Properties

Label 342.4.g.f.163.1
Level $342$
Weight $4$
Character 342.163
Analytic conductor $20.179$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [342,4,Mod(163,342)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("342.163"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(342, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 342.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,0,-12,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.1786532220\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 64x^{4} + 33x^{3} + 3984x^{2} - 945x + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(0.118706 - 0.205606i\) of defining polynomial
Character \(\chi\) \(=\) 342.163
Dual form 342.4.g.f.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(-2.00000 - 3.46410i) q^{4} +(-10.3546 + 17.9347i) q^{5} +8.76259 q^{7} +8.00000 q^{8} +(-20.7092 - 35.8694i) q^{10} +62.1780 q^{11} +(32.2611 + 55.8778i) q^{13} +(-8.76259 + 15.1772i) q^{14} +(-8.00000 + 13.8564i) q^{16} +(-23.2077 + 40.1970i) q^{17} +(17.3798 + 80.9750i) q^{19} +82.8369 q^{20} +(-62.1780 + 107.696i) q^{22} +(-18.6424 - 32.2895i) q^{23} +(-151.936 - 263.161i) q^{25} -129.044 q^{26} +(-17.5252 - 30.3545i) q^{28} +(-33.2119 - 57.5247i) q^{29} +112.370 q^{31} +(-16.0000 - 27.7128i) q^{32} +(-46.4155 - 80.3939i) q^{34} +(-90.7332 + 157.155i) q^{35} -189.018 q^{37} +(-157.633 - 50.8723i) q^{38} +(-82.8369 + 143.478i) q^{40} +(-120.005 + 207.854i) q^{41} +(-84.1370 + 145.730i) q^{43} +(-124.356 - 215.391i) q^{44} +74.5695 q^{46} +(93.9241 + 162.681i) q^{47} -266.217 q^{49} +607.744 q^{50} +(129.044 - 223.511i) q^{52} +(-56.5285 - 97.9102i) q^{53} +(-643.830 + 1115.15i) q^{55} +70.1007 q^{56} +132.848 q^{58} +(92.9940 - 161.070i) q^{59} +(-154.322 - 267.293i) q^{61} +(-112.370 + 194.631i) q^{62} +64.0000 q^{64} -1336.20 q^{65} +(-19.7279 - 34.1697i) q^{67} +185.662 q^{68} +(-181.466 - 314.309i) q^{70} +(-175.101 + 303.284i) q^{71} +(4.80280 - 8.31870i) q^{73} +(189.018 - 327.389i) q^{74} +(245.746 - 222.155i) q^{76} +544.840 q^{77} +(588.269 - 1018.91i) q^{79} +(-165.674 - 286.956i) q^{80} +(-240.010 - 415.709i) q^{82} +257.980 q^{83} +(-480.614 - 832.448i) q^{85} +(-168.274 - 291.459i) q^{86} +497.424 q^{88} +(-66.8743 - 115.830i) q^{89} +(282.691 + 489.634i) q^{91} +(-74.5695 + 129.158i) q^{92} -375.696 q^{94} +(-1632.22 - 526.763i) q^{95} +(-598.387 + 1036.44i) q^{97} +(266.217 - 461.101i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} - 12 q^{4} + q^{5} + 52 q^{7} + 48 q^{8} + 2 q^{10} - 8 q^{11} + 129 q^{13} - 52 q^{14} - 48 q^{16} + 51 q^{17} + 40 q^{19} - 8 q^{20} + 8 q^{22} - 47 q^{23} - 338 q^{25} - 516 q^{26} - 104 q^{28}+ \cdots + 1354 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/342\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −10.3546 + 17.9347i −0.926145 + 1.60413i −0.136436 + 0.990649i \(0.543565\pi\)
−0.789709 + 0.613481i \(0.789769\pi\)
\(6\) 0 0
\(7\) 8.76259 0.473135 0.236568 0.971615i \(-0.423978\pi\)
0.236568 + 0.971615i \(0.423978\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −20.7092 35.8694i −0.654883 1.13429i
\(11\) 62.1780 1.70431 0.852154 0.523291i \(-0.175296\pi\)
0.852154 + 0.523291i \(0.175296\pi\)
\(12\) 0 0
\(13\) 32.2611 + 55.8778i 0.688278 + 1.19213i 0.972395 + 0.233343i \(0.0749664\pi\)
−0.284117 + 0.958790i \(0.591700\pi\)
\(14\) −8.76259 + 15.1772i −0.167279 + 0.289735i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −23.2077 + 40.1970i −0.331100 + 0.573482i −0.982728 0.185057i \(-0.940753\pi\)
0.651628 + 0.758539i \(0.274086\pi\)
\(18\) 0 0
\(19\) 17.3798 + 80.9750i 0.209852 + 0.977733i
\(20\) 82.8369 0.926145
\(21\) 0 0
\(22\) −62.1780 + 107.696i −0.602564 + 1.04367i
\(23\) −18.6424 32.2895i −0.169009 0.292732i 0.769063 0.639173i \(-0.220723\pi\)
−0.938072 + 0.346441i \(0.887390\pi\)
\(24\) 0 0
\(25\) −151.936 263.161i −1.21549 2.10529i
\(26\) −129.044 −0.973372
\(27\) 0 0
\(28\) −17.5252 30.3545i −0.118284 0.204874i
\(29\) −33.2119 57.5247i −0.212665 0.368347i 0.739883 0.672736i \(-0.234881\pi\)
−0.952548 + 0.304389i \(0.901548\pi\)
\(30\) 0 0
\(31\) 112.370 0.651043 0.325521 0.945535i \(-0.394460\pi\)
0.325521 + 0.945535i \(0.394460\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −46.4155 80.3939i −0.234123 0.405513i
\(35\) −90.7332 + 157.155i −0.438192 + 0.758970i
\(36\) 0 0
\(37\) −189.018 −0.839848 −0.419924 0.907559i \(-0.637943\pi\)
−0.419924 + 0.907559i \(0.637943\pi\)
\(38\) −157.633 50.8723i −0.672931 0.217173i
\(39\) 0 0
\(40\) −82.8369 + 143.478i −0.327442 + 0.567146i
\(41\) −120.005 + 207.854i −0.457112 + 0.791742i −0.998807 0.0488336i \(-0.984450\pi\)
0.541695 + 0.840575i \(0.317783\pi\)
\(42\) 0 0
\(43\) −84.1370 + 145.730i −0.298390 + 0.516827i −0.975768 0.218809i \(-0.929783\pi\)
0.677378 + 0.735635i \(0.263116\pi\)
\(44\) −124.356 215.391i −0.426077 0.737987i
\(45\) 0 0
\(46\) 74.5695 0.239015
\(47\) 93.9241 + 162.681i 0.291494 + 0.504883i 0.974163 0.225845i \(-0.0725142\pi\)
−0.682669 + 0.730728i \(0.739181\pi\)
\(48\) 0 0
\(49\) −266.217 −0.776143
\(50\) 607.744 1.71896
\(51\) 0 0
\(52\) 129.044 223.511i 0.344139 0.596066i
\(53\) −56.5285 97.9102i −0.146505 0.253755i 0.783428 0.621482i \(-0.213469\pi\)
−0.929934 + 0.367728i \(0.880136\pi\)
\(54\) 0 0
\(55\) −643.830 + 1115.15i −1.57844 + 2.73393i
\(56\) 70.1007 0.167279
\(57\) 0 0
\(58\) 132.848 0.300754
\(59\) 92.9940 161.070i 0.205200 0.355417i −0.744997 0.667068i \(-0.767549\pi\)
0.950196 + 0.311652i \(0.100882\pi\)
\(60\) 0 0
\(61\) −154.322 267.293i −0.323916 0.561038i 0.657377 0.753562i \(-0.271666\pi\)
−0.981292 + 0.192524i \(0.938333\pi\)
\(62\) −112.370 + 194.631i −0.230178 + 0.398681i
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −1336.20 −2.54978
\(66\) 0 0
\(67\) −19.7279 34.1697i −0.0359723 0.0623058i 0.847479 0.530829i \(-0.178119\pi\)
