0.0465533 0.998916i \(-0.514824\pi\)
0.888363 0.459142i \(-0.151843\pi\)
\(444\) 0 0
\(445\) −1.79213e6 −0.429012
\(446\) 1.12195e6 1.94327e6i 0.267077 0.462590i
\(447\) 0 0
\(448\) −800132. −0.188350
\(449\) −5.20610e6 −1.21870 −0.609350 0.792902i \(-0.708569\pi\)
−0.609350 + 0.792902i \(0.708569\pi\)
\(450\) 0 0
\(451\) −349201. 604833.i −0.0808413 0.140021i
\(452\) 402203. 696637.i 0.0925976 0.160384i
\(453\) 0 0
\(454\) 135609. + 234882.i 0.0308780 + 0.0534822i
\(455\) −1.07671e7 −2.43819
\(456\) 0 0
\(457\) 6.09851e6 1.36595 0.682973 0.730444i \(-0.260687\pi\)
0.682973 + 0.730444i \(0.260687\pi\)
\(458\) 1.76343e6 + 3.05435e6i 0.392820 + 0.680385i
\(459\) 0 0
\(460\) −231065. + 400217.i −0.0509144 + 0.0881863i
\(461\) 3.45050e6 + 5.97644e6i 0.756188 + 1.30976i 0.944782 + 0.327701i \(0.106274\pi\)
−0.188594 + 0.982055i \(0.560393\pi\)
\(462\) 0 0
\(463\) 783989. 0.169964 0.0849821 0.996382i \(-0.472917\pi\)
0.0849821 + 0.996382i \(0.472917\pi\)
\(464\) 79820.6 0.0172115
\(465\) 0 0
\(466\) 2.36971e6 4.10447e6i 0.505512 0.875572i
\(467\) 9.29337e6 1.97188 0.985942 0.167090i \(-0.0534371\pi\)
0.985942 + 0.167090i \(0.0534371\pi\)
\(468\) 0 0
\(469\) 1.31558e6 2.27865e6i 0.276176 0.478351i
\(470\) 281450. + 487486.i 0.0587701 + 0.101793i
\(471\) 0 0
\(472\) −151223. 261926.i −0.0312438 0.0541158i
\(473\) −561929. 973289.i −0.115486 0.200027i
\(474\) 0 0
\(475\) −1.59599e6 + 2.07748e6i −0.324560 + 0.422476i
\(476\) 4.90546e6 0.992345
\(477\) 0 0
\(478\) −1.71129e6 2.96404e6i −0.342573 0.593354i
\(479\) −4.44221e6 + 7.69413e6i −0.884627 + 1.53222i −0.0384868 + 0.999259i \(0.512254\pi\)
−0.846140 + 0.532960i \(0.821080\pi\)
\(480\) 0 0
\(481\) −1.32252e6 + 2.29067e6i −0.260639 + 0.451440i
\(482\) 4.89481e6 0.959662
\(483\) 0 0
\(484\) 1.13724e6 1.96975e6i 0.220667 0.382207i
\(485\) −4.50190e6 + 7.79751e6i −0.869043 + 1.50523i
\(486\) 0 0
\(487\) 5.65969e6 1.08136 0.540680 0.841228i \(-0.318167\pi\)
0.540680 + 0.841228i \(0.318167\pi\)
\(488\) −276008. + 478060.i −0.0524653 + 0.0908726i
\(489\) 0 0
\(490\) −2.95556e6 + 5.11919e6i −0.556097 + 0.963188i
\(491\) 761291. + 1.31859e6i 0.142511 + 0.246836i 0.928441 0.371479i \(-0.121149\pi\)
−0.785931 + 0.618314i \(0.787816\pi\)
\(492\) 0 0
\(493\) −489366. −0.0906810
\(494\) 4.96952e6 + 657131.i 0.916214 + 0.121153i
\(495\) 0 0
\(496\) 1.32042e6 + 2.28704e6i 0.240995 + 0.417416i
\(497\) 6.85181e6 + 1.18677e7i 1.24427 + 2.15514i
\(498\) 0 0
\(499\) −1.40931e6 2.44100e6i −0.253370 0.438850i 0.711081 0.703110i \(-0.248206\pi\)
−0.964452 + 0.264259i \(0.914872\pi\)
\(500\) 808441. 1.40026e6i 0.144618 0.250486i
\(501\) 0 0
\(502\) 1.75815e6 0.311385
\(503\) 3.85074e6 6.66969e6i 0.678617 1.17540i −0.296780 0.954946i \(-0.595913\pi\)
0.975397 0.220454i \(-0.0707537\pi\)
\(504\) 0 0
\(505\) 156122. 0.0272418
\(506\) 229473. 0.0398433
\(507\) 0 0
\(508\) 2.14962e6 + 3.72325e6i 0.369575 + 0.640123i
\(509\) 1.97286e6 3.41709e6i 0.337521 0.584604i −0.646445 0.762961i \(-0.723745\pi\)
0.983966 + 0.178357i \(0.0570782\pi\)
\(510\) 0 0
\(511\) −1.76654e6 3.05973e6i −0.299275 0.518359i
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −787734. −0.131514
