Properties

Label 342.2.g.c.235.1
Level $342$
Weight $2$
Character 342.235
Analytic conductor $2.731$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [342,2,Mod(163,342)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(342, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("342.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 342.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.73088374913\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 342.235
Dual form 342.2.g.c.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +1.00000 q^{7} +1.00000 q^{8} +2.00000 q^{11} +(1.50000 - 2.59808i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(2.00000 + 3.46410i) q^{17} +(4.00000 - 1.73205i) q^{19} +(-1.00000 - 1.73205i) q^{22} +(2.00000 - 3.46410i) q^{23} +(2.50000 - 4.33013i) q^{25} -3.00000 q^{26} +(-0.500000 + 0.866025i) q^{28} -3.00000 q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.00000 - 3.46410i) q^{34} -5.00000 q^{37} +(-3.50000 - 2.59808i) q^{38} +(2.00000 + 3.46410i) q^{41} +(4.50000 + 7.79423i) q^{43} +(-1.00000 + 1.73205i) q^{44} -4.00000 q^{46} +(5.00000 - 8.66025i) q^{47} -6.00000 q^{49} -5.00000 q^{50} +(1.50000 + 2.59808i) q^{52} +(-2.00000 + 3.46410i) q^{53} +1.00000 q^{56} +(-7.00000 - 12.1244i) q^{59} +(-5.50000 + 9.52628i) q^{61} +(1.50000 + 2.59808i) q^{62} +1.00000 q^{64} +(-1.50000 + 2.59808i) q^{67} -4.00000 q^{68} +(7.00000 + 12.1244i) q^{71} +(5.50000 + 9.52628i) q^{73} +(2.50000 + 4.33013i) q^{74} +(-0.500000 + 4.33013i) q^{76} +2.00000 q^{77} +(-0.500000 - 0.866025i) q^{79} +(2.00000 - 3.46410i) q^{82} -8.00000 q^{83} +(4.50000 - 7.79423i) q^{86} +2.00000 q^{88} +(-7.00000 + 12.1244i) q^{89} +(1.50000 - 2.59808i) q^{91} +(2.00000 + 3.46410i) q^{92} -10.0000 q^{94} +(-1.00000 - 1.73205i) q^{97} +(3.00000 + 5.19615i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 2 q^{7} + 2 q^{8} + 4 q^{11} + 3 q^{13} - q^{14} - q^{16} + 4 q^{17} + 8 q^{19} - 2 q^{22} + 4 q^{23} + 5 q^{25} - 6 q^{26} - q^{28} - 6 q^{31} - q^{32} + 4 q^{34} - 10 q^{37}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/342\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(325\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 1.50000 2.59808i 0.416025 0.720577i −0.579510 0.814965i \(-0.696756\pi\)
0.995535 + 0.0943882i \(0.0300895\pi\)
\(14\) −0.500000 0.866025i −0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i \(-0.00546033\pi\)
−0.514782 + 0.857321i \(0.672127\pi\)
\(18\) 0 0
\(19\) 4.00000 1.73205i 0.917663 0.397360i
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) −3.00000 −0.588348
\(27\) 0 0
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 2.00000 3.46410i 0.342997 0.594089i
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) −3.50000 2.59808i −0.567775 0.421464i
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 + 3.46410i 0.312348 + 0.541002i 0.978870 0.204483i \(-0.0655513\pi\)
−0.666523 + 0.745485i \(0.732218\pi\)
\(42\) 0 0
\(43\) 4.50000 + 7.79423i 0.686244 + 1.18861i 0.973044 + 0.230618i \(0.0740749\pi\)
−0.286801 + 0.957990i \(0.592592\pi\)
\(44\) −1.00000 + 1.73205i −0.150756 + 0.261116i
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 5.00000 8.66025i 0.729325 1.26323i −0.227844 0.973698i \(-0.573168\pi\)
0.957169 0.289530i \(-0.0934991\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) −5.00000 −0.707107
\(51\) 0 0
\(52\) 1.50000 + 2.59808i 0.208013 + 0.360288i