−0.883451 + 0.468523i \(0.844786\pi\)
\(68\) 185.662 0.331100
\(69\) 0 0
\(70\) −181.466 314.309i −0.309848 0.536673i
\(71\) −175.101 + 303.284i −0.292686 + 0.506946i −0.974444 0.224631i \(-0.927882\pi\)
0.681758 + 0.731578i \(0.261216\pi\)
\(72\) 0 0
\(73\) 4.80280 8.31870i 0.00770035 0.0133374i −0.862150 0.506654i \(-0.830882\pi\)
0.869850 + 0.493316i \(0.164216\pi\)
\(74\) 189.018 327.389i 0.296931 0.514300i
\(75\) 0 0
\(76\) 245.746 222.155i 0.370908 0.335302i
\(77\) 544.840 0.806368
\(78\) 0 0
\(79\) 588.269 1018.91i 0.837791 1.45110i −0.0539471 0.998544i \(-0.517180\pi\)
0.891738 0.452552i \(-0.149486\pi\)
\(80\) −165.674 286.956i −0.231536 0.401033i
\(81\) 0 0
\(82\) −240.010 415.709i −0.323227 0.559846i
\(83\) 257.980 0.341168 0.170584 0.985343i \(-0.445435\pi\)
0.170584 + 0.985343i \(0.445435\pi\)
\(84\) 0 0
\(85\) −480.614 832.448i −0.613293 1.06226i
\(86\) −168.274 291.459i −0.210994 0.365452i
\(87\) 0 0
\(88\) 497.424 0.602564
\(89\) −66.8743 115.830i −0.0796479 0.137954i 0.823450 0.567389i \(-0.192046\pi\)
−0.903098 + 0.429434i \(0.858713\pi\)
\(90\) 0 0
\(91\) 282.691 + 489.634i 0.325649 + 0.564040i
\(92\) −74.5695 + 129.158i −0.0845044 + 0.146366i
\(93\) 0 0
\(94\) −375.696 −0.412235
\(95\) −1632.22 526.763i −1.76276 0.568892i
\(96\) 0 0
\(97\) −598.387 + 1036.44i −0.626361 + 1.08489i 0.361915 + 0.932211i \(0.382123\pi\)
−0.988276 + 0.152678i \(0.951210\pi\)
\(98\) 266.217 461.101i 0.274408 0.475289i
\(99\) 0 0
\(100\) −607.744 + 1052.64i −0.607744 + 1.05264i
\(101\) 434.472 + 752.527i 0.428035 + 0.741378i 0.996698 0.0811919i \(-0.0258727\pi\)
−0.568663 + 0.822570i \(0.692539\pi\)
\(102\) 0 0
\(103\) −1491.56 −1.42687 −0.713437 0.700720i \(-0.752862\pi\)
−0.713437 + 0.700720i \(0.752862\pi\)
\(104\) 258.089 + 447.023i 0.243343 + 0.421482i
\(105\) 0 0
\(106\) 226.114 0.207190
\(107\) 1610.18 1.45478 0.727392 0.686222i \(-0.240732\pi\)
0.727392 + 0.686222i \(0.240732\pi\)
\(108\) 0 0
\(109\) 25.5111 44.1865i 0.0224176 0.0388284i −0.854599 0.519289i \(-0.826197\pi\)
0.877017 + 0.480460i \(0.159530\pi\)
\(110\) −1287.66 2230.29i −1.11612 1.93318i
\(111\) 0 0
\(112\) −70.1007 + 121.418i −0.0591419 + 0.102437i
\(113\) −1789.55 −1.48979 −0.744895 0.667181i \(-0.767501\pi\)
−0.744895 + 0.667181i \(0.767501\pi\)
\(114\) 0 0
\(115\) 772.139 0.626107
\(116\) −132.848 + 230.099i −0.106333 + 0.184173i
\(117\) 0 0
\(118\) 185.988 + 322.141i 0.145098 + 0.251317i
\(119\) −203.360 + 352.229i −0.156655 + 0.271335i
\(120\) 0 0
\(121\) 2535.11 1.90466
\(122\) 617.286 0.458086
\(123\) 0 0
\(124\) −224.741 389.263i −0.162761 0.281910i
\(125\) 3704.31 2.65059
\(126\) 0 0
\(127\) −138.888 240.560i −0.0970416 0.168081i 0.813417 0.581681i \(-0.197605\pi\)
−0.910459 + 0.413600i \(0.864271\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 1336.20 2314.37i 0.901484 1.56142i
\(131\) −911.342 + 1578.49i −0.607819 + 1.05277i 0.383780 + 0.923424i \(0.374622\pi\)
−0.991599 + 0.129349i \(0.958711\pi\)
\(132\) 0 0
\(133\) 152.292 + 709.550i 0.0992886 + 0.462600i
\(134\) 78.9115 0.0508725
\(135\) 0 0
\(136\) −185.662 + 321.576i −0.117062 + 0.202757i
\(137\) 330.481 + 572.411i 0.206094 + 0.356966i 0.950481 0.310783i \(-0.100591\pi\)
−0.744386 + 0.667749i \(0.767258\pi\)
\(138\) 0 0
\(139\) 622.975 + 1079.02i 0.380144 + 0.658429i 0.991083 0.133249i \(-0.0425410\pi\)
−0.610938 + 0.791678i \(0.709208\pi\)
\(140\) 725.866 0.438192
\(141\) 0 0
\(142\) −350.202 606.568i −0.206960 0.358465i
\(143\) 2005.93 + 3474.37i 1.17304 + 2.03176i
\(144\) 0 0
\(145\) 1375.59 0.787835
\(146\) 9.60561 + 16.6374i 0.00544497 + 0.00943096i
\(147\) 0 0
\(148\) 378.036 + 654.777i 0.209962 + 0.363665i
\(149\) 1136.01 1967.62i 0.624599 1.08184i −0.364019 0.931392i \(-0.618596\pi\)
0.988618 0.150446i \(-0.0480710\pi\)
\(150\) 0 0
\(151\) 3637.77 1.96051 0.980256 0.197734i \(-0.0633581\pi\)
0.980256 + 0.197734i \(0.0633581\pi\)
\(152\) 139.038 + 647.800i 0.0741941 + 0.345681i
\(153\) 0 0
\(154\) −544.840 + 943.691i −0.285094 + 0.493798i
\(155\) −1163.55 + 2015.33i −0.602960 + 1.04436i
\(156\) 0 0
\(157\) 225.885 391.244i 0.114825 0.198883i −0.802885 0.596135i \(-0.796702\pi\)
0.917710 + 0.397251i \(0.130036\pi\)
\(158\) 1176.54 + 2037.82i 0.592408 + 1.02608i
\(159\) 0 0
\(160\) 662.695 0.327442
\(161\) −163.355 282.940i −0.0799641 0.138502i
\(162\) 0 0
\(163\) 215.631 0.103617 0.0518084 0.998657i \(-0.483502\pi\)
0.0518084 + 0.998657i \(0.483502\pi\)
\(164\) 960.039 0.457112
\(165\) 0 0
\(166\) −257.980 + 446.834i −0.120621 + 0.208922i
\(167\) −1660.74 2876.49i −0.769533 1.33287i −0.937816 0.347132i \(-0.887156\pi\)
0.168283 0.985739i \(-0.446178\pi\)
\(168\) 0 0
\(169\) −983.055 + 1702.70i −0.447453 + 0.775012i
\(170\) 1922.46 0.867328
\(171\) 0 0
\(172\) 673.096 0.298390
\(173\) 736.228 1275.19i 0.323552 0.560408i −0.657667 0.753309i \(-0.728456\pi\)
0.981218 + 0.192901i \(0.0617898\pi\)
\(174\) 0 0
\(175\) −1331.35 2305.97i −0.575091 0.996086i
\(176\) −497.424 + 861.564i −0.213038 + 0.368993i
\(177\) 0 0
\(178\) 267.497 0.112639
\(179\) −3573.98 −1.49236 −0.746179 0.665745i \(-0.768114\pi\)
−0.746179 + 0.665745i \(0.768114\pi\)
\(180\) 0 0
\(181\) 1471.86 + 2549.34i 0.604436 + 1.04691i 0.992140 + 0.125130i \(0.0399347\pi\)
−0.387705 + 0.921784i \(0.626732\pi\)
\(182\) −1130.76 −0.460537
\(183\) 0 0
\(184\) −149.139 258.316i −0.0597537 0.103496i
\(185\) 1957.21 3389.98i 0.777821 1.34722i
\(186\) 0 0
\(187\) −1443.01 + 2499.37i −0.564296 + 0.977390i
\(188\) 375.696 650.725i 0.145747 0.252442i
\(189\) 0 0
\(190\) 2544.60 2300.33i 0.971605 0.878335i
\(191\) 700.359 0.265321 0.132660 0.991162i \(-0.457648\pi\)
0.132660 + 0.991162i \(0.457648\pi\)
\(192\) 0 0
\(193\) 29.9508 51.8763i 0.0111705 0.0193478i −0.860386 0.509643i \(-0.829778\pi\)
0.871557 + 0.490295i \(0.163111\pi\)
\(194\) −1196.77 2072.87i −0.442904 0.767132i