\(515\) −599842. 1.03896e6i −0.0996596 0.172615i
\(516\) 0 0
\(517\) 139755. 242063.i 0.0229954 0.0398293i
\(518\) 1.29757e6 + 2.24745e6i 0.212474 + 0.368015i
\(519\) 0 0
\(520\) 3.52757e6 0.572093
\(521\) 3.33915e6 0.538942 0.269471 0.963008i \(-0.413151\pi\)
0.269471 + 0.963008i \(0.413151\pi\)
\(522\) 0 0
\(523\) −3.96032e6 + 6.85947e6i −0.633105 + 1.09657i 0.353808 + 0.935318i \(0.384887\pi\)
−0.986913 + 0.161252i \(0.948447\pi\)
\(524\) 107703. 0.0171356
\(525\) 0 0
\(526\) −1.30109e6 + 2.25356e6i −0.205043 + 0.355144i
\(527\) −8.09527e6 1.40214e7i −1.26971 2.19920i
\(528\) 0 0
\(529\) 3.13109e6 + 5.42320e6i 0.486470 + 0.842591i
\(530\) 1.68310e6 + 2.91521e6i 0.260267 + 0.450796i
\(531\) 0 0
\(532\) 2.99623e6 3.90016e6i 0.458982 0.597452i
\(533\) 4.04624e6 0.616926
\(534\) 0 0
\(535\) −3.11730e6 5.39933e6i −0.470863 0.815559i
\(536\) −431019. + 746546.i −0.0648014 + 0.112239i
\(537\) 0 0
\(538\) −150701. + 261022.i −0.0224472 + 0.0388796i
\(539\) 2.93520e6 0.435176
\(540\) 0 0
\(541\) 1.60042e6 2.77201e6i 0.235094 0.407195i −0.724206 0.689584i \(-0.757793\pi\)
0.959300 + 0.282389i \(0.0911268\pi\)
\(542\) −2.27583e6 + 3.94186e6i −0.332769 + 0.576372i
\(543\) 0 0
\(544\) −1.60716e6 −0.232842
\(545\) 973379. 1.68594e6i 0.140375 0.243137i
\(546\) 0 0
\(547\) 5.84002e6 1.01152e7i 0.834538 1.44546i −0.0598685 0.998206i \(-0.519068\pi\)
0.894406 0.447256i \(-0.147599\pi\)
\(548\) 457535. + 792474.i 0.0650838 + 0.112728i
\(549\) 0 0
\(550\) 915426. 0.129038
\(551\) −298902. + 389077.i −0.0419420 + 0.0545955i
\(552\) 0 0
\(553\) −8.60313e6 1.49011e7i −1.19631 2.07207i
\(554\) −4.00054e6 6.92914e6i −0.553789 0.959190i
\(555\) 0 0
\(556\) 2.69609e6 + 4.66977e6i 0.369869 + 0.640632i
\(557\) −6.46391e6 + 1.11958e7i −0.882789 + 1.52904i −0.0345624 + 0.999403i \(0.511004\pi\)
−0.848227 + 0.529633i \(0.822330\pi\)
\(558\) 0 0
\(559\) 6.51115e6 0.881309
\(560\) 1.73050e6 2.99732e6i 0.233186 0.403890i
\(561\) 0 0
\(562\) −4.67389e6 −0.624219
\(563\) 5.25899e6 0.699248 0.349624 0.936890i \(-0.386309\pi\)
0.349624 + 0.936890i \(0.386309\pi\)
\(564\) 0 0
\(565\) 1.73975e6 + 3.01334e6i 0.229280 + 0.397124i
\(566\) −2.50838e6 + 4.34464e6i −0.329118 + 0.570049i
\(567\) 0 0
\(568\) −2.24483e6 3.88816e6i −0.291953 0.505677i
\(569\) 835705. 0.108211 0.0541056 0.998535i \(-0.482769\pi\)
0.0541056 + 0.998535i \(0.482769\pi\)
\(570\) 0 0
\(571\) −3.98471e6 −0.511454 −0.255727 0.966749i \(-0.582315\pi\)
−0.255727 + 0.966749i \(0.582315\pi\)
\(572\) −875814. 1.51695e6i −0.111924 0.193857i
\(573\) 0 0
\(574\) 1.98495e6 3.43803e6i 0.251460 0.435542i
\(575\) −347400. 601714.i −0.0438187 0.0758963i
\(576\) 0 0
\(577\) −1.30078e7 −1.62653 −0.813266 0.581892i \(-0.802313\pi\)
−0.813266 + 0.581892i \(0.802313\pi\)
\(578\) 4.17377e6 0.519648
\(579\) 0 0
\(580\) −172634. + 299011.i −0.0213086 + 0.0369077i
\(581\) −2.25734e7 −2.77433
\(582\) 0 0
\(583\) 835749. 1.44756e6i 0.101837 0.176386i
\(584\) 578763. + 1.00245e6i 0.0702213 + 0.121627i
\(585\) 0 0
\(586\) −3.11348e6 5.39270e6i −0.374543 0.648728i
\(587\) −1.38913e6 2.40604e6i −0.166398 0.288209i 0.770753 0.637134i \(-0.219880\pi\)