\(53\) −2.00000 + 3.46410i −0.274721 + 0.475831i −0.970065 0.242846i \(-0.921919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) 0 0
\(59\) −7.00000 12.1244i −0.911322 1.57846i −0.812198 0.583382i \(-0.801729\pi\)
−0.0991242 0.995075i \(-0.531604\pi\)
\(60\) 0 0
\(61\) −5.50000 + 9.52628i −0.704203 + 1.21972i 0.262776 + 0.964857i \(0.415362\pi\)
−0.966978 + 0.254858i \(0.917971\pi\)
\(62\) 1.50000 + 2.59808i 0.190500 + 0.329956i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −1.50000 + 2.59808i −0.183254 + 0.317406i −0.942987 0.332830i \(-0.891996\pi\)
0.759733 + 0.650236i \(0.225330\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) 7.00000 + 12.1244i 0.830747 + 1.43890i 0.897447 + 0.441123i \(0.145420\pi\)
−0.0666994 + 0.997773i \(0.521247\pi\)
\(72\) 0 0
\(73\) 5.50000 + 9.52628i 0.643726 + 1.11497i 0.984594 + 0.174855i \(0.0559458\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(74\) 2.50000 + 4.33013i 0.290619 + 0.503367i
\(75\) 0 0
\(76\) −0.500000 + 4.33013i −0.0573539 + 0.496700i
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −0.500000 0.866025i −0.0562544 0.0974355i 0.836527 0.547926i \(-0.184582\pi\)
−0.892781 + 0.450490i \(0.851249\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.00000 3.46410i 0.220863 0.382546i
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.50000 7.79423i 0.485247 0.840473i
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) −7.00000 + 12.1244i −0.741999 + 1.28518i 0.209585 + 0.977790i \(0.432789\pi\)
−0.951584 + 0.307389i \(0.900545\pi\)
\(90\) 0 0
\(91\) 1.50000 2.59808i 0.157243 0.272352i
\(92\) 2.00000 + 3.46410i 0.208514 + 0.361158i
\(93\) 0 0
\(94\) −10.0000 −1.03142
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 3.00000 + 5.19615i 0.303046 + 0.524891i
\(99\) 0 0
\(100\) 2.50000 + 4.33013i 0.250000 + 0.433013i
\(101\) −5.00000 + 8.66025i −0.497519 + 0.861727i −0.999996 0.00286291i \(-0.999089\pi\)
0.502477 + 0.864590i \(0.332422\pi\)
\(102\) 0 0
\(103\) −3.00000 −0.295599 −0.147799 0.989017i \(-0.547219\pi\)
−0.147799 + 0.989017i \(0.547219\pi\)
\(104\) 1.50000 2.59808i 0.147087 0.254762i
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) −7.00000 12.1244i −0.670478 1.16130i −0.977769 0.209687i \(-0.932756\pi\)
0.307290 0.951616i \(-0.400578\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 + 12.1244i −0.644402 + 1.11614i
\(119\) 2.00000 + 3.46410i 0.183340 + 0.317554i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 11.0000 0.995893
\(123\) 0 0
\(124\) 1.50000 2.59808i 0.134704 0.233314i
\(125\) 0 0
\(126\) 0 0
\(127\) 4.00000 6.92820i 0.354943 0.614779i −0.632166 0.774833i \(-0.717834\pi\)
0.987108 + 0.160055i \(0.0511671\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −3.00000 5.19615i −0.262111 0.453990i 0.704692 0.709514i \(-0.251085\pi\)
−0.966803 + 0.255524i \(0.917752\pi\)
\(132\) 0 0
\(133\) 4.00000 1.73205i 0.346844 0.150188i
\(134\) 3.00000 0.259161
\(135\) 0 0
\(136\) 2.00000 + 3.46410i 0.171499 + 0.297044i
\(137\) −3.00000 + 5.19615i −0.256307 + 0.443937i −0.965250 0.261329i \(-0.915839\pi\)
0.708942 + 0.705266i \(0.249173\pi\)
\(138\) 0 0
\(139\) 9.50000 16.4545i 0.805779 1.39565i −0.109984 0.993933i \(-0.535080\pi\)
0.915764 0.401718i \(-0.131587\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 7.00000 12.1244i 0.587427 1.01745i
\(143\) 3.00000 5.19615i 0.250873 0.434524i
\(144\) 0 0
\(145\) 0 0