\(195\) 0 0
\(196\) 532.434 + 922.203i 0.194036 + 0.336080i
\(197\) 374.382 0.135399 0.0676994 0.997706i \(-0.478434\pi\)
0.0676994 + 0.997706i \(0.478434\pi\)
\(198\) 0 0
\(199\) −2301.88 3986.98i −0.819981 1.42025i −0.905696 0.423929i \(-0.860651\pi\)
0.0857147 0.996320i \(-0.472683\pi\)
\(200\) −1215.49 2105.29i −0.429740 0.744332i
\(201\) 0 0
\(202\) −1737.89 −0.605333
\(203\) −291.022 504.065i −0.100619 0.174278i
\(204\) 0 0
\(205\) −2485.21 4304.51i −0.846705 1.46654i
\(206\) 1491.56 2583.46i 0.504476 0.873778i
\(207\) 0 0
\(208\) −1032.35 −0.344139
\(209\) 1080.64 + 5034.86i 0.357653 + 1.66636i
\(210\) 0 0
\(211\) 1478.36 2560.60i 0.482344 0.835444i −0.517451 0.855713i \(-0.673119\pi\)
0.999795 + 0.0202687i \(0.00645218\pi\)
\(212\) −226.114 + 391.641i −0.0732527 + 0.126877i
\(213\) 0 0
\(214\) −1610.18 + 2788.91i −0.514344 + 0.890870i
\(215\) −1742.41 3017.95i −0.552705 0.957313i
\(216\) 0 0
\(217\) 984.655 0.308031
\(218\) 51.0222 + 88.3730i 0.0158516 + 0.0274558i
\(219\) 0 0
\(220\) 5150.64 1.57844
\(221\) −2994.83 −0.911555
\(222\) 0 0
\(223\) −265.320 + 459.548i −0.0796733 + 0.137998i −0.903109 0.429411i \(-0.858721\pi\)
0.823436 + 0.567410i \(0.192054\pi\)
\(224\) −140.201 242.836i −0.0418196 0.0724337i
\(225\) 0 0
\(226\) 1789.55 3099.58i 0.526720 0.912307i
\(227\) 3479.72 1.01743 0.508716 0.860934i \(-0.330120\pi\)
0.508716 + 0.860934i \(0.330120\pi\)
\(228\) 0 0
\(229\) 3566.48 1.02917 0.514584 0.857440i \(-0.327946\pi\)
0.514584 + 0.857440i \(0.327946\pi\)
\(230\) −772.139 + 1337.38i −0.221362 + 0.383411i
\(231\) 0 0
\(232\) −265.695 460.197i −0.0751885 0.130230i
\(233\) −2995.60 + 5188.53i −0.842267 + 1.45885i 0.0457068 + 0.998955i \(0.485446\pi\)
−0.887974 + 0.459894i \(0.847887\pi\)
\(234\) 0 0
\(235\) −3890.19 −1.07986
\(236\) −743.952 −0.205200
\(237\) 0 0
\(238\) −406.719 704.459i −0.110772 0.191863i
\(239\) 606.478 0.164141 0.0820707 0.996627i \(-0.473847\pi\)
0.0820707 + 0.996627i \(0.473847\pi\)
\(240\) 0 0
\(241\) 1722.58 + 2983.60i 0.460421 + 0.797472i 0.998982 0.0451143i \(-0.0143652\pi\)
−0.538561 + 0.842586i \(0.681032\pi\)
\(242\) −2535.11 + 4390.94i −0.673401 + 1.16636i
\(243\) 0 0
\(244\) −617.286 + 1069.17i −0.161958 + 0.280519i
\(245\) 2756.58 4774.53i 0.718821 1.24503i
\(246\) 0 0
\(247\) −3964.01 + 3583.48i −1.02115 + 0.923124i
\(248\) 898.963 0.230178
\(249\) 0 0
\(250\) −3704.31 + 6416.05i −0.937124 + 1.62315i
\(251\) 902.687 + 1563.50i 0.227000 + 0.393176i 0.956918 0.290359i \(-0.0937748\pi\)
−0.729917 + 0.683535i \(0.760441\pi\)
\(252\) 0 0
\(253\) −1159.15 2007.70i −0.288043 0.498905i
\(254\) 555.551 0.137238
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 1118.48 + 1937.27i 0.271475 + 0.470208i 0.969240 0.246119i \(-0.0791553\pi\)
−0.697765 + 0.716327i \(0.745822\pi\)
\(258\) 0 0
\(259\) −1656.29 −0.397362
\(260\) 2672.41 + 4628.75i 0.637445 + 1.10409i
\(261\) 0 0
\(262\) −1822.68 3156.98i −0.429793 0.744423i
\(263\) 416.129 720.757i 0.0975651 0.168988i −0.813111 0.582108i \(-0.802228\pi\)
0.910676 + 0.413121i \(0.135561\pi\)
\(264\) 0 0
\(265\) 2341.32 0.542741
\(266\) −1381.27 445.773i −0.318387 0.102752i
\(267\) 0 0
\(268\) −78.9115 + 136.679i −0.0179861 + 0.0311529i
\(269\) −1741.94 + 3017.13i −0.394826 + 0.683858i −0.993079 0.117449i \(-0.962528\pi\)
0.598253 + 0.801307i \(0.295862\pi\)
\(270\) 0 0
\(271\) −894.554 + 1549.41i −0.200518 + 0.347307i −0.948695 0.316192i \(-0.897596\pi\)
0.748178 + 0.663498i \(0.230929\pi\)
\(272\) −371.324 643.151i −0.0827750 0.143371i
\(273\) 0 0
\(274\) −1321.93 −0.291462
\(275\) −9447.09 16362.8i −2.07157 3.58806i
\(276\) 0 0
\(277\) −5548.66 −1.20356 −0.601781 0.798661i \(-0.705542\pi\)
−0.601781 + 0.798661i \(0.705542\pi\)
\(278\) −2491.90 −0.537605
\(279\) 0 0
\(280\) −725.866 + 1257.24i −0.154924 + 0.268337i
\(281\) −22.8948 39.6549i −0.00486046 0.00841856i 0.863585 0.504203i \(-0.168214\pi\)
−0.868445 + 0.495785i \(0.834880\pi\)
\(282\) 0 0
\(283\) 3060.37 5300.72i 0.642827 1.11341i −0.341971 0.939710i \(-0.611095\pi\)
0.984799 0.173699i \(-0.0555721\pi\)
\(284\) 1400.81 0.292686
\(285\) 0 0
\(286\) −8023.72 −1.65893
\(287\) −1051.55 + 1821.34i −0.216276 + 0.374601i
\(288\) 0 0
\(289\) 1379.30 + 2389.02i 0.280746 + 0.486266i
\(290\) −1375.59 + 2382.58i −0.278542 + 0.482449i
\(291\) 0 0
\(292\) −38.4224 −0.00770035
\(293\) 7395.39 1.47455 0.737276 0.675592i \(-0.236112\pi\)
0.737276 + 0.675592i \(0.236112\pi\)
\(294\) 0 0
\(295\) 1925.83 + 3335.64i 0.380090 + 0.658334i
\(296\) −1512.14 −0.296931
\(297\) 0 0
\(298\) 2272.01 + 3935.24i 0.441658 + 0.764975i
\(299\) 1202.85 2083.39i 0.232650 0.402962i
\(300\) 0 0
\(301\) −737.258 + 1276.97i −0.141179 + 0.244529i
\(302\) −3637.77 + 6300.80i −0.693146 + 1.20056i
\(303\) 0 0
\(304\) −1261.06 406.978i −0.237917 0.0767822i
\(305\) 6391.76 1.19997
\(306\) 0 0
\(307\) 287.534 498.024i 0.0534542 0.0925854i −0.838060 0.545578i \(-0.816310\pi\)
0.891514 + 0.452992i \(0.149644\pi\)
\(308\) −1089.68 1887.38i −0.201592 0.349168i
\(309\) 0 0
\(310\) −2327.10 4030.66i −0.426357 0.738472i
\(311\) 36.6434 0.00668120 0.00334060 0.999994i \(-0.498937\pi\)
0.00334060 + 0.999994i \(0.498937\pi\)
\(312\) 0 0
\(313\) 2441.86 + 4229.43i 0.440966 + 0.763775i 0.997761 0.0668742i \(-0.0213026\pi\)
−0.556795 + 0.830650i \(0.687969\pi\)
\(314\) 451.770 + 782.489i 0.0811938 + 0.140632i
\(315\) 0 0
\(316\) −4706.15 −0.837791
\(317\) −2933.65 5081.23i −0.519779 0.900284i −0.999736 0.0229917i \(-0.992681\pi\)
0.479956 0.877292i \(-0.340652\pi\)
\(318\) 0 0
\(319\) −2065.05 3576.77i −0.362447 0.627777i
\(320\) −662.695 + 1147.82i −0.115768 + 0.200516i
\(321\) 0 0
\(322\) 653.422 0.113086
\(323\) −3658.29 1180.63i −0.630195 0.203381i
\(324\) 0 0
\(325\) 9803.25 16979.7i 1.67319 2.89805i
\(326\) −215.631 + 373.484i −0.0366340 + 0.0634520i
\(327\) 0 0