−0.937151 + 0.348925i \(0.886547\pi\)
\(588\) 0 0
\(589\) −1.60925e7 2.12795e6i −1.91132 0.252739i
\(590\) 1.30825e6 0.154725
\(591\) 0 0
\(592\) −425117. 736324.i −0.0498545 0.0863504i
\(593\) 2.91970e6 5.05706e6i 0.340958 0.590556i −0.643653 0.765317i \(-0.722582\pi\)
0.984611 + 0.174761i \(0.0559153\pi\)
\(594\) 0 0
\(595\) −1.06094e7 + 1.83760e7i −1.22857 + 2.12794i
\(596\) 3.96614e6 0.457354
\(597\) 0 0
\(598\) −664735. + 1.15135e6i −0.0760143 + 0.131661i
\(599\) 6.32269e6 1.09512e7i 0.720004 1.24708i −0.240994 0.970527i \(-0.577473\pi\)
0.960998 0.276556i \(-0.0891932\pi\)
\(600\) 0 0
\(601\) 1.00707e7 1.13730 0.568651 0.822579i \(-0.307466\pi\)
0.568651 + 0.822579i \(0.307466\pi\)
\(602\) 3.19415e6 5.53243e6i 0.359223 0.622192i
\(603\) 0 0
\(604\) 2.04150e6 3.53597e6i 0.227696 0.394382i
\(605\) 4.91918e6 + 8.52026e6i 0.546392 + 0.946378i
\(606\) 0 0
\(607\) 5.84624e6 0.644028 0.322014 0.946735i \(-0.395640\pi\)
0.322014 + 0.946735i \(0.395640\pi\)
\(608\) −981643. + 1.27779e6i −0.107695 + 0.140185i
\(609\) 0 0
\(610\) −1.19389e6 2.06787e6i −0.129909 0.225009i
\(611\) 809682. + 1.40241e6i 0.0877428 + 0.151975i
\(612\) 0 0
\(613\) 4.22864e6 + 7.32423e6i 0.454517 + 0.787246i 0.998660 0.0517460i \(-0.0164786\pi\)
−0.544143 + 0.838992i \(0.683145\pi\)
\(614\) −134300. + 232614.i −0.0143766 + 0.0249009i
\(615\) 0 0
\(616\) −1.71858e6 −0.182481
\(617\) 2.88429e6 4.99573e6i 0.305018 0.528307i −0.672247 0.740327i \(-0.734671\pi\)
0.977265 + 0.212020i \(0.0680041\pi\)
\(618\) 0 0
\(619\) −3.06683e6 −0.321709 −0.160854 0.986978i \(-0.551425\pi\)
−0.160854 + 0.986978i \(0.551425\pi\)
\(620\) −1.14231e7 −1.19345
\(621\) 0 0
\(622\) 1.24316e6 + 2.15321e6i 0.128840 + 0.223157i
\(623\) −2.52918e6 + 4.38067e6i −0.261072 + 0.452189i
\(624\) 0 0
\(625\) 6.09828e6 + 1.05625e7i 0.624464 + 1.08160i
\(626\) −7.54604e6 −0.769632
\(627\) 0 0
\(628\) −3.63361e6 −0.367654
\(629\) 2.60631e6 + 4.51427e6i 0.262664 + 0.454947i
\(630\) 0 0
\(631\) −2.32415e6 + 4.02555e6i −0.232376 + 0.402487i −0.958507 0.285069i \(-0.907983\pi\)
0.726131 + 0.687557i \(0.241317\pi\)
\(632\) 2.81861e6 + 4.88197e6i 0.280700 + 0.486186i
\(633\) 0 0
\(634\) −8.12682e6 −0.802967
\(635\) −1.85966e7 −1.83020
\(636\) 0 0
\(637\) −8.50264e6 + 1.47270e7i −0.830243 + 1.43802i
\(638\) 171444. 0.0166752
\(639\) 0 0
\(640\) −566958. + 982000.i −0.0547143 + 0.0947680i
\(641\) −8.62654e6 1.49416e7i −0.829262 1.43632i −0.898618 0.438732i \(-0.855428\pi\)
0.0693560 0.997592i \(-0.477906\pi\)
\(642\) 0 0
\(643\) 8.08177e6 + 1.39980e7i 0.770866 + 1.33518i 0.937089 + 0.349091i \(0.113510\pi\)
−0.166223 + 0.986088i \(0.553157\pi\)
\(644\) 652192. + 1.12963e6i 0.0619671 + 0.107330i
\(645\) 0 0
\(646\) 6.01828e6 7.83392e6i 0.567402 0.738581i
\(647\) −4.07237e6 −0.382461 −0.191230 0.981545i \(-0.561248\pi\)
−0.191230 + 0.981545i \(0.561248\pi\)
\(648\) 0 0
\(649\) −324808. 562584.i −0.0302702 0.0524294i
\(650\) −2.65179e6 + 4.59304e6i −0.246182 + 0.426400i
\(651\) 0 0
\(652\) 496294. 859607.i 0.0457215 0.0791919i
\(653\) −3.98034e6 −0.365290 −0.182645 0.983179i \(-0.558466\pi\)
−0.182645 + 0.983179i \(0.558466\pi\)
\(654\) 0 0