\(146\) 5.50000 9.52628i 0.455183 0.788400i
\(147\) 0 0
\(148\) 2.50000 4.33013i 0.205499 0.355934i
\(149\) −11.0000 19.0526i −0.901155 1.56085i −0.825997 0.563675i \(-0.809387\pi\)
−0.0751583 0.997172i \(-0.523946\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 4.00000 1.73205i 0.324443 0.140488i
\(153\) 0 0
\(154\) −1.00000 1.73205i −0.0805823 0.139573i
\(155\) 0 0
\(156\) 0 0
\(157\) 10.5000 + 18.1865i 0.837991 + 1.45144i 0.891572 + 0.452880i \(0.149603\pi\)
−0.0535803 + 0.998564i \(0.517063\pi\)
\(158\) −0.500000 + 0.866025i −0.0397779 + 0.0688973i
\(159\) 0 0
\(160\) 0 0
\(161\) 2.00000 3.46410i 0.157622 0.273009i
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) −4.00000 −0.312348
\(165\) 0 0
\(166\) 4.00000 + 6.92820i 0.310460 + 0.537733i
\(167\) 3.00000 5.19615i 0.232147 0.402090i −0.726293 0.687386i \(-0.758758\pi\)
0.958440 + 0.285295i \(0.0920916\pi\)
\(168\) 0 0
\(169\) 2.00000 + 3.46410i 0.153846 + 0.266469i
\(170\) 0 0
\(171\) 0 0
\(172\) −9.00000 −0.686244
\(173\) −12.0000 20.7846i −0.912343 1.58022i −0.810745 0.585399i \(-0.800938\pi\)
−0.101598 0.994826i \(-0.532395\pi\)
\(174\) 0 0
\(175\) 2.50000 4.33013i 0.188982 0.327327i
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) 0 0
\(178\) 14.0000 1.04934
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 9.00000 15.5885i 0.668965 1.15868i −0.309229 0.950988i \(-0.600071\pi\)
0.978194 0.207693i \(-0.0665956\pi\)
\(182\) −3.00000 −0.222375
\(183\) 0 0
\(184\) 2.00000 3.46410i 0.147442 0.255377i
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000 + 6.92820i 0.292509 + 0.506640i
\(188\) 5.00000 + 8.66025i 0.364662 + 0.631614i
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 6.50000 + 11.2583i 0.467880 + 0.810392i 0.999326 0.0366998i \(-0.0116845\pi\)
−0.531446 + 0.847092i \(0.678351\pi\)
\(194\) −1.00000 + 1.73205i −0.0717958 + 0.124354i
\(195\) 0 0
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −2.50000 + 4.33013i −0.177220 + 0.306955i −0.940927 0.338608i \(-0.890044\pi\)
0.763707 + 0.645563i \(0.223377\pi\)
\(200\) 2.50000 4.33013i 0.176777 0.306186i
\(201\) 0 0
\(202\) 10.0000 0.703598
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 1.50000 + 2.59808i 0.104510 + 0.181017i
\(207\) 0 0
\(208\) −3.00000 −0.208013
\(209\) 8.00000 3.46410i 0.553372 0.239617i
\(210\) 0 0
\(211\) −12.5000 21.6506i −0.860535 1.49049i −0.871413 0.490550i \(-0.836796\pi\)
0.0108774 0.999941i \(-0.496538\pi\)
\(212\) −2.00000 3.46410i −0.137361 0.237915i
\(213\) 0 0
\(214\) −5.00000 8.66025i −0.341793 0.592003i
\(215\) 0 0
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) −7.00000 + 12.1244i −0.474100 + 0.821165i
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) −4.50000 7.79423i −0.301342 0.521940i 0.675098 0.737728i \(-0.264101\pi\)
−0.976440 + 0.215788i \(0.930768\pi\)
\(224\) −0.500000 + 0.866025i −0.0334077 + 0.0578638i
\(225\) 0 0
\(226\) 5.00000 + 8.66025i 0.332595 + 0.576072i
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) 0 0
\(229\) −11.0000 −0.726900 −0.363450 0.931614i \(-0.618401\pi\)
−0.363450 + 0.931614i \(0.618401\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.00000 + 15.5885i 0.589610 + 1.02123i 0.994283 + 0.106773i \(0.0340517\pi\)
−0.404674 + 0.914461i \(0.632615\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.0000 0.911322
\(237\) 0 0
\(238\) 2.00000 3.46410i 0.129641 0.224544i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −12.5000 + 21.6506i −0.805196 + 1.39464i 0.110963 + 0.993825i \(0.464606\pi\)