\(328\) −960.039 + 1662.84i −0.161614 + 0.279923i
\(329\) 823.018 + 1425.51i 0.137916 + 0.238878i
\(330\) 0 0
\(331\) −8866.06 −1.47227 −0.736137 0.676833i \(-0.763352\pi\)
−0.736137 + 0.676833i \(0.763352\pi\)
\(332\) −515.960 893.668i −0.0852921 0.147730i
\(333\) 0 0
\(334\) 6642.96 1.08828
\(335\) 817.098 0.133262
\(336\) 0 0
\(337\) −1513.60 + 2621.63i −0.244662 + 0.423767i −0.962037 0.272921i \(-0.912010\pi\)
0.717375 + 0.696688i \(0.245344\pi\)
\(338\) −1966.11 3405.40i −0.316397 0.548016i
\(339\) 0 0
\(340\) −1922.46 + 3329.79i −0.306647 + 0.531128i
\(341\) 6986.97 1.10958
\(342\) 0 0
\(343\) −5338.32 −0.840356
\(344\) −673.096 + 1165.84i −0.105497 + 0.182726i
\(345\) 0 0
\(346\) 1472.46 + 2550.37i 0.228785 + 0.396268i
\(347\) −4437.88 + 7686.63i −0.686564 + 1.18916i 0.286378 + 0.958117i \(0.407549\pi\)
−0.972942 + 0.231048i \(0.925785\pi\)
\(348\) 0 0
\(349\) 2808.70 0.430791 0.215395 0.976527i \(-0.430896\pi\)
0.215395 + 0.976527i \(0.430896\pi\)
\(350\) 5325.41 0.813301
\(351\) 0 0
\(352\) −994.849 1723.13i −0.150641 0.260918i
\(353\) −11702.4 −1.76446 −0.882230 0.470819i \(-0.843959\pi\)
−0.882230 + 0.470819i \(0.843959\pi\)
\(354\) 0 0
\(355\) −3626.21 6280.78i −0.542139 0.939012i
\(356\) −267.497 + 463.319i −0.0398239 + 0.0689771i
\(357\) 0 0
\(358\) 3573.98 6190.32i 0.527628 0.913879i
\(359\) −843.014 + 1460.14i −0.123935 + 0.214661i −0.921316 0.388815i \(-0.872885\pi\)
0.797381 + 0.603476i \(0.206218\pi\)
\(360\) 0 0
\(361\) −6254.89 + 2814.66i −0.911924 + 0.410359i
\(362\) −5887.46 −0.854801
\(363\) 0 0
\(364\) 1130.76 1958.54i 0.162824 0.282020i
\(365\) 99.4624 + 172.274i 0.0142633 + 0.0247047i
\(366\) 0 0
\(367\) 4218.01 + 7305.81i 0.599941 + 1.03913i 0.992829 + 0.119542i \(0.0381428\pi\)
−0.392888 + 0.919586i \(0.628524\pi\)
\(368\) 596.556 0.0845044
\(369\) 0 0
\(370\) 3914.42 + 6779.97i 0.550002 + 0.952632i
\(371\) −495.336 857.947i −0.0693169 0.120060i
\(372\) 0 0
\(373\) −1743.67 −0.242048 −0.121024 0.992650i \(-0.538618\pi\)
−0.121024 + 0.992650i \(0.538618\pi\)
\(374\) −2886.02 4998.74i −0.399018 0.691119i
\(375\) 0 0
\(376\) 751.393 + 1301.45i 0.103059 + 0.178503i
\(377\) 2142.90 3711.62i 0.292746 0.507050i
\(378\) 0 0
\(379\) −1591.45 −0.215693 −0.107846 0.994168i \(-0.534395\pi\)
−0.107846 + 0.994168i \(0.534395\pi\)
\(380\) 1439.69 + 6707.72i 0.194354 + 0.905523i
\(381\) 0 0
\(382\) −700.359 + 1213.06i −0.0938050 + 0.162475i
\(383\) 4502.45 7798.48i 0.600691 1.04043i −0.392026 0.919954i \(-0.628226\pi\)
0.992717 0.120473i \(-0.0384410\pi\)
\(384\) 0 0
\(385\) −5641.61 + 9771.56i −0.746814 + 1.29352i
\(386\) 59.9015 + 103.753i 0.00789873 + 0.0136810i
\(387\) 0 0
\(388\) 4787.10 0.626361
\(389\) 2034.97 + 3524.66i 0.265236 + 0.459402i 0.967625 0.252391i \(-0.0812168\pi\)
−0.702389 + 0.711793i \(0.747883\pi\)
\(390\) 0 0
\(391\) 1730.59 0.223835
\(392\) −2129.74 −0.274408
\(393\) 0 0
\(394\) −374.382 + 648.448i −0.0478707 + 0.0829145i
\(395\) 12182.6 + 21100.9i 1.55183 + 2.68785i
\(396\) 0 0
\(397\) −164.785 + 285.416i −0.0208321 + 0.0360822i −0.876253 0.481850i \(-0.839965\pi\)
0.855421 + 0.517933i \(0.173298\pi\)
\(398\) 9207.53 1.15963
\(399\) 0 0
\(400\) 4861.96 0.607744
\(401\) 4093.53 7090.20i 0.509778 0.882962i −0.490158 0.871634i \(-0.663061\pi\)
0.999936 0.0113281i \(-0.00360591\pi\)
\(402\) 0 0
\(403\) 3625.19 + 6279.02i 0.448098 + 0.776129i
\(404\) 1737.89 3010.11i 0.214017 0.370689i
\(405\) 0 0
\(406\) 1164.09 0.142297
\(407\) −11752.8 −1.43136
\(408\) 0 0
\(409\) −2499.25 4328.83i −0.302152 0.523342i 0.674472 0.738301i \(-0.264372\pi\)
−0.976623 + 0.214959i \(0.931038\pi\)
\(410\) 9940.83 1.19742
\(411\) 0 0
\(412\) 2983.12 + 5166.92i 0.356718 + 0.617854i
\(413\) 814.868 1411.39i 0.0970873 0.168160i
\(414\) 0 0
\(415\) −2671.28 + 4626.80i −0.315971 + 0.547278i
\(416\) 1032.35 1788.09i 0.121672 0.210741i
\(417\) 0 0
\(418\) −9801.28 3163.14i −1.14688 0.370130i
\(419\) −11941.1 −1.39227 −0.696134 0.717912i \(-0.745098\pi\)
−0.696134 + 0.717912i \(0.745098\pi\)
\(420\) 0 0
\(421\) 5991.40 10377.4i 0.693594 1.20134i −0.277059 0.960853i \(-0.589360\pi\)
0.970653 0.240486i \(-0.0773069\pi\)
\(422\) 2956.72 + 5121.19i 0.341069 + 0.590748i
\(423\) 0 0
\(424\) −452.228 783.282i −0.0517975 0.0897159i
\(425\) 14104.4 1.60979
\(426\) 0 0
\(427\) −1352.26 2342.18i −0.153256 0.265447i
\(428\) −3220.36 5577.83i −0.363696 0.629940i
\(429\) 0 0
\(430\) 6969.65 0.781643
\(431\) 3541.49 + 6134.04i 0.395795 + 0.685537i 0.993202 0.116401i \(-0.0371358\pi\)
−0.597407 + 0.801938i \(0.703802\pi\)
\(432\) 0 0
\(433\) 3701.50 + 6411.19i 0.410815 + 0.711552i 0.994979 0.100084i \(-0.0319110\pi\)
−0.584164 + 0.811635i \(0.698578\pi\)
\(434\) −984.655 + 1705.47i −0.108905 + 0.188630i
\(435\) 0 0
\(436\) −204.089 −0.0224176
\(437\) 2290.64 2070.75i 0.250747 0.226676i
\(438\) 0 0
\(439\) 3837.72 6647.12i 0.417231 0.722665i −0.578429 0.815733i \(-0.696334\pi\)
0.995660 + 0.0930680i \(0.0296674\pi\)
\(440\) −5150.64 + 8921.17i −0.558061 + 0.966591i
\(441\) 0 0
\(442\) 2994.83 5187.19i 0.322284 0.558211i
\(443\) −1341.94 2324.32i −0.143923 0.249281i 0.785048 0.619435i \(-0.212638\pi\)
−0.928970 + 0.370154i \(0.879305\pi\)
\(444\) 0 0
\(445\) 2769.83 0.295062
\(446\) −530.640 919.095i −0.0563375 0.0975794i
\(447\) 0 0
\(448\) 560.806 0.0591419
\(449\) 14097.6 1.48175 0.740874 0.671644i \(-0.234411\pi\)
0.740874 + 0.671644i \(0.234411\pi\)
\(450\) 0 0
\(451\) −7461.67 + 12924.0i −0.779060 + 1.34937i
\(452\) 3579.09 + 6199.17i 0.372448 + 0.645098i
\(453\) 0 0
\(454\) −3479.72 + 6027.05i −0.359717 + 0.623048i
\(455\) −11708.6 −1.20639
\(456\) 0 0
\(457\) 7040.20 0.720627 0.360314 0.932831i \(-0.382670\pi\)
0.360314 + 0.932831i \(0.382670\pi\)
\(458\) −3566.48 + 6177.32i −0.363866 + 0.630234i
\(459\) 0 0
\(460\) −1544.28 2674.77i −0.156527 0.271112i
\(461\) 3676.54 6367.96i 0.371440 0.643352i −0.618348 0.785905i \(-0.712198\pi\)