\(655\) −232937. + 403459.i −0.0212146 + 0.0367448i
\(656\) −650320. + 1.12639e6i −0.0590021 + 0.102195i
\(657\) 0 0
\(658\) 1.58881e6 0.143056
\(659\) 5.27742e6 9.14076e6i 0.473378 0.819914i −0.526158 0.850387i \(-0.676368\pi\)
0.999536 + 0.0304725i \(0.00970120\pi\)
\(660\) 0 0
\(661\) −928453. + 1.60813e6i −0.0826525 + 0.143158i −0.904388 0.426710i \(-0.859672\pi\)
0.821736 + 0.569868i \(0.193006\pi\)
\(662\) −4.58474e6 7.94099e6i −0.406602 0.704255i
\(663\) 0 0
\(664\) 7.39565e6 0.650962
\(665\) 8.12995e6 + 1.96591e7i 0.712909 + 1.72389i
\(666\) 0 0
\(667\) −65062.2 112691.i −0.00566258 0.00980788i
\(668\) 2.94220e6 + 5.09604e6i 0.255112 + 0.441867i
\(669\) 0 0
\(670\) −1.86439e6 3.22922e6i −0.160454 0.277914i
\(671\) −592829. + 1.02681e6i −0.0508304 + 0.0880408i
\(672\) 0 0
\(673\) −2.39272e6 −0.203636 −0.101818 0.994803i \(-0.532466\pi\)
−0.101818 + 0.994803i \(0.532466\pi\)
\(674\) 1.41723e6 2.45471e6i 0.120168 0.208138i
\(675\) 0 0
\(676\) 4.20750e6 0.354125
\(677\) −6.43948e6 −0.539982 −0.269991 0.962863i \(-0.587021\pi\)
−0.269991 + 0.962863i \(0.587021\pi\)
\(678\) 0 0
\(679\) 1.27068e7 + 2.20088e7i 1.05770 + 1.83199i
\(680\) 3.47592e6 6.02047e6i 0.288269 0.499296i
\(681\) 0 0
\(682\) 2.83609e6 + 4.91226e6i 0.233485 + 0.404408i
\(683\) 1.00359e6 0.0823202 0.0411601 0.999153i \(-0.486895\pi\)
0.0411601 + 0.999153i \(0.486895\pi\)
\(684\) 0 0
\(685\) −3.95818e6 −0.322306
\(686\) 1.77589e6 + 3.07593e6i 0.144081 + 0.249555i
\(687\) 0 0
\(688\) −1.04649e6 + 1.81257e6i −0.0842873 + 0.145990i
\(689\) 4.84198e6 + 8.38655e6i 0.388575 + 0.673031i
\(690\) 0 0
\(691\) −5.34240e6 −0.425639 −0.212820 0.977092i \(-0.568265\pi\)
−0.212820 + 0.977092i \(0.568265\pi\)
\(692\) −8.98152e6 −0.712992
\(693\) 0 0
\(694\) 4.67991e6 8.10584e6i 0.368840 0.638850i
\(695\) −2.33241e7 −1.83166
\(696\) 0 0
\(697\) 3.98700e6 6.90568e6i 0.310859 0.538424i
\(698\) 2.75456e6 + 4.77103e6i 0.214000 + 0.370658i
\(699\) 0 0
\(700\) 2.60176e6 + 4.50638e6i 0.200688 + 0.347602i
\(701\) 5.56189e6 + 9.63348e6i 0.427491 + 0.740437i 0.996649 0.0817913i \(-0.0260641\pi\)
−0.569158 + 0.822228i \(0.692731\pi\)
\(702\) 0 0
\(703\) 5.18105e6 + 685104.i 0.395394 + 0.0522839i
\(704\) 563051. 0.0428170
\(705\) 0 0
\(706\) 6.58675e6 + 1.14086e7i 0.497347 + 0.861430i
\(707\) 220330. 381623.i 0.0165777 0.0287135i
\(708\) 0 0
\(709\) −3.36034e6 + 5.82027e6i −0.251054 + 0.434838i −0.963816 0.266567i \(-0.914110\pi\)
0.712762 + 0.701406i \(0.247444\pi\)
\(710\) 1.94202e7 1.44580
\(711\) 0 0
\(712\) 828625. 1.43522e6i 0.0612574 0.106101i
\(713\) 2.15257e6 3.72836e6i 0.158574 0.274659i
\(714\) 0 0
\(715\) 7.57675e6 0.554265
\(716\) −5.57611e6 + 9.65810e6i −0.406489 + 0.704059i
\(717\) 0 0
\(718\) −3.16549e6 + 5.48279e6i −0.229155 + 0.396909i
\(719\) 1.37078e7 + 2.37427e7i 0.988887 + 1.71280i 0.623194 + 0.782067i \(0.285835\pi\)
0.365693 + 0.930736i \(0.380832\pi\)
\(720\) 0 0
\(721\) −3.38616e6 −0.242588
\(722\) −2.55254e6 9.56983e6i −0.182234 0.683221i
\(723\) 0 0
\(724\) 5.41991e6 + 9.38755e6i 0.384278 + 0.665589i
\(725\) −259550. 449553.i −0.0183390 0.0317641i
\(726\) 0 0
\(727\) 683392. + 1.18367e6i 0.0479550 + 0.0830605i 0.889007 0.457894i \(-0.151396\pi\)