−0.916159 + 0.400815i \(0.868727\pi\)
\(242\) 3.50000 + 6.06218i 0.224989 + 0.389692i
\(243\) 0 0
\(244\) −5.50000 9.52628i −0.352101 0.609858i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.50000 12.9904i 0.0954427 0.826558i
\(248\) −3.00000 −0.190500
\(249\) 0 0
\(250\) 0 0
\(251\) −9.00000 + 15.5885i −0.568075 + 0.983935i 0.428681 + 0.903456i \(0.358978\pi\)
−0.996756 + 0.0804789i \(0.974355\pi\)
\(252\) 0 0
\(253\) 4.00000 6.92820i 0.251478 0.435572i
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) −5.00000 −0.310685
\(260\) 0 0
\(261\) 0 0
\(262\) −3.00000 + 5.19615i −0.185341 + 0.321019i
\(263\) 9.00000 + 15.5885i 0.554964 + 0.961225i 0.997906 + 0.0646755i \(0.0206012\pi\)
−0.442943 + 0.896550i \(0.646065\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −3.50000 2.59808i −0.214599 0.159298i
\(267\) 0 0
\(268\) −1.50000 2.59808i −0.0916271 0.158703i
\(269\) 1.00000 + 1.73205i 0.0609711 + 0.105605i 0.894900 0.446267i \(-0.147247\pi\)
−0.833929 + 0.551872i \(0.813914\pi\)
\(270\) 0 0
\(271\) 8.00000 + 13.8564i 0.485965 + 0.841717i 0.999870 0.0161307i \(-0.00513477\pi\)
−0.513905 + 0.857847i \(0.671801\pi\)
\(272\) 2.00000 3.46410i 0.121268 0.210042i
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 5.00000 8.66025i 0.301511 0.522233i
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −19.0000 −1.13954
\(279\) 0 0
\(280\) 0 0
\(281\) −4.00000 + 6.92820i −0.238620 + 0.413302i −0.960319 0.278906i \(-0.910028\pi\)
0.721699 + 0.692207i \(0.243362\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) −14.0000 −0.830747
\(285\) 0 0
\(286\) −6.00000 −0.354787
\(287\) 2.00000 + 3.46410i 0.118056 + 0.204479i
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) −11.0000 −0.643726
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −5.00000 −0.290619
\(297\) 0 0
\(298\) −11.0000 + 19.0526i −0.637213 + 1.10369i
\(299\) −6.00000 10.3923i −0.346989 0.601003i
\(300\) 0 0
\(301\) 4.50000 + 7.79423i 0.259376 + 0.449252i
\(302\) 10.0000 + 17.3205i 0.575435 + 0.996683i
\(303\) 0 0
\(304\) −3.50000 2.59808i −0.200739 0.149010i
\(305\) 0 0
\(306\) 0 0
\(307\) 6.00000 + 10.3923i 0.342438 + 0.593120i 0.984885 0.173210i \(-0.0554140\pi\)
−0.642447 + 0.766330i \(0.722081\pi\)
\(308\) −1.00000 + 1.73205i −0.0569803 + 0.0986928i
\(309\) 0 0
\(310\) 0 0
\(311\) −10.0000 −0.567048 −0.283524 0.958965i \(-0.591504\pi\)
−0.283524 + 0.958965i \(0.591504\pi\)
\(312\) 0 0
\(313\) −3.00000 + 5.19615i −0.169570 + 0.293704i −0.938269 0.345907i \(-0.887571\pi\)
0.768699 + 0.639611i \(0.220905\pi\)
\(314\) 10.5000 18.1865i 0.592549 1.02633i
\(315\) 0 0
\(316\) 1.00000 0.0562544
\(317\) 6.00000 10.3923i 0.336994 0.583690i −0.646872 0.762598i \(-0.723923\pi\)
0.983866 + 0.178908i \(0.0572566\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) −4.00000 −0.222911
\(323\) 14.0000 + 10.3923i 0.778981 + 0.578243i
\(324\) 0 0
\(325\) −7.50000 12.9904i −0.416025 0.720577i
\(326\) −5.50000 9.52628i −0.304617 0.527612i
\(327\) 0 0
\(328\) 2.00000 + 3.46410i 0.110432 + 0.191273i
\(329\) 5.00000 8.66025i 0.275659 0.477455i
\(330\) 0 0
\(331\) 15.0000 0.824475 0.412237 0.911077i \(-0.364747\pi\)
0.412237 + 0.911077i \(0.364747\pi\)
\(332\) 4.00000 6.92820i 0.219529 0.380235i
\(333\) 0 0
\(334\) −6.00000 −0.328305
\(335\) 0 0
\(336\) 0 0
\(337\) 9.50000 + 16.4545i 0.517498 + 0.896333i 0.999793 + 0.0203242i \(0.00646983\pi\)