0.989787 + 0.142552i \(0.0455310\pi\)
\(462\) 0 0
\(463\) 14054.7 1.41075 0.705377 0.708832i \(-0.250778\pi\)
0.705377 + 0.708832i \(0.250778\pi\)
\(464\) 1062.78 0.106333
\(465\) 0 0
\(466\) −5991.20 10377.1i −0.595573 1.03156i
\(467\) −5875.16 −0.582163 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(468\) 0 0
\(469\) −172.867 299.415i −0.0170198 0.0294791i
\(470\) 3890.19 6738.01i 0.381790 0.661279i
\(471\) 0 0
\(472\) 743.952 1288.56i 0.0725491 0.125659i
\(473\) −5231.48 + 9061.18i −0.508549 + 0.880832i
\(474\) 0 0
\(475\) 18668.8 16876.7i 1.80334 1.63022i
\(476\) 1626.88 0.156655
\(477\) 0 0
\(478\) −606.478 + 1050.45i −0.0580328 + 0.100516i
\(479\) −88.8904 153.963i −0.00847914 0.0146863i 0.861755 0.507325i \(-0.169366\pi\)
−0.870234 + 0.492639i \(0.836032\pi\)
\(480\) 0 0
\(481\) −6097.92 10561.9i −0.578049 1.00121i
\(482\) −6890.34 −0.651133
\(483\) 0 0
\(484\) −5070.22 8781.87i −0.476166 0.824744i
\(485\) −12392.1 21463.8i −1.16020 2.00953i
\(486\) 0 0
\(487\) 12319.9 1.14634 0.573172 0.819435i \(-0.305713\pi\)
0.573172 + 0.819435i \(0.305713\pi\)
\(488\) −1234.57 2138.34i −0.114521 0.198357i
\(489\) 0 0
\(490\) 5513.15 + 9549.06i 0.508283 + 0.880372i
\(491\) −4220.92 + 7310.84i −0.387958 + 0.671963i −0.992175 0.124857i \(-0.960153\pi\)
0.604217 + 0.796820i \(0.293486\pi\)
\(492\) 0 0
\(493\) 3083.09 0.281654
\(494\) −2242.76 10449.4i −0.204265 0.951698i
\(495\) 0 0
\(496\) −898.963 + 1557.05i −0.0813803 + 0.140955i
\(497\) −1534.34 + 2657.55i −0.138480 + 0.239854i
\(498\) 0 0
\(499\) 3105.62 5379.09i 0.278610 0.482567i −0.692429 0.721486i \(-0.743460\pi\)
0.971040 + 0.238918i \(0.0767929\pi\)
\(500\) −7408.61 12832.1i −0.662646 1.14774i
\(501\) 0 0
\(502\) −3610.75 −0.321027
\(503\) 7836.70 + 13573.6i 0.694675 + 1.20321i 0.970290 + 0.241944i \(0.0777850\pi\)
−0.275616 + 0.961268i \(0.588882\pi\)
\(504\) 0 0
\(505\) −17995.1 −1.58569
\(506\) 4636.59 0.407354
\(507\) 0 0
\(508\) −555.551 + 962.242i −0.0485208 + 0.0840405i
\(509\) −9897.72 17143.3i −0.861903 1.49286i −0.870090 0.492893i \(-0.835939\pi\)
0.00818701 0.999966i \(-0.497394\pi\)
\(510\) 0 0
\(511\) 42.0850 72.8933i 0.00364331 0.00631039i
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) −4473.93 −0.383923
\(515\) 15444.5 26750.7i 1.32149 2.28889i
\(516\) 0 0
\(517\) 5840.02 + 10115.2i 0.496796 + 0.860476i
\(518\) 1656.29 2868.77i 0.140489 0.243333i
\(519\) 0 0
\(520\) −10689.6 −0.901484
\(521\) 21391.1 1.79877 0.899385 0.437157i \(-0.144014\pi\)
0.899385 + 0.437157i \(0.144014\pi\)
\(522\) 0 0
\(523\) −1601.07 2773.13i −0.133862 0.231855i 0.791300 0.611428i \(-0.209404\pi\)
−0.925162 + 0.379572i \(0.876071\pi\)
\(524\) 7290.73 0.607819
\(525\) 0 0
\(526\) 832.258 + 1441.51i 0.0689890 + 0.119492i
\(527\) −2607.86 + 4516.95i −0.215560 + 0.373361i
\(528\) 0 0
\(529\) 5388.42 9333.02i 0.442872 0.767077i
\(530\) −2341.32 + 4055.29i −0.191888 + 0.332360i
\(531\) 0 0
\(532\) 2153.37 1946.65i 0.175490 0.158643i
\(533\) −15485.9 −1.25848
\(534\) 0 0
\(535\) −16672.8 + 28878.1i −1.34734 + 2.33366i
\(536\) −157.823 273.357i −0.0127181 0.0220284i
\(537\) 0 0
\(538\) −3483.89 6034.27i −0.279184 0.483561i
\(539\) −16552.9 −1.32279
\(540\) 0 0
\(541\) 3681.50 + 6376.55i 0.292569 + 0.506745i 0.974417 0.224750i \(-0.0721564\pi\)
−0.681847 + 0.731495i \(0.738823\pi\)
\(542\) −1789.11 3098.82i −0.141787 0.245583i
\(543\) 0 0
\(544\) 1485.29 0.117062
\(545\) 528.315 + 915.068i 0.0415239 + 0.0719215i
\(546\) 0 0
\(547\) 6484.65 + 11231.7i 0.506880 + 0.877942i 0.999968 + 0.00796294i \(0.00253471\pi\)
−0.493088 + 0.869979i \(0.664132\pi\)
\(548\) 1321.93 2289.64i 0.103047 0.178483i
\(549\) 0 0
\(550\) 37788.4 2.92964
\(551\) 4080.84 3689.10i 0.315517 0.285228i
\(552\) 0 0
\(553\) 5154.76 8928.31i 0.396388 0.686565i
\(554\) 5548.66 9610.56i 0.425523 0.737028i
\(555\) 0 0
\(556\) 2491.90 4316.10i 0.190072 0.329215i
\(557\) 9997.27 + 17315.8i 0.760499 + 1.31722i 0.942594 + 0.333942i \(0.108379\pi\)
−0.182095 + 0.983281i \(0.558288\pi\)
\(558\) 0 0
\(559\) −10857.4 −0.821502
\(560\) −1451.73 2514.47i −0.109548 0.189743i
\(561\) 0 0
\(562\) 91.5792 0.00687372
\(563\) 15654.6 1.17187 0.585936 0.810358i \(-0.300727\pi\)
0.585936 + 0.810358i \(0.300727\pi\)
\(564\) 0 0
\(565\) 18530.1 32095.0i 1.37976 2.38982i
\(566\) 6120.74 + 10601.4i 0.454548 + 0.787300i
\(567\) 0 0
\(568\) −1400.81 + 2426.27i −0.103480 + 0.179233i
\(569\) 6450.45 0.475249 0.237625 0.971357i \(-0.423631\pi\)
0.237625 + 0.971357i \(0.423631\pi\)
\(570\) 0 0
\(571\) 18704.6 1.37086 0.685431 0.728138i \(-0.259614\pi\)
0.685431 + 0.728138i \(0.259614\pi\)
\(572\) 8023.72 13897.5i 0.586519 1.01588i
\(573\) 0 0
\(574\) −2103.11 3642.69i −0.152930 0.264883i
\(575\) −5664.90 + 9811.90i −0.410857 + 0.711625i
\(576\) 0 0
\(577\) −12394.4 −0.894257 −0.447128 0.894470i \(-0.647553\pi\)
−0.447128 + 0.894470i \(0.647553\pi\)
\(578\) −5517.21 −0.397034
\(579\) 0 0
\(580\) −2751.17 4765.17i −0.196959 0.341143i
\(581\) 2260.57 0.161419
\(582\) 0 0
\(583\) −3514.83 6087.87i −0.249690 0.432476i
\(584\) 38.4224 66.5496i 0.00272248 0.00471548i
\(585\) 0 0
\(586\) −7395.39 + 12809.2i −0.521333 + 0.902974i
\(587\) −3212.31 + 5563.88i −0.225871 + 0.391220i −0.956580 0.291469i \(-0.905856\pi\)
0.730710 + 0.682688i \(0.239189\pi\)
\(588\) 0 0
\(589\) 1952.97 + 9099.19i 0.136623 + 0.636546i
\(590\) −7703.34 −0.537528
\(591\) 0 0
\(592\) 1512.14 2619.11i 0.104981 0.181832i
\(593\) 9050.05 + 15675.2i 0.626714 + 1.08550i 0.988207 + 0.153125i \(0.0489337\pi\)
−0.361493 + 0.932375i \(0.617733\pi\)
\(594\) 0 0
\(595\) −4211.42 7294.40i −0.290171 0.502590i
\(596\) −9088.05 −0.624599
\(597\) 0 0
\(598\) 2405.69 + 4166.78i 0.164509 + 0.284937i
\(599\) −1423.60 2465.74i −0.0971061 0.168193i 0.813380 0.581733i \(-0.197625\pi\)
−0.910486 + 0.413541i \(0.864292\pi\)
