Properties

Label 342.4.u
Level $342$
Weight $4$
Character orbit 342.u
Rep. character $\chi_{342}(55,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $150$
Sturm bound $240$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.u (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{9})\)
Sturm bound: \(240\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(342, [\chi])\).

Total New Old
Modular forms 1128 150 978
Cusp forms 1032 150 882
Eisenstein series 96 0 96

Trace form

\( 150 q - 12 q^{7} - 24 q^{8} - 84 q^{11} + 150 q^{13} + 24 q^{14} - 330 q^{17} + 474 q^{19} - 192 q^{20} - 408 q^{22} + 444 q^{23} - 492 q^{25} + 228 q^{26} - 120 q^{28} + 108 q^{29} + 30 q^{31} - 360 q^{34}+ \cdots - 5040 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(342, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(342, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(342, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)