−0.482295 + 0.876009i \(0.660197\pi\)
\(338\) 2.00000 3.46410i 0.108786 0.188422i
\(339\) 0 0
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 4.50000 + 7.79423i 0.242624 + 0.420237i
\(345\) 0 0
\(346\) −12.0000 + 20.7846i −0.645124 + 1.11739i
\(347\) 8.00000 + 13.8564i 0.429463 + 0.743851i 0.996826 0.0796169i \(-0.0253697\pi\)
−0.567363 + 0.823468i \(0.692036\pi\)
\(348\) 0 0
\(349\) −29.0000 −1.55233 −0.776167 0.630527i \(-0.782839\pi\)
−0.776167 + 0.630527i \(0.782839\pi\)
\(350\) −5.00000 −0.267261
\(351\) 0 0
\(352\) −1.00000 + 1.73205i −0.0533002 + 0.0923186i
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.00000 12.1244i −0.370999 0.642590i
\(357\) 0 0
\(358\) 2.00000 + 3.46410i 0.105703 + 0.183083i
\(359\) −18.0000 31.1769i −0.950004 1.64545i −0.745409 0.666608i \(-0.767746\pi\)
−0.204595 0.978847i \(-0.565588\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) −18.0000 −0.946059
\(363\) 0 0
\(364\) 1.50000 + 2.59808i 0.0786214 + 0.136176i
\(365\) 0 0
\(366\) 0 0
\(367\) −11.5000 + 19.9186i −0.600295 + 1.03974i 0.392481 + 0.919760i \(0.371617\pi\)
−0.992776 + 0.119982i \(0.961716\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 0 0
\(371\) −2.00000 + 3.46410i −0.103835 + 0.179847i
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 4.00000 6.92820i 0.206835 0.358249i
\(375\) 0 0
\(376\) 5.00000 8.66025i 0.257855 0.446619i
\(377\) 0 0
\(378\) 0 0
\(379\) −13.0000 −0.667765 −0.333883 0.942615i \(-0.608359\pi\)
−0.333883 + 0.942615i \(0.608359\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.00000 6.92820i −0.204658 0.354478i
\(383\) 7.00000 + 12.1244i 0.357683 + 0.619526i 0.987573 0.157159i \(-0.0502334\pi\)
−0.629890 + 0.776684i \(0.716900\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.50000 11.2583i 0.330841 0.573034i
\(387\) 0 0
\(388\) 2.00000 0.101535
\(389\) −8.00000 + 13.8564i −0.405616 + 0.702548i −0.994393 0.105748i \(-0.966276\pi\)
0.588777 + 0.808296i \(0.299610\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) −6.00000 −0.303046
\(393\) 0 0
\(394\) −1.00000 1.73205i −0.0503793 0.0872595i
\(395\) 0 0
\(396\) 0 0
\(397\) −7.50000 12.9904i −0.376414 0.651969i 0.614123 0.789210i \(-0.289510\pi\)
−0.990538 + 0.137241i \(0.956176\pi\)
\(398\) 5.00000 0.250627
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 9.00000 + 15.5885i 0.449439 + 0.778450i 0.998350 0.0574304i \(-0.0182907\pi\)
−0.548911 + 0.835881i \(0.684957\pi\)
\(402\) 0 0
\(403\) −4.50000 + 7.79423i −0.224161 + 0.388258i
\(404\) −5.00000 8.66025i −0.248759 0.430864i
\(405\) 0 0
\(406\) 0 0
\(407\) −10.0000 −0.495682
\(408\) 0 0
\(409\) 15.0000 25.9808i 0.741702 1.28467i −0.210017 0.977698i \(-0.567352\pi\)
0.951720 0.306968i \(-0.0993146\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.50000 2.59808i 0.0738997 0.127998i
\(413\) −7.00000 12.1244i −0.344447 0.596601i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.50000 + 2.59808i 0.0735436 + 0.127381i
\(417\) 0 0
\(418\) −7.00000 5.19615i −0.342381 0.254152i
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) −5.00000 8.66025i −0.243685 0.422075i 0.718076 0.695965i \(-0.245023\pi\)
−0.961761 + 0.273890i \(0.911690\pi\)
\(422\) −12.5000 + 21.6506i −0.608490 + 1.05394i
\(423\) 0 0
\(424\) −2.00000 + 3.46410i −0.0971286 + 0.168232i
\(425\) 20.0000 0.970143
\(426\) 0 0
\(427\) −5.50000 + 9.52628i −0.266164 + 0.461009i