\(600\) 0 0
\(601\) 6934.19 0.470635 0.235317 0.971919i \(-0.424387\pi\)
0.235317 + 0.971919i \(0.424387\pi\)
\(602\) −1474.52 2553.94i −0.0998286 0.172908i
\(603\) 0 0
\(604\) −7275.53 12601.6i −0.490128 0.848926i
\(605\) −26250.1 + 45466.5i −1.76400 + 3.05533i
\(606\) 0 0
\(607\) 9089.78 0.607813 0.303907 0.952702i \(-0.401709\pi\)
0.303907 + 0.952702i \(0.401709\pi\)
\(608\) 1965.97 1777.24i 0.131136 0.118547i
\(609\) 0 0
\(610\) −6391.76 + 11070.9i −0.424254 + 0.734829i
\(611\) −6060.19 + 10496.6i −0.401259 + 0.695000i
\(612\) 0 0
\(613\) −12818.6 + 22202.5i −0.844598 + 1.46289i 0.0413712 + 0.999144i \(0.486827\pi\)
−0.885970 + 0.463743i \(0.846506\pi\)
\(614\) 575.069 + 996.048i 0.0377979 + 0.0654678i
\(615\) 0 0
\(616\) 4358.72 0.285094
\(617\) 10891.1 + 18863.9i 0.710630 + 1.23085i 0.964621 + 0.263641i \(0.0849234\pi\)
−0.253991 + 0.967207i \(0.581743\pi\)
\(618\) 0 0
\(619\) −23717.7 −1.54006 −0.770029 0.638008i \(-0.779758\pi\)
−0.770029 + 0.638008i \(0.779758\pi\)
\(620\) 9308.42 0.602960
\(621\) 0 0
\(622\) −36.6434 + 63.4682i −0.00236216 + 0.00409138i
\(623\) −585.992 1014.97i −0.0376842 0.0652710i
\(624\) 0 0
\(625\) −19364.7 + 33540.6i −1.23934 + 2.14660i
\(626\) −9767.46 −0.623620
\(627\) 0 0
\(628\) −1807.08 −0.114825
\(629\) 4386.68 7597.95i 0.278074 0.481638i
\(630\) 0 0
\(631\) 13101.6 + 22692.6i 0.826571 + 1.43166i 0.900712 + 0.434416i \(0.143045\pi\)
−0.0741409 + 0.997248i \(0.523621\pi\)
\(632\) 4706.15 8151.30i 0.296204 0.513040i
\(633\) 0 0
\(634\) 11734.6 0.735079
\(635\) 5752.51 0.359498
\(636\) 0 0
\(637\) −8588.45 14875.6i −0.534202 0.925265i
\(638\) 8260.20 0.512577
\(639\) 0 0
\(640\) −1325.39 2295.64i −0.0818604 0.141786i
\(641\) 2092.66 3624.59i 0.128947 0.223343i −0.794322 0.607497i \(-0.792174\pi\)
0.923269 + 0.384154i \(0.125507\pi\)
\(642\) 0 0
\(643\) −16099.1 + 27884.5i −0.987383 + 1.71020i −0.356556 + 0.934274i \(0.616049\pi\)
−0.630827 + 0.775924i \(0.717284\pi\)
\(644\) −653.422 + 1131.76i −0.0399820 + 0.0692509i
\(645\) 0 0
\(646\) 5703.20 5155.72i 0.347352 0.314008i
\(647\) −371.159 −0.0225530 −0.0112765 0.999936i \(-0.503589\pi\)
−0.0112765 + 0.999936i \(0.503589\pi\)
\(648\) 0 0
\(649\) 5782.19 10015.0i 0.349724 0.605739i
\(650\) 19606.5 + 33959.4i 1.18312 + 2.04923i
\(651\) 0 0
\(652\) −431.262 746.968i −0.0259042 0.0448674i
\(653\) −1659.89 −0.0994741 −0.0497370 0.998762i \(-0.515838\pi\)
−0.0497370 + 0.998762i \(0.515838\pi\)
\(654\) 0 0
\(655\) −18873.2 32689.3i −1.12586 1.95004i
\(656\) −1920.08 3325.67i −0.114278 0.197935i
\(657\) 0 0
\(658\) −3292.07 −0.195043
\(659\) −12365.0 21416.8i −0.730914 1.26598i −0.956493 0.291756i \(-0.905760\pi\)
0.225578 0.974225i \(-0.427573\pi\)
\(660\) 0 0
\(661\) 4199.93 + 7274.48i 0.247138 + 0.428055i 0.962731 0.270462i \(-0.0871766\pi\)
−0.715593 + 0.698518i \(0.753843\pi\)
\(662\) 8866.06 15356.5i 0.520527 0.901580i
\(663\) 0 0
\(664\) 2063.84 0.120621
\(665\) −14302.5 4615.81i −0.834026 0.269163i
\(666\) 0 0
\(667\) −1238.30 + 2144.79i −0.0718846 + 0.124508i
\(668\) −6642.96 + 11506.0i −0.384766 + 0.666435i
\(669\) 0 0
\(670\) −817.098 + 1415.26i −0.0471153 + 0.0816061i
\(671\) −9595.41 16619.7i −0.552052 0.956182i
\(672\) 0 0
\(673\) 27850.0 1.59516 0.797578 0.603216i \(-0.206114\pi\)
0.797578 + 0.603216i \(0.206114\pi\)
\(674\) −3027.20 5243.27i −0.173002 0.299649i
\(675\) 0 0
\(676\) 7864.44 0.447453
\(677\) −20343.1 −1.15487 −0.577437 0.816435i \(-0.695947\pi\)
−0.577437 + 0.816435i \(0.695947\pi\)
\(678\) 0 0
\(679\) −5243.42 + 9081.86i −0.296353 + 0.513299i
\(680\) −3844.91 6659.59i −0.216832 0.375564i
\(681\) 0 0
\(682\) −6986.97 + 12101.8i −0.392295 + 0.679474i
\(683\) 26794.4 1.50111 0.750556 0.660807i \(-0.229786\pi\)
0.750556 + 0.660807i \(0.229786\pi\)
\(684\) 0 0
\(685\) −13688.0 −0.763493
\(686\) 5338.32 9246.24i 0.297111 0.514611i
\(687\) 0 0
\(688\) −1346.19 2331.67i −0.0745975 0.129207i
\(689\) 3647.34 6317.38i 0.201673 0.349308i
\(690\) 0 0
\(691\) 29092.3 1.60162 0.800812 0.598916i \(-0.204402\pi\)
0.800812 + 0.598916i \(0.204402\pi\)
\(692\) −5889.83 −0.323552
\(693\) 0 0
\(694\) −8875.76 15373.3i −0.485474 0.840866i
\(695\) −25802.7 −1.40827
\(696\) 0 0
\(697\) −5570.08 9647.66i −0.302700 0.524291i
\(698\) −2808.70 + 4864.80i −0.152308 + 0.263804i
\(699\) 0 0
\(700\) −5325.41 + 9223.89i −0.287545 + 0.498043i
\(701\) 10761.5 18639.5i 0.579824 1.00428i −0.415675 0.909513i \(-0.636455\pi\)
0.995499 0.0947713i \(-0.0302120\pi\)
\(702\) 0 0
\(703\) −3285.09 15305.7i −0.176244 0.821147i
\(704\) 3979.39 0.213038
\(705\) 0 0
\(706\) 11702.4 20269.1i 0.623831 1.08051i
\(707\) 3807.09 + 6594.08i 0.202518 + 0.350772i
\(708\) 0 0
\(709\) −7482.91 12960.8i −0.396370 0.686533i 0.596905 0.802312i \(-0.296397\pi\)
−0.993275 + 0.115779i \(0.963064\pi\)
\(710\) 14504.8 0.766700
\(711\) 0 0
\(712\) −534.994 926.637i −0.0281598 0.0487742i
\(713\) −2094.85 3628.39i −0.110032 0.190581i
\(714\) 0 0
\(715\) −83082.6 −4.34561
\(716\) 7147.97 + 12380.6i 0.373090 + 0.646210i
\(717\) 0 0
\(718\) −1686.03 2920.29i −0.0876351 0.151788i
\(719\) 3678.90 6372.03i 0.190820 0.330510i −0.754702 0.656068i \(-0.772219\pi\)
0.945522 + 0.325557i \(0.105552\pi\)
\(720\) 0 0
\(721\) −13069.9 −0.675104
\(722\) 1379.76 13648.4i 0.0711210 0.703521i
\(723\) 0 0
\(724\) 5887.46 10197.4i 0.302218 0.523457i
\(725\) −10092.2 + 17480.1i −0.516984 + 0.895443i
\(726\) 0 0
\(727\) −14574.2 + 25243.2i −0.743503 + 1.28779i 0.207387 + 0.978259i \(0.433504\pi\)
−0.950891 + 0.309527i \(0.899829\pi\)
\(728\) 2261.52 + 3917.08i 0.115134 + 0.199418i
\(729\) 0 0
\(730\) −397.849 −0.0201713
\(731\) −3905.26 6764.11i −0.197594 0.342243i
\(732\) 0 0
\(733\) 21514.5 1.08412 0.542059 0.840341i \(-0.317645\pi\)
0.542059 + 0.840341i \(0.317645\pi\)
\(734\) −16872.1 −0.848445
\(735\) 0 0
\(736\) −596.556 + 1033.27i −0.0298768 + 0.0517482i