−0.841052 + 0.540955i \(0.818063\pi\)
\(728\) 4.97835e6 8.62276e6i 0.348143 0.603001i
\(729\) 0 0
\(730\) −5.00693e6 −0.347748
\(731\) 6.41582e6 1.11125e7i 0.444077 0.769165i
\(732\) 0 0
\(733\) −1.95160e7 −1.34162 −0.670812 0.741627i \(-0.734054\pi\)
−0.670812 + 0.741627i \(0.734054\pi\)
\(734\) −4.57656e6 −0.313544
\(735\) 0 0
\(736\) −213675. 370096.i −0.0145398 0.0251837i
\(737\) −925772. + 1.60348e6i −0.0627820 + 0.108742i
\(738\) 0 0
\(739\) 7.37807e6 + 1.27792e7i 0.496972 + 0.860780i 0.999994 0.00349327i \(-0.00111195\pi\)
−0.503022 + 0.864273i \(0.667779\pi\)
\(740\) 3.67773e6 0.246888
\(741\) 0 0
\(742\) 9.50123e6 0.633534
\(743\) −8.82078e6 1.52780e7i −0.586185 1.01530i −0.994727 0.102563i \(-0.967296\pi\)
0.408541 0.912740i \(-0.366038\pi\)
\(744\) 0 0
\(745\) −8.57787e6 + 1.48573e7i −0.566225 + 0.980730i
\(746\) 7.16099e6 + 1.24032e7i 0.471114 + 0.815993i
\(747\) 0 0
\(748\) −3.45196e6 −0.225586
\(749\) −1.75974e7 −1.14616
\(750\) 0 0
\(751\) 7.29787e6 1.26403e7i 0.472167 0.817818i −0.527325 0.849663i \(-0.676805\pi\)
0.999493 + 0.0318455i \(0.0101385\pi\)
\(752\) −520536. −0.0335665
\(753\) 0 0
\(754\) −496637. + 860200.i −0.0318134 + 0.0551025i
\(755\) 8.83058e6 + 1.52950e7i 0.563796 + 0.976523i
\(756\) 0 0
\(757\) −457650. 792673.i −0.0290264 0.0502753i 0.851147 0.524927i \(-0.175907\pi\)
−0.880174 + 0.474652i \(0.842574\pi\)
\(758\) 1.72619e6 + 2.98985e6i 0.109123 + 0.189007i
\(759\) 0 0
\(760\) −2.66358e6 6.44084e6i −0.167276 0.404491i
\(761\) 5.46662e6 0.342182 0.171091 0.985255i \(-0.445271\pi\)
0.171091 + 0.985255i \(0.445271\pi\)
\(762\) 0 0
\(763\) −2.74741e6 4.75865e6i −0.170849 0.295918i
\(764\) −5.07393e6 + 8.78830e6i −0.314493 + 0.544718i
\(765\) 0 0
\(766\) −7.63057e6 + 1.32165e7i −0.469878 + 0.813852i
\(767\) 3.76360e6 0.231001
\(768\) 0 0
\(769\) 1.50778e7 2.61156e7i 0.919439 1.59252i 0.119170 0.992874i \(-0.461977\pi\)
0.800269 0.599641i \(-0.204690\pi\)
\(770\) 3.71689e6 6.43785e6i 0.225919 0.391304i
\(771\) 0 0
\(772\) −1.04022e7 −0.628180
\(773\) 8.83334e6 1.52998e7i 0.531711 0.920951i −0.467603 0.883938i \(-0.654882\pi\)
0.999315 0.0370128i \(-0.0117842\pi\)
\(774\) 0 0
\(775\) 8.58713e6 1.48733e7i 0.513563 0.889517i
\(776\) −4.16308e6 7.21066e6i −0.248176 0.429854i
\(777\) 0 0
\(778\) 2.27476e6 0.134737
\(779\) −3.05522e6 7.38787e6i −0.180384 0.436190i
\(780\) 0 0
\(781\) −4.82160e6 8.35126e6i −0.282855 0.489919i
\(782\) 1.31000e6 + 2.26899e6i 0.0766048 + 0.132683i
\(783\) 0 0
\(784\) −2.73312e6 4.73391e6i −0.158807 0.275062i
\(785\) 7.85867e6 1.36116e7i 0.455171 0.788380i
\(786\) 0 0
\(787\) 1.20031e7 0.690805 0.345403 0.938455i \(-0.387742\pi\)
0.345403 + 0.938455i \(0.387742\pi\)
\(788\) −160235. + 277535.i −0.00919266 + 0.0159222i
\(789\) 0 0
\(790\) −2.43840e7 −1.39007
\(791\) 9.82104e6 0.558105
\(792\) 0 0
\(793\) −3.43460e6 5.94890e6i −0.193952 0.335934i
\(794\) 747539. 1.29478e6i 0.0420807 0.0728859i
\(795\) 0 0
\(796\) −1.26875e6 2.19754e6i −0.0709729 0.122929i
\(797\) 1.33413e7 0.743965 0.371983 0.928240i \(-0.378678\pi\)
0.371983 + 0.928240i \(0.378678\pi\)
\(798\) 0 0