\(428\) −5.00000 + 8.66025i −0.241684 + 0.418609i
\(429\) 0 0
\(430\) 0 0
\(431\) −5.00000 + 8.66025i −0.240842 + 0.417150i −0.960954 0.276707i \(-0.910757\pi\)
0.720113 + 0.693857i \(0.244090\pi\)
\(432\) 0 0
\(433\) 4.50000 7.79423i 0.216256 0.374567i −0.737404 0.675452i \(-0.763949\pi\)
0.953660 + 0.300885i \(0.0972820\pi\)
\(434\) 1.50000 + 2.59808i 0.0720023 + 0.124712i
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 2.00000 17.3205i 0.0956730 0.828552i
\(438\) 0 0
\(439\) −9.50000 16.4545i −0.453410 0.785330i 0.545185 0.838316i \(-0.316459\pi\)
−0.998595 + 0.0529862i \(0.983126\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.00000 10.3923i −0.285391 0.494312i
\(443\) 12.0000 20.7846i 0.570137 0.987507i −0.426414 0.904528i \(-0.640223\pi\)
0.996551 0.0829786i \(-0.0264433\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −4.50000 + 7.79423i −0.213081 + 0.369067i
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 4.00000 + 6.92820i 0.188353 + 0.326236i
\(452\) 5.00000 8.66025i 0.235180 0.407344i
\(453\) 0 0
\(454\) 4.00000 + 6.92820i 0.187729 + 0.325157i
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 0.233890 0.116945 0.993138i \(-0.462690\pi\)
0.116945 + 0.993138i \(0.462690\pi\)
\(458\) 5.50000 + 9.52628i 0.256998 + 0.445134i
\(459\) 0 0
\(460\) 0 0
\(461\) 3.00000 + 5.19615i 0.139724 + 0.242009i 0.927392 0.374091i \(-0.122045\pi\)
−0.787668 + 0.616100i \(0.788712\pi\)
\(462\) 0 0
\(463\) −9.00000 −0.418265 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 9.00000 15.5885i 0.416917 0.722121i
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −1.50000 + 2.59808i −0.0692636 + 0.119968i
\(470\) 0 0
\(471\) 0 0
\(472\) −7.00000 12.1244i −0.322201 0.558069i
\(473\) 9.00000 + 15.5885i 0.413820 + 0.716758i
\(474\) 0 0
\(475\) 2.50000 21.6506i 0.114708 0.993399i
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) −6.00000 10.3923i −0.274434 0.475333i
\(479\) 3.00000 5.19615i 0.137073 0.237418i −0.789314 0.613990i \(-0.789564\pi\)
0.926388 + 0.376571i \(0.122897\pi\)
\(480\) 0 0
\(481\) −7.50000 + 12.9904i −0.341971 + 0.592310i
\(482\) 25.0000 1.13872
\(483\) 0 0
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) 0 0
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) −5.50000 + 9.52628i −0.248973 + 0.431234i
\(489\) 0 0
\(490\) 0 0
\(491\) 15.0000 + 25.9808i 0.676941 + 1.17250i 0.975898 + 0.218229i \(0.0700279\pi\)
−0.298957 + 0.954267i \(0.596639\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −12.0000 + 5.19615i −0.539906 + 0.233786i
\(495\) 0 0
\(496\) 1.50000 + 2.59808i 0.0673520 + 0.116657i
\(497\) 7.00000 + 12.1244i 0.313993 + 0.543852i
\(498\) 0 0
\(499\) −2.50000 4.33013i −0.111915 0.193843i 0.804627 0.593780i \(-0.202365\pi\)
−0.916542 + 0.399937i \(0.869032\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 18.0000 0.803379
\(503\) 8.00000 13.8564i 0.356702 0.617827i −0.630705 0.776022i \(-0.717234\pi\)
0.987408 + 0.158196i \(0.0505677\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 4.00000 + 6.92820i 0.177471 + 0.307389i
\(509\) 13.0000 22.5167i 0.576215 0.998033i −0.419694 0.907666i \(-0.637862\pi\)
0.995908 0.0903676i \(-0.0288042\pi\)
\(510\) 0 0
\(511\) 5.50000 + 9.52628i 0.243306 + 0.421418i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) 0 0
\(516\) 0 0
\(517\) 10.0000 17.3205i 0.439799 0.761755i
\(518\) 2.50000 + 4.33013i 0.109844 + 0.190255i
\(519\) 0 0
\(520\) 0 0