\(737\) −1226.64 2124.60i −0.0613079 0.106188i
\(738\) 0 0
\(739\) 11558.0 20019.0i 0.575326 0.996495i −0.420680 0.907209i \(-0.638208\pi\)
0.996006 0.0892854i \(-0.0284583\pi\)
\(740\) −15657.7 −0.777821
\(741\) 0 0
\(742\) 1981.34 0.0980289
\(743\) 7551.47 13079.5i 0.372862 0.645816i −0.617142 0.786852i \(-0.711710\pi\)
0.990005 + 0.141035i \(0.0450430\pi\)
\(744\) 0 0
\(745\) 23525.8 + 40747.9i 1.15694 + 2.00388i
\(746\) 1743.67 3020.13i 0.0855770 0.148224i
\(747\) 0 0
\(748\) 11544.1 0.564296
\(749\) 14109.3 0.688310
\(750\) 0 0
\(751\) −14297.9 24764.7i −0.694726 1.20330i −0.970273 0.242013i \(-0.922192\pi\)
0.275547 0.961288i \(-0.411141\pi\)
\(752\) −3005.57 −0.145747
\(753\) 0 0
\(754\) 4285.81 + 7423.23i 0.207002 + 0.358539i
\(755\) −37667.7 + 65242.3i −1.81572 + 3.14492i
\(756\) 0 0
\(757\) 3822.82 6621.32i 0.183544 0.317908i −0.759541 0.650460i \(-0.774576\pi\)
0.943085 + 0.332552i \(0.107910\pi\)
\(758\) 1591.45 2756.48i 0.0762589 0.132084i
\(759\) 0 0
\(760\) −13057.8 4214.10i −0.623231 0.201134i
\(761\) −10724.9 −0.510876 −0.255438 0.966825i \(-0.582220\pi\)
−0.255438 + 0.966825i \(0.582220\pi\)
\(762\) 0 0
\(763\) 223.543 387.188i 0.0106066 0.0183711i
\(764\) −1400.72 2426.12i −0.0663301 0.114887i
\(765\) 0 0
\(766\) 9004.90 + 15597.0i 0.424752 + 0.735693i
\(767\) 12000.4 0.564938
\(768\) 0 0
\(769\) 1981.77 + 3432.52i 0.0929315 + 0.160962i 0.908743 0.417355i \(-0.137043\pi\)
−0.815812 + 0.578317i \(0.803710\pi\)
\(770\) −11283.2 19543.1i −0.528077 0.914656i
\(771\) 0 0
\(772\) −239.606 −0.0111705
\(773\) −2222.65 3849.74i −0.103419 0.179128i 0.809672 0.586883i \(-0.199645\pi\)
−0.913091 + 0.407755i \(0.866312\pi\)
\(774\) 0 0
\(775\) −17073.1 29571.5i −0.791335 1.37063i
\(776\) −4787.10 + 8291.49i −0.221452 + 0.383566i
\(777\) 0 0
\(778\) −8139.86 −0.375100
\(779\) −18916.7 6104.92i −0.870038 0.280785i
\(780\) 0 0
\(781\) −10887.4 + 18857.6i −0.498826 + 0.863992i
\(782\) −1730.59 + 2997.47i −0.0791378 + 0.137071i
\(783\) 0 0
\(784\) 2129.74 3688.81i 0.0970179 0.168040i
\(785\) 4677.91 + 8102.37i 0.212690 + 0.368390i
\(786\) 0 0
\(787\) 3452.08 0.156357 0.0781787 0.996939i \(-0.475090\pi\)
0.0781787 + 0.996939i \(0.475090\pi\)
\(788\) −748.763 1296.90i −0.0338497 0.0586294i
\(789\) 0 0
\(790\) −48730.4 −2.19462
\(791\) −15681.1 −0.704872
\(792\) 0 0
\(793\) 9957.16 17246.3i 0.445888 0.772301i
\(794\) −329.570 570.832i −0.0147305 0.0255140i
\(795\) 0 0
\(796\) −9207.53 + 15947.9i −0.409990 + 0.710124i
\(797\) 25298.0 1.12434 0.562171 0.827021i \(-0.309966\pi\)
0.562171 + 0.827021i \(0.309966\pi\)
\(798\) 0 0
\(799\) −8719.06 −0.386055
\(800\) −4861.96 + 8421.15i −0.214870 + 0.372166i
\(801\) 0 0
\(802\) 8187.06 + 14180.4i 0.360468 + 0.624348i
\(803\) 298.629 517.240i 0.0131238 0.0227310i
\(804\) 0 0
\(805\) 6765.93 0.296233
\(806\) −14500.8 −0.633707
\(807\) 0 0
\(808\) 3475.77 + 6020.21i 0.151333 + 0.262117i
\(809\) 23140.8 1.00567 0.502834 0.864383i \(-0.332291\pi\)
0.502834 + 0.864383i \(0.332291\pi\)
\(810\) 0 0
\(811\) 5554.38 + 9620.46i 0.240494 + 0.416548i 0.960855 0.277051i \(-0.0893572\pi\)
−0.720361 + 0.693599i \(0.756024\pi\)
\(812\) −1164.09 + 2016.26i −0.0503097 + 0.0871390i
\(813\) 0 0
\(814\) 11752.8 20356.4i 0.506062 0.876525i
\(815\) −2232.78 + 3867.28i −0.0959641 + 0.166215i
\(816\) 0 0
\(817\) −13262.7 4280.24i −0.567937 0.183289i
\(818\) 9997.00 0.427307
\(819\) 0 0
\(820\) −9940.83 + 17218.0i −0.423352 + 0.733268i
\(821\) 6204.51 + 10746.5i 0.263750 + 0.456829i 0.967235 0.253881i \(-0.0817072\pi\)
−0.703485 + 0.710710i \(0.748374\pi\)
\(822\) 0 0
\(823\) 9536.05 + 16516.9i 0.403895 + 0.699567i 0.994192 0.107619i \(-0.0343226\pi\)
−0.590297 + 0.807186i \(0.700989\pi\)
\(824\) −11932.5 −0.504476
\(825\) 0 0
\(826\) 1629.74 + 2822.79i 0.0686511 + 0.118907i
\(827\) 2143.56 + 3712.76i 0.0901317 + 0.156113i 0.907566 0.419909i \(-0.137938\pi\)
−0.817435 + 0.576021i \(0.804605\pi\)
\(828\) 0 0
\(829\) −22544.9 −0.944533 −0.472266 0.881456i \(-0.656564\pi\)
−0.472266 + 0.881456i \(0.656564\pi\)
\(830\) −5342.56 9253.59i −0.223425 0.386984i
\(831\) 0 0
\(832\) 2064.71 + 3576.18i 0.0860348 + 0.149017i
\(833\) 6178.29 10701.1i 0.256981 0.445104i
\(834\) 0 0
\(835\) 68785.3 2.85080
\(836\) 15280.0 13813.2i 0.632141 0.571458i
\(837\) 0 0
\(838\) 11941.1 20682.6i 0.492241 0.852587i
\(839\) 19298.9 33426.7i 0.794127 1.37547i −0.129266 0.991610i \(-0.541262\pi\)
0.923392 0.383858i \(-0.125405\pi\)
\(840\) 0 0
\(841\) 9988.44 17300.5i 0.409547 0.709356i
\(842\) 11982.8 + 20754.8i 0.490445 + 0.849475i
\(843\) 0 0
\(844\) −11826.9 −0.482344
\(845\) −20358.3 35261.6i −0.828813 1.43555i
\(846\) 0 0
\(847\) 22214.1 0.901164
\(848\) 1808.91 0.0732527
\(849\) 0 0
\(850\) −14104.4 + 24429.5i −0.569148 + 0.985793i
\(851\) 3523.74 + 6103.30i 0.141942 + 0.245850i
\(852\) 0 0
\(853\) −1804.94 + 3126.25i −0.0724502 + 0.125488i −0.899975 0.435942i \(-0.856415\pi\)
0.827524 + 0.561430i \(0.189749\pi\)
\(854\) 5409.03 0.216737
\(855\) 0 0
\(856\) 12881.4 0.514344
\(857\) −1209.06 + 2094.15i −0.0481921 + 0.0834711i −0.889115 0.457683i \(-0.848679\pi\)
0.840923 + 0.541155i \(0.182013\pi\)
\(858\) 0 0
\(859\) −17426.1 30183.0i −0.692168 1.19887i −0.971126 0.238567i \(-0.923322\pi\)
0.278958 0.960303i \(-0.410011\pi\)
\(860\) −6969.65 + 12071.8i −0.276353 + 0.478657i
\(861\) 0 0
\(862\) −14166.0 −0.559739
\(863\) 32080.0 1.26537 0.632685 0.774409i \(-0.281953\pi\)
0.632685 + 0.774409i \(0.281953\pi\)
\(864\) 0 0
\(865\) 15246.7 + 26408.1i 0.599311 + 1.03804i
\(866\) −14806.0 −0.580980
\(867\) 0 0
\(868\) −1969.31 3410.95i −0.0770078 0.133381i
\(869\) 36577.4 63354.0i 1.42785 2.47311i
\(870\) 0 0
\(871\) 1272.89 2204.70i 0.0495179 0.0857675i
\(872\) 204.089 353.492i 0.00792582 0.0137279i
\(873\) 0 0
\(874\) 1296.00 + 6038.26i 0.0501578 + 0.233693i
\(875\) 32459.3 1.25409