\(799\) 3.19131e6 0.176849
\(800\) −852404. 1.47641e6i −0.0470891 0.0815607i
\(801\) 0 0
\(802\) 2.58719e6 4.48114e6i 0.142034 0.246010i
\(803\) 1.24311e6 + 2.15312e6i 0.0680330 + 0.117837i
\(804\) 0 0
\(805\) −5.64218e6 −0.306872
\(806\) −3.28622e7 −1.78180
\(807\) 0 0
\(808\) −72185.9 + 125030.i −0.00388977 + 0.00673728i
\(809\) 1.55811e7 0.837003 0.418502 0.908216i \(-0.362555\pi\)
0.418502 + 0.908216i \(0.362555\pi\)
\(810\) 0 0
\(811\) 6.16473e6 1.06776e7i 0.329126 0.570062i −0.653213 0.757174i \(-0.726579\pi\)
0.982339 + 0.187112i \(0.0599127\pi\)
\(812\) 487266. + 843970.i 0.0259344 + 0.0449197i
\(813\) 0 0
\(814\) −913095. 1.58153e6i −0.0483009 0.0836595i
\(815\) 2.14674e6 + 3.71827e6i 0.113210 + 0.196086i
\(816\) 0 0
\(817\) −4.91642e6 1.18885e7i −0.257688 0.623118i
\(818\) −3.05414e6 −0.159590
\(819\) 0 0
\(820\) −2.81299e6 4.87224e6i −0.146094 0.253043i
\(821\) −8.87039e6 + 1.53640e7i −0.459288 + 0.795510i −0.998923 0.0463889i \(-0.985229\pi\)
0.539636 + 0.841899i \(0.318562\pi\)
\(822\) 0 0
\(823\) −1.21844e7 + 2.11040e7i −0.627052 + 1.08609i 0.361088 + 0.932532i \(0.382405\pi\)
−0.988140 + 0.153555i \(0.950928\pi\)
\(824\) 1.10939e6 0.0569204
\(825\) 0 0
\(826\) 1.84629e6 3.19787e6i 0.0941565 0.163084i
\(827\) 1.67854e7 2.90731e7i 0.853429 1.47818i −0.0246663 0.999696i \(-0.507852\pi\)
0.878095 0.478486i \(-0.158814\pi\)
\(828\) 0 0
\(829\) 7.75213e6 0.391773 0.195887 0.980627i \(-0.437242\pi\)
0.195887 + 0.980627i \(0.437242\pi\)
\(830\) −1.59951e7 + 2.77043e7i −0.805920 + 1.39589i
\(831\) 0 0
\(832\) −1.63104e6 + 2.82504e6i −0.0816875 + 0.141487i
\(833\) 1.67563e7 + 2.90228e7i 0.836692 + 1.44919i
\(834\) 0 0
\(835\) −2.54532e7 −1.26336
\(836\) −2.10844e6 + 2.74453e6i −0.104339 + 0.135816i
\(837\) 0 0
\(838\) 8.09801e6 + 1.40262e7i 0.398353 + 0.689968i
\(839\) −672187. 1.16426e6i −0.0329674 0.0571013i 0.849071 0.528279i \(-0.177162\pi\)
−0.882038 + 0.471178i \(0.843829\pi\)
\(840\) 0 0
\(841\) 1.02070e7 + 1.76790e7i 0.497630 + 0.861921i
\(842\) 8.00417e6 1.38636e7i 0.389078 0.673902i
\(843\) 0 0
\(844\) −1.39508e7 −0.674128
\(845\) −9.09986e6 + 1.57614e7i −0.438423 + 0.759370i
\(846\) 0 0
\(847\) 2.77692e7 1.33001
\(848\) −3.11285e6 −0.148651
\(849\) 0 0
\(850\) 5.22594e6 + 9.05159e6i 0.248094 + 0.429712i
\(851\) −693031. + 1.20036e6i −0.0328041 + 0.0568184i
\(852\) 0 0
\(853\) 4.67911e6 + 8.10445e6i 0.220186 + 0.381374i 0.954864 0.297042i \(-0.0960001\pi\)
−0.734678 + 0.678416i \(0.762667\pi\)
\(854\) −6.73959e6 −0.316220
\(855\) 0 0
\(856\) 5.76538e6 0.268933
\(857\) 1.10020e7 + 1.90560e7i 0.511703 + 0.886296i 0.999908 + 0.0135671i \(0.00431866\pi\)
−0.488205 + 0.872729i \(0.662348\pi\)
\(858\) 0 0
\(859\) −1.08757e6 + 1.88373e6i −0.0502893 + 0.0871037i −0.890074 0.455815i \(-0.849348\pi\)
0.839785 + 0.542919i \(0.182681\pi\)
\(860\) −4.52662e6 7.84034e6i −0.208703 0.361484i
\(861\) 0 0
\(862\) −1.72310e6 −0.0789844
\(863\) 4.64716e6 0.212403 0.106202 0.994345i \(-0.466131\pi\)
0.106202 + 0.994345i \(0.466131\pi\)
\(864\) 0 0
\(865\) 1.94250e7 3.36451e7i 0.882715 1.52891i
\(866\) 1.24325e6 0.0563331
\(867\) 0 0
\(868\) −1.61211e7 + 2.79225e7i −0.726265 + 1.25793i