\(521\) −34.0000 −1.48957 −0.744784 0.667306i \(-0.767447\pi\)
−0.744784 + 0.667306i \(0.767447\pi\)
\(522\) 0 0
\(523\) −18.5000 + 32.0429i −0.808949 + 1.40114i 0.104644 + 0.994510i \(0.466630\pi\)
−0.913593 + 0.406630i \(0.866704\pi\)
\(524\) 6.00000 0.262111
\(525\) 0 0
\(526\) 9.00000 15.5885i 0.392419 0.679689i
\(527\) −6.00000 10.3923i −0.261364 0.452696i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) −0.500000 + 4.33013i −0.0216777 + 0.187735i
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) −1.50000 + 2.59808i −0.0647901 + 0.112220i
\(537\) 0 0
\(538\) 1.00000 1.73205i 0.0431131 0.0746740i
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 15.5000 26.8468i 0.666397 1.15423i −0.312507 0.949915i \(-0.601169\pi\)
0.978905 0.204318i \(-0.0654977\pi\)
\(542\) 8.00000 13.8564i 0.343629 0.595184i
\(543\) 0 0
\(544\) −4.00000 −0.171499
\(545\) 0 0
\(546\) 0 0
\(547\) −5.50000 + 9.52628i −0.235163 + 0.407314i −0.959320 0.282321i \(-0.908896\pi\)
0.724157 + 0.689635i \(0.242229\pi\)
\(548\) −3.00000 5.19615i −0.128154 0.221969i
\(549\) 0 0
\(550\) −10.0000 −0.426401
\(551\) 0 0
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.0212622 0.0368271i
\(554\) 1.00000 + 1.73205i 0.0424859 + 0.0735878i
\(555\) 0 0
\(556\) 9.50000 + 16.4545i 0.402890 + 0.697826i
\(557\) 17.0000 29.4449i 0.720313 1.24762i −0.240561 0.970634i \(-0.577331\pi\)
0.960874 0.276985i \(-0.0893352\pi\)
\(558\) 0 0
\(559\) 27.0000 1.14198
\(560\) 0 0
\(561\) 0 0
\(562\) 8.00000 0.337460
\(563\) 6.00000 0.252870 0.126435 0.991975i \(-0.459647\pi\)
0.126435 + 0.991975i \(0.459647\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 10.0000 17.3205i 0.420331 0.728035i
\(567\) 0 0
\(568\) 7.00000 + 12.1244i 0.293713 + 0.508727i
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) 3.00000 + 5.19615i 0.125436 + 0.217262i
\(573\) 0 0
\(574\) 2.00000 3.46410i 0.0834784 0.144589i
\(575\) −10.0000 17.3205i −0.417029 0.722315i
\(576\) 0 0
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 0 0
\(583\) −4.00000 + 6.92820i −0.165663 + 0.286937i
\(584\) 5.50000 + 9.52628i 0.227592 + 0.394200i
\(585\) 0 0
\(586\) 7.00000 + 12.1244i 0.289167 + 0.500853i
\(587\) −1.00000 1.73205i −0.0412744 0.0714894i 0.844650 0.535319i \(-0.179808\pi\)
−0.885925 + 0.463829i \(0.846475\pi\)
\(588\) 0 0
\(589\) −12.0000 + 5.19615i −0.494451 + 0.214104i
\(590\) 0 0
\(591\) 0 0
\(592\) 2.50000 + 4.33013i 0.102749 + 0.177967i
\(593\) 17.0000 29.4449i 0.698106 1.20916i −0.271016 0.962575i \(-0.587360\pi\)
0.969122 0.246581i \(-0.0793071\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 22.0000 0.901155
\(597\) 0 0
\(598\) −6.00000 + 10.3923i −0.245358 + 0.424973i
\(599\) −23.0000 + 39.8372i −0.939755 + 1.62770i −0.173826 + 0.984776i \(0.555613\pi\)
−0.765928 + 0.642926i \(0.777720\pi\)
\(600\) 0 0
\(601\) 27.0000 1.10135 0.550676 0.834719i \(-0.314370\pi\)
0.550676 + 0.834719i \(0.314370\pi\)
\(602\) 4.50000 7.79423i 0.183406 0.317669i
\(603\) 0 0
\(604\) 10.0000 17.3205i 0.406894 0.704761i
\(605\) 0 0
\(606\) 0 0
\(607\) 5.00000 0.202944 0.101472 0.994838i \(-0.467645\pi\)
0.101472 + 0.994838i \(0.467645\pi\)
\(608\) −0.500000 + 4.33013i −0.0202777 + 0.175610i
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0000 25.9808i −0.606835 1.05107i
\(612\) 0 0
\(613\) −1.00000 1.73205i −0.0403896 0.0699569i 0.845124 0.534570i \(-0.179527\pi\)
−0.885514 + 0.464614i \(0.846193\pi\)
