Properties

Label 342.3.m.a
Level $342$
Weight $3$
Character orbit 342.m
Analytic conductor $9.319$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 342.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.31882504112\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + 2 \beta_{2} q^{4} + ( -1 + \beta_{2} ) q^{5} + ( 2 + 4 \beta_{1} - 2 \beta_{3} ) q^{7} + 2 \beta_{3} q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} + 2 \beta_{2} q^{4} + ( -1 + \beta_{2} ) q^{5} + ( 2 + 4 \beta_{1} - 2 \beta_{3} ) q^{7} + 2 \beta_{3} q^{8} + ( -\beta_{1} + \beta_{3} ) q^{10} + ( 10 + 4 \beta_{1} - 2 \beta_{3} ) q^{11} + ( -10 - 6 \beta_{1} + 5 \beta_{2} + 6 \beta_{3} ) q^{13} + ( 4 + 2 \beta_{1} + 4 \beta_{2} ) q^{14} + ( -4 + 4 \beta_{2} ) q^{16} + ( -7 + 2 \beta_{1} + 7 \beta_{2} - 4 \beta_{3} ) q^{17} + ( 3 + 6 \beta_{1} + 2 \beta_{2} - 15 \beta_{3} ) q^{19} -2 q^{20} + ( 4 + 10 \beta_{1} + 4 \beta_{2} ) q^{22} + ( 9 \beta_{1} + 5 \beta_{2} + 9 \beta_{3} ) q^{23} + 24 \beta_{2} q^{25} + ( -12 - 10 \beta_{1} + 5 \beta_{3} ) q^{26} + ( 4 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} ) q^{28} + ( -22 + 18 \beta_{1} + 11 \beta_{2} - 18 \beta_{3} ) q^{29} + ( -18 + 36 \beta_{2} ) q^{31} + ( -4 \beta_{1} + 4 \beta_{3} ) q^{32} + ( 8 - 7 \beta_{1} - 4 \beta_{2} + 7 \beta_{3} ) q^{34} + ( -2 - 2 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} ) q^{35} + ( -2 + 4 \beta_{2} + 18 \beta_{3} ) q^{37} + ( 30 + 3 \beta_{1} - 18 \beta_{2} + 2 \beta_{3} ) q^{38} -2 \beta_{1} q^{40} + ( -3 - 42 \beta_{1} - 3 \beta_{2} ) q^{41} + ( 19 + 23 \beta_{1} - 19 \beta_{2} - 46 \beta_{3} ) q^{43} + ( 4 \beta_{1} + 20 \beta_{2} + 4 \beta_{3} ) q^{44} + ( -18 + 36 \beta_{2} + 5 \beta_{3} ) q^{46} + ( -19 \beta_{1} + 35 \beta_{2} - 19 \beta_{3} ) q^{47} + ( -21 + 16 \beta_{1} - 8 \beta_{3} ) q^{49} + 24 \beta_{3} q^{50} + ( -10 - 12 \beta_{1} - 10 \beta_{2} ) q^{52} + ( 14 + 48 \beta_{1} - 7 \beta_{2} - 48 \beta_{3} ) q^{53} + ( -10 - 2 \beta_{1} + 10 \beta_{2} + 4 \beta_{3} ) q^{55} + ( -8 + 16 \beta_{2} + 4 \beta_{3} ) q^{56} + ( 36 - 22 \beta_{1} + 11 \beta_{3} ) q^{58} + ( -7 - 33 \beta_{1} - 7 \beta_{2} ) q^{59} + ( -16 \beta_{1} + 37 \beta_{2} - 16 \beta_{3} ) q^{61} + ( -18 \beta_{1} + 36 \beta_{3} ) q^{62} -8 q^{64} + ( 5 - 10 \beta_{2} - 6 \beta_{3} ) q^{65} + ( 34 - 63 \beta_{1} - 17 \beta_{2} + 63 \beta_{3} ) q^{67} + ( -14 + 8 \beta_{1} - 4 \beta_{3} ) q^{68} + ( -8 - 2 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} ) q^{70} + ( -51 - 9 \beta_{1} - 51 \beta_{2} ) q^{71} + ( 49 + 32 \beta_{1} - 49 \beta_{2} - 64 \beta_{3} ) q^{73} + ( -36 - 2 \beta_{1} + 36 \beta_{2} + 4 \beta_{3} ) q^{74} + ( -4 + 30 \beta_{1} + 10 \beta_{2} - 18 \beta_{3} ) q^{76} + ( 44 + 48 \beta_{1} - 24 \beta_{3} ) q^{77} + ( -21 + 21 \beta_{1} - 21 \beta_{2} ) q^{79} -4 \beta_{2} q^{80} + ( -3 \beta_{1} - 84 \beta_{2} - 3 \beta_{3} ) q^{82} + ( 16 - 12 \beta_{1} + 6 \beta_{3} ) q^{83} + ( 2 \beta_{1} - 7 \beta_{2} + 2 \beta_{3} ) q^{85} + ( 92 + 19 \beta_{1} - 46 \beta_{2} - 19 \beta_{3} ) q^{86} + ( -8 + 16 \beta_{2} + 20 \beta_{3} ) q^{88} + ( 2 - 6 \beta_{1} - \beta_{2} + 6 \beta_{3} ) q^{89} + ( -68 - 42 \beta_{1} + 34 \beta_{2} + 42 \beta_{3} ) q^{91} + ( -10 - 18 \beta_{1} + 10 \beta_{2} + 36 \beta_{3} ) q^{92} + ( 38 - 76 \beta_{2} + 35 \beta_{3} ) q^{94} + ( -5 + 9 \beta_{1} + 3 \beta_{2} + 6 \beta_{3} ) q^{95} + ( -81 + 6 \beta_{1} - 81 \beta_{2} ) q^{97} + ( 16 - 21 \beta_{1} + 16 \beta_{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 2 q^{5} + 8 q^{7} + O(q^{10}) \) \( 4 q + 4 q^{4} - 2 q^{5} + 8 q^{7} + 40 q^{11} - 30 q^{13} + 24 q^{14} - 8 q^{16} - 14 q^{17} + 16 q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 48 q^{25} - 48 q^{26} + 8 q^{28} - 66 q^{29} + 24 q^{34} - 4 q^{35} + 84 q^{38} - 18 q^{41} + 38 q^{43} + 40 q^{44} + 70 q^{47} - 84 q^{49} - 60 q^{52} + 42 q^{53} - 20 q^{55} + 144 q^{58} - 42 q^{59} + 74 q^{61} - 32 q^{64} + 102 q^{67} - 56 q^{68} - 24 q^{70} - 306 q^{71} + 98 q^{73} - 72 q^{74} + 4 q^{76} + 176 q^{77} - 126 q^{79} - 8 q^{80} - 168 q^{82} + 64 q^{83} - 14 q^{85} + 276 q^{86} + 6 q^{89} - 204 q^{91} - 20 q^{92} - 14 q^{95} - 486 q^{97} + 96 q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{2}\)
\(\nu^{3}\)\(=\)\(2 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/342\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
−1.22474 + 0.707107i
1.22474 0.707107i
−1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i 0 1.00000 1.73205i −0.500000 0.866025i 0 −2.89898 2.82843i 0 1.22474 + 0.707107i
145.2 1.22474 0.707107i 0 1.00000 1.73205i −0.500000 0.866025i 0 6.89898 2.82843i 0 −1.22474 0.707107i
217.1 −1.22474 0.707107i 0 1.00000 + 1.73205i −0.500000 + 0.866025i 0 −2.89898 2.82843i 0 1.22474 0.707107i
217.2 1.22474 + 0.707107i 0 1.00000 + 1.73205i −0.500000 + 0.866025i 0 6.89898 2.82843i 0 −1.22474 + 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 342.3.m.a 4
3.b odd 2 1 38.3.d.a 4
12.b even 2 1 304.3.r.a 4
19.d odd 6 1 inner 342.3.m.a 4
57.f even 6 1 38.3.d.a 4
57.f even 6 1 722.3.b.b 4
57.h odd 6 1 722.3.b.b 4
228.n odd 6 1 304.3.r.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.3.d.a 4 3.b odd 2 1
38.3.d.a 4 57.f even 6 1
304.3.r.a 4 12.b even 2 1
304.3.r.a 4 228.n odd 6 1
342.3.m.a 4 1.a even 1 1 trivial
342.3.m.a 4 19.d odd 6 1 inner
722.3.b.b 4 57.f even 6 1
722.3.b.b 4 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + T_{5} + 1 \) acting on \(S_{3}^{\mathrm{new}}(342, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 - 2 T^{2} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( 1 + T + T^{2} )^{2} \)
$7$ \( ( -20 - 4 T + T^{2} )^{2} \)
$11$ \( ( 76 - 20 T + T^{2} )^{2} \)
$13$ \( 9 + 90 T + 303 T^{2} + 30 T^{3} + T^{4} \)
$17$ \( 625 + 350 T + 171 T^{2} + 14 T^{3} + T^{4} \)
$19$ \( 130321 - 5776 T + 570 T^{2} - 16 T^{3} + T^{4} \)
$23$ \( 212521 + 4610 T + 561 T^{2} - 10 T^{3} + T^{4} \)
$29$ \( 81225 - 18810 T + 1167 T^{2} + 66 T^{3} + T^{4} \)
$31$ \( ( 972 + T^{2} )^{2} \)
$37$ \( 404496 + 1320 T^{2} + T^{4} \)
$41$ \( 12257001 - 63018 T - 3393 T^{2} + 18 T^{3} + T^{4} \)
$43$ \( 7912969 + 106894 T + 4257 T^{2} - 38 T^{3} + T^{4} \)
$47$ \( 885481 + 65870 T + 5841 T^{2} - 70 T^{3} + T^{4} \)
$53$ \( 19900521 + 187362 T - 3873 T^{2} - 42 T^{3} + T^{4} \)
$59$ \( 4124961 - 85302 T - 1443 T^{2} + 42 T^{3} + T^{4} \)
$61$ \( 27889 + 12358 T + 5643 T^{2} - 74 T^{3} + T^{4} \)
$67$ \( 49999041 + 721242 T - 3603 T^{2} - 102 T^{3} + T^{4} \)
$71$ \( 58384881 + 2338146 T + 38853 T^{2} + 306 T^{3} + T^{4} \)
$73$ \( 14010049 + 366814 T + 13347 T^{2} - 98 T^{3} + T^{4} \)
$79$ \( 194481 + 55566 T + 5733 T^{2} + 126 T^{3} + T^{4} \)
$83$ \( ( 40 - 32 T + T^{2} )^{2} \)
$89$ \( 4761 + 414 T - 57 T^{2} - 6 T^{3} + T^{4} \)
$97$ \( 384591321 + 9530946 T + 98343 T^{2} + 486 T^{3} + T^{4} \)
show more
show less