\(876\) 0 0
\(877\) −21507.3 + 37251.7i −0.828107 + 1.43432i 0.0714140 + 0.997447i \(0.477249\pi\)
−0.899521 + 0.436877i \(0.856084\pi\)
\(878\) 7675.43 + 13294.2i 0.295027 + 0.511001i
\(879\) 0 0
\(880\) −10301.3 17842.3i −0.394609 0.683483i
\(881\) −20270.3 −0.775170 −0.387585 0.921834i \(-0.626691\pi\)
−0.387585 + 0.921834i \(0.626691\pi\)
\(882\) 0 0
\(883\) 9829.17 + 17024.6i 0.374607 + 0.648838i 0.990268 0.139173i \(-0.0444443\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(884\) 5989.65 + 10374.4i 0.227889 + 0.394715i
\(885\) 0 0
\(886\) 5367.78 0.203537
\(887\) 22422.7 + 38837.3i 0.848795 + 1.47016i 0.882284 + 0.470717i \(0.156005\pi\)
−0.0334891 + 0.999439i \(0.510662\pi\)
\(888\) 0 0
\(889\) −1217.02 2107.93i −0.0459138 0.0795251i
\(890\) −2769.83 + 4797.49i −0.104320 + 0.180688i
\(891\) 0 0
\(892\) 2122.56 0.0796733
\(893\) −11540.7 + 10432.9i −0.432470 + 0.390955i
\(894\) 0 0
\(895\) 37007.2 64098.4i 1.38214 2.39394i
\(896\) −560.806 + 971.344i −0.0209098 + 0.0362169i
\(897\) 0 0
\(898\) −14097.6 + 24417.7i −0.523877 + 0.907382i
\(899\) −3732.03 6464.07i −0.138454 0.239810i
\(900\) 0 0
\(901\) 5247.59 0.194032
\(902\) −14923.3 25848.0i −0.550879 0.954150i
\(903\) 0 0
\(904\) −14316.4 −0.526720
\(905\) −60962.4 −2.23918
\(906\) 0 0
\(907\) −3605.66 + 6245.18i −0.132000 + 0.228630i −0.924447 0.381310i \(-0.875473\pi\)
0.792448 + 0.609940i \(0.208806\pi\)
\(908\) −6959.44 12054.1i −0.254358 0.440561i
\(909\) 0 0
\(910\) 11708.6 20279.9i 0.426524 0.738761i
\(911\) −29098.8 −1.05827 −0.529136 0.848537i \(-0.677484\pi\)
−0.529136 + 0.848537i \(0.677484\pi\)
\(912\) 0 0
\(913\) 16040.7 0.581456
\(914\) −7040.20 + 12194.0i −0.254780 + 0.441292i
\(915\) 0 0
\(916\) −7132.95 12354.6i −0.257292 0.445643i
\(917\) −7985.71 + 13831.7i −0.287581 + 0.498104i
\(918\) 0 0
\(919\) −15321.9 −0.549972 −0.274986 0.961448i \(-0.588673\pi\)
−0.274986 + 0.961448i \(0.588673\pi\)
\(920\) 6177.11 0.221362
\(921\) 0 0
\(922\) 7353.08 + 12735.9i 0.262647 + 0.454919i
\(923\) −22595.8 −0.805796
\(924\) 0 0
\(925\) 28718.7 + 49742.2i 1.02083 + 1.76812i
\(926\) −14054.7 + 24343.5i −0.498777 + 0.863907i
\(927\) 0 0
\(928\) −1062.78 + 1840.79i −0.0375943 + 0.0651152i
\(929\) −10272.5 + 17792.4i −0.362787 + 0.628365i −0.988418 0.151754i \(-0.951508\pi\)
0.625632 + 0.780118i \(0.284841\pi\)
\(930\) 0 0
\(931\) −4626.80 21556.9i −0.162876 0.758861i
\(932\) 23964.8 0.842267
\(933\) 0 0
\(934\) 5875.16 10176.1i 0.205826 0.356501i
\(935\) −29883.6 51760.0i −1.04524 1.81041i
\(936\) 0 0
\(937\) −23917.7 41426.6i −0.833891 1.44434i −0.894930 0.446206i \(-0.852775\pi\)
0.0610397 0.998135i \(-0.480558\pi\)
\(938\) 691.469 0.0240696
\(939\) 0 0
\(940\) 7780.39 + 13476.0i 0.269966 + 0.467595i
\(941\) −222.655 385.650i −0.00771344 0.0133601i 0.862143 0.506665i \(-0.169122\pi\)
−0.869856 + 0.493305i \(0.835789\pi\)
\(942\) 0 0
\(943\) 8948.70 0.309024
\(944\) 1487.90 + 2577.13i 0.0513000 + 0.0888541i
\(945\) 0 0
\(946\) −10463.0 18122.4i −0.359598 0.622842i
\(947\) 22023.0 38145.0i 0.755705 1.30892i −0.189318 0.981916i \(-0.560628\pi\)
0.945023 0.327004i \(-0.106039\pi\)
\(948\) 0 0
\(949\) 619.775 0.0211999
\(950\) 10562.5 + 49212.1i 0.360728 + 1.68068i
\(951\) 0 0
\(952\) −1626.88 + 2817.83i −0.0553859 + 0.0959313i
\(953\) 1758.66 3046.10i 0.0597783 0.103539i −0.834588 0.550875i \(-0.814294\pi\)
0.894366 + 0.447336i \(0.147627\pi\)
\(954\) 0 0
\(955\) −7251.95 + 12560.7i −0.245725 + 0.425609i
\(956\) −1212.96 2100.90i −0.0410354 0.0710753i
\(957\) 0 0
\(958\) 355.562 0.0119913
\(959\) 2895.87 + 5015.80i 0.0975105 + 0.168893i
\(960\) 0 0
\(961\) −17163.9 −0.576144
\(962\) 24391.7 0.817484
\(963\) 0 0
\(964\) 6890.34 11934.4i 0.230210 0.398736i
\(965\) 620.257 + 1074.32i 0.0206910 + 0.0358378i
\(966\) 0 0
\(967\) 7621.77 13201.3i 0.253464 0.439012i −0.711013 0.703179i \(-0.751763\pi\)
0.964477 + 0.264166i \(0.0850967\pi\)
\(968\) 20280.9 0.673401
\(969\) 0 0
\(970\) 49568.5 1.64077
\(971\) 1633.51 2829.33i 0.0539876 0.0935092i −0.837769 0.546025i \(-0.816140\pi\)
0.891756 + 0.452516i \(0.149474\pi\)
\(972\) 0 0
\(973\) 5458.87 + 9455.05i 0.179860 + 0.311526i
\(974\) −12319.9 + 21338.7i −0.405293 + 0.701989i
\(975\) 0 0
\(976\) 4938.29 0.161958
\(977\) −40038.2 −1.31109 −0.655545 0.755156i \(-0.727561\pi\)
−0.655545 + 0.755156i \(0.727561\pi\)
\(978\) 0 0
\(979\) −4158.11 7202.06i −0.135744 0.235116i
\(980\) −22052.6 −0.718821
\(981\) 0 0
\(982\) −8441.83 14621.7i −0.274328 0.475149i
\(983\) 11127.2 19272.9i 0.361040 0.625340i −0.627092 0.778945i \(-0.715755\pi\)
0.988132 + 0.153605i \(0.0490885\pi\)
\(984\) 0 0
\(985\) −3876.58 + 6714.43i −0.125399 + 0.217197i
\(986\) −3083.09 + 5340.07i −0.0995797 + 0.172477i
\(987\) 0 0
\(988\) 20341.6 + 6564.78i 0.655012 + 0.211390i
\(989\) 6274.06 0.201722
\(990\) 0 0
\(991\) −7389.74 + 12799.4i −0.236875 + 0.410279i −0.959816 0.280630i \(-0.909456\pi\)
0.722941 + 0.690910i \(0.242790\pi\)
\(992\) −1797.93 3114.10i −0.0575446 0.0996701i
\(993\) 0 0
\(994\) −3068.68 5315.10i −0.0979200 0.169602i
\(995\) 95340.5 3.03768
\(996\) 0 0
\(997\) −14444.2 25018.1i −0.458829 0.794716i 0.540070 0.841620i \(-0.318398\pi\)
−0.998899 + 0.0469043i \(0.985064\pi\)
\(998\) 6211.24 + 10758.2i 0.197007 + 0.341227i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 342.4.g.f.163.1 6
3.2 odd 2 38.4.c.c.11.2 yes 6
12.11 even 2 304.4.i.e.49.2 6
19.7 even 3 inner 342.4.g.f.235.1 6
57.8 even 6 722.4.a.k.1.2 3
57.11 odd 6 722.4.a.j.1.2 3
57.26 odd 6 38.4.c.c.7.2 6
228.83 even 6 304.4.i.e.273.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.4.c.c.7.2 6 57.26 odd 6
38.4.c.c.11.2 yes 6 3.2 odd 2
304.4.i.e.49.2 6 12.11 even 2
304.4.i.e.273.2 6 228.83 even 6
342.4.g.f.163.1 6 1.1 even 1 trivial
342.4.g.f.235.1 6 19.7 even 3 inner
722.4.a.j.1.2 3 57.11 odd 6
722.4.a.k.1.2 3 57.8 even 6