\(869\) 6.05400e6 + 1.04858e7i 0.271952 + 0.471035i
\(870\) 0 0
\(871\) −5.36353e6 9.28990e6i −0.239555 0.414921i
\(872\) 900122. + 1.55906e6i 0.0400876 + 0.0694337i
\(873\) 0 0
\(874\) 2.60414e6 + 344352.i 0.115315 + 0.0152484i
\(875\) 1.97406e7 0.871645
\(876\) 0 0
\(877\) −2.20808e7 3.82450e7i −0.969427 1.67910i −0.697218 0.716859i \(-0.745579\pi\)
−0.272209 0.962238i \(-0.587754\pi\)
\(878\) −7.60961e6 + 1.31802e7i −0.333139 + 0.577014i
\(879\) 0 0
\(880\) −1.21775e6 + 2.10921e6i −0.0530093 + 0.0918148i
\(881\) 5.19044e6 0.225302 0.112651 0.993635i \(-0.464066\pi\)
0.112651 + 0.993635i \(0.464066\pi\)
\(882\) 0 0
\(883\) 1.44337e7 2.49999e7i 0.622981 1.07904i −0.365946 0.930636i \(-0.619255\pi\)
0.988928 0.148399i \(-0.0474121\pi\)
\(884\) 9.99960e6 1.73198e7i 0.430380 0.745440i
\(885\) 0 0
\(886\) −2.78172e7 −1.19050
\(887\) 1.43646e7 2.48802e7i 0.613033 1.06180i −0.377693 0.925931i \(-0.623283\pi\)
0.990726 0.135874i \(-0.0433842\pi\)
\(888\) 0 0
\(889\) −2.62448e7 + 4.54574e7i −1.11375 + 1.92908i
\(890\) 3.58426e6 + 6.20812e6i 0.151679 + 0.262715i
\(891\) 0 0
\(892\) −8.97559e6 −0.377703
\(893\) 1.94923e6 2.53730e6i 0.0817966 0.106474i
\(894\) 0 0
\(895\) −2.41197e7 4.17766e7i −1.00650 1.74331i
\(896\) 1.60026e6 + 2.77174e6i 0.0665919 + 0.115341i
\(897\) 0 0
\(898\) 1.04122e7 + 1.80345e7i 0.430875 + 0.746298i
\(899\) 1.60823e6 2.78553e6i 0.0663664 0.114950i
\(900\) 0 0
\(901\) 1.90843e7 0.783186
\(902\) −1.39680e6 + 2.41933e6i −0.0571635 + 0.0990100i
\(903\) 0 0
\(904\) −3.21763e6 −0.130953
\(905\) −4.68881e7 −1.90301
\(906\) 0 0
\(907\) −3.32343e6 5.75634e6i −0.134143 0.232342i 0.791127 0.611652i \(-0.209495\pi\)
−0.925270 + 0.379310i \(0.876161\pi\)
\(908\) 542436. 939526.i 0.0218340 0.0378176i
\(909\) 0 0
\(910\) 2.15341e7 + 3.72982e7i 0.862032 + 1.49308i
\(911\) −3.32144e7 −1.32596 −0.662981 0.748637i \(-0.730709\pi\)
−0.662981 + 0.748637i \(0.730709\pi\)
\(912\) 0 0
\(913\) 1.58849e7 0.630677
\(914\) −1.21970e7 2.11259e7i −0.482935 0.836468i
\(915\) 0 0
\(916\) 7.05371e6 1.22174e7i 0.277766 0.481105i
\(917\) 657475. + 1.13878e6i 0.0258200 + 0.0447215i
\(918\) 0 0
\(919\) 4.38879e6 0.171418 0.0857090 0.996320i \(-0.472684\pi\)
0.0857090 + 0.996320i \(0.472684\pi\)
\(920\) 1.84852e6 0.0720038
\(921\) 0 0
\(922\) 1.38020e7 2.39058e7i 0.534706 0.926137i
\(923\) 5.58686e7 2.15856
\(924\) 0 0
\(925\) −2.76467e6 + 4.78855e6i −0.106240 + 0.184014i
\(926\) −1.56798e6 2.71582e6i −0.0600914 0.104081i
\(927\) 0 0
\(928\) −159641. 276507.i −0.00608520 0.0105399i
\(929\) −8.91008e6 1.54327e7i −0.338721 0.586682i 0.645471 0.763785i \(-0.276661\pi\)
−0.984192 + 0.177102i \(0.943328\pi\)
\(930\) 0 0
\(931\) 3.33096e7 + 4.40461e6i 1.25949 + 0.166546i
\(932\) −1.89577e7 −0.714902
\(933\) 0 0
\(934\) −1.85867e7 3.21932e7i −0.697166 1.20753i
\(935\) 7.46582e6 1.29312e7i 0.279285 0.483737i
\(936\) 0 0
\(937\) 1.58598e7 2.74700e7i 0.590132 1.02214i −0.404083 0.914723i \(-0.632409\pi\)
0.994214 0.107416i \(-0.0342575\pi\)
\(938\) −1.05247e7 −0.390572
\(939\) 0 0
\(940\) 1.12580e6 1.94994e6i 0.0415568 0.0719784i
\(941\) −1.19181e7 + 2.06428e7i −0.438767 + 0.759966i −0.997595 0.0693176i \(-0.977918\pi\)
0.558828 + 0.829284i \(0.311251\pi\)
\(942\) 0 0
\(943\) 2.12032e6 0.0776465
\(944\) −604893. + 1.04771e6i −0.0220927 + 0.0382657i
\(945\) 0 0
\(946\) −2.24771e6 + 3.89315e6i −0.0816607 + 0.141441i
\(947\) −1.23296e7 2.13554e7i −0.446758 0.773808i 0.551415 0.834231i \(-0.314088\pi\)
−0.998173 + 0.0604237i \(0.980755\pi\)
\(948\) 0 0
\(949\) −1.44041e7 −0.519182
\(950\) 1.03886e7 + 1.37370e6i 0.373462 + 0.0493838i
\(951\) 0 0
\(952\) −9.81093e6 1.69930e7i −0.350847 0.607685i
\(953\) 1.31239e7 + 2.27312e7i 0.468091 + 0.810757i 0.999335 0.0364620i \(-0.0116088\pi\)
−0.531245 + 0.847219i \(0.678275\pi\)
\(954\) 0 0
\(955\) −2.19475e7 3.80142e7i −0.778712 1.34877i
\(956\) −6.84515e6 + 1.18561e7i −0.242236 + 0.419564i
\(957\) 0 0
\(958\) 3.55377e7 1.25105
\(959\) −5.58606e6 + 9.67535e6i −0.196137 + 0.339719i
\(960\) 0 0
\(961\) 7.77865e7 2.71704
\(962\) 1.05802e7 0.368600
\(963\) 0 0
\(964\) −9.78962e6 1.69561e7i −0.339292 0.587671i
\(965\) 2.24977e7 3.89672e7i 0.777714 1.34704i
\(966\) 0 0
\(967\) −782648. 1.35559e6i −0.0269154 0.0466188i 0.852254 0.523128i \(-0.175235\pi\)
−0.879169 + 0.476509i \(0.841902\pi\)
\(968\) −9.09790e6 −0.312071
\(969\) 0 0
\(970\) 3.60152e7 1.22901
\(971\) −1.62297e7 2.81107e7i −0.552411 0.956805i −0.998100 0.0616165i \(-0.980374\pi\)
0.445688 0.895188i \(-0.352959\pi\)
\(972\) 0 0
\(973\) −3.29167e7 + 5.70134e7i −1.11464 + 1.93061i
\(974\) −1.13194e7 1.96058e7i −0.382319 0.662196i
\(975\) 0 0
\(976\) 2.20807e6 0.0741972
\(977\) −1.53915e7 −0.515874 −0.257937 0.966162i \(-0.583043\pi\)
−0.257937 + 0.966162i \(0.583043\pi\)
\(978\) 0 0
\(979\) 1.77978e6 3.08267e6i 0.0593484 0.102794i
\(980\) 2.36445e7 0.786439
\(981\) 0 0
\(982\) 3.04516e6 5.27438e6i 0.100770 0.174539i
\(983\) −1.36844e7 2.37022e7i −0.451693 0.782356i 0.546798 0.837264i \(-0.315846\pi\)
−0.998491 + 0.0549089i \(0.982513\pi\)
\(984\) 0 0
\(985\) −693103. 1.20049e6i −0.0227618 0.0394247i
\(986\) 978731. + 1.69521e6i 0.0320606 + 0.0555305i
\(987\) 0 0
\(988\) −7.66266e6 1.85292e7i −0.249740 0.603898i
\(989\) 3.41199e6 0.110922
\(990\) 0 0
\(991\) 1.30408e7 + 2.25873e7i 0.421813 + 0.730602i 0.996117 0.0880405i \(-0.0280605\pi\)
−0.574304 + 0.818642i \(0.694727\pi\)
\(992\) 5.28169e6 9.14815e6i 0.170409 0.295158i
\(993\) 0 0
\(994\) 2.74072e7 4.74707e7i 0.879831 1.52391i
\(995\) 1.09761e7 0.351470
\(996\) 0 0
\(997\) −3.94071e6 + 6.82552e6i −0.125556 + 0.217469i −0.921950 0.387309i \(-0.873405\pi\)
0.796394 + 0.604778i \(0.206738\pi\)
\(998\) −5.63725e6 + 9.76400e6i −0.179160 + 0.310314i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 342.6.g.a.235.1 6
3.2 odd 2 38.6.c.a.7.1 6
12.11 even 2 304.6.i.a.273.3 6
19.11 even 3 inner 342.6.g.a.163.1 6
57.11 odd 6 38.6.c.a.11.1 yes 6
57.26 odd 6 722.6.a.e.1.3 3
57.50 even 6 722.6.a.f.1.1 3
228.11 even 6 304.6.i.a.49.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.6.c.a.7.1 6 3.2 odd 2
38.6.c.a.11.1 yes 6 57.11 odd 6
304.6.i.a.49.3 6 228.11 even 6
304.6.i.a.273.3 6 12.11 even 2
342.6.g.a.163.1 6 19.11 even 3 inner
342.6.g.a.235.1 6 1.1 even 1 trivial
722.6.a.e.1.3 3 57.26 odd 6
722.6.a.f.1.1 3 57.50 even 6