\(614\) 6.00000 10.3923i 0.242140 0.419399i
\(615\) 0 0
\(616\) 2.00000 0.0805823
\(617\) −21.0000 + 36.3731i −0.845428 + 1.46432i 0.0398207 + 0.999207i \(0.487321\pi\)
−0.885249 + 0.465118i \(0.846012\pi\)
\(618\) 0 0
\(619\) 1.00000 0.0401934 0.0200967 0.999798i \(-0.493603\pi\)
0.0200967 + 0.999798i \(0.493603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5.00000 + 8.66025i 0.200482 + 0.347245i
\(623\) −7.00000 + 12.1244i −0.280449 + 0.485752i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) −21.0000 −0.837991
\(629\) −10.0000 17.3205i −0.398726 0.690614i
\(630\) 0 0
\(631\) −8.50000 + 14.7224i −0.338380 + 0.586091i −0.984128 0.177459i \(-0.943212\pi\)
0.645748 + 0.763550i \(0.276545\pi\)
\(632\) −0.500000 0.866025i −0.0198889 0.0344486i
\(633\) 0 0
\(634\) −12.0000 −0.476581
\(635\) 0 0
\(636\) 0 0
\(637\) −9.00000 + 15.5885i −0.356593 + 0.617637i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.00000 12.1244i −0.276483 0.478883i 0.694025 0.719951i \(-0.255836\pi\)
−0.970508 + 0.241068i \(0.922502\pi\)
\(642\) 0 0
\(643\) −18.5000 32.0429i −0.729569 1.26365i −0.957066 0.289871i \(-0.906387\pi\)
0.227497 0.973779i \(-0.426946\pi\)
\(644\) 2.00000 + 3.46410i 0.0788110 + 0.136505i
\(645\) 0 0
\(646\) 2.00000 17.3205i 0.0786889 0.681466i
\(647\) −48.0000 −1.88707 −0.943537 0.331266i \(-0.892524\pi\)
−0.943537 + 0.331266i \(0.892524\pi\)
\(648\) 0 0
\(649\) −14.0000 24.2487i −0.549548 0.951845i
\(650\) −7.50000 + 12.9904i −0.294174 + 0.509525i
\(651\) 0 0
\(652\) −5.50000 + 9.52628i −0.215397 + 0.373078i
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.00000 3.46410i 0.0780869 0.135250i
\(657\) 0 0
\(658\) −10.0000 −0.389841
\(659\) −7.00000 + 12.1244i −0.272681 + 0.472298i −0.969548 0.244903i \(-0.921244\pi\)
0.696866 + 0.717201i \(0.254577\pi\)
\(660\) 0 0
\(661\) −5.00000 + 8.66025i −0.194477 + 0.336845i −0.946729 0.322031i \(-0.895634\pi\)
0.752252 + 0.658876i \(0.228968\pi\)
\(662\) −7.50000 12.9904i −0.291496 0.504885i
\(663\) 0 0
\(664\) −8.00000 −0.310460
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 3.00000 + 5.19615i 0.116073 + 0.201045i
\(669\) 0 0
\(670\) 0 0
\(671\) −11.0000 + 19.0526i −0.424650 + 0.735516i
\(672\) 0 0
\(673\) −1.00000 −0.0385472 −0.0192736 0.999814i \(-0.506135\pi\)
−0.0192736 + 0.999814i \(0.506135\pi\)
\(674\) 9.50000 16.4545i 0.365926 0.633803i
\(675\) 0 0
\(676\) −4.00000 −0.153846
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) −1.00000 1.73205i −0.0383765 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 3.00000 + 5.19615i 0.114876 + 0.198971i
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 6.50000 + 11.2583i 0.248171 + 0.429845i
\(687\) 0 0
\(688\) 4.50000 7.79423i 0.171561 0.297152i
\(689\) 6.00000 + 10.3923i 0.228582 + 0.395915i
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 24.0000 0.912343
\(693\) 0 0
\(694\) 8.00000 13.8564i 0.303676 0.525982i
\(695\) 0 0
\(696\) 0 0
\(697\) −8.00000 + 13.8564i −0.303022 + 0.524849i
\(698\) 14.5000 + 25.1147i 0.548833 + 0.950607i
\(699\) 0 0
\(700\) 2.50000 + 4.33013i 0.0944911 + 0.163663i
\(701\) −22.0000 38.1051i −0.830929 1.43921i −0.897303 0.441416i \(-0.854476\pi\)
0.0663742 0.997795i \(-0.478857\pi\)
\(702\) 0 0
\(703\) −20.0000 + 8.66025i −0.754314 + 0.326628i
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) −6.00000 10.3923i −0.225813 0.391120i
\(707\) −5.00000 + 8.66025i −0.188044 + 0.325702i
\(708\) 0 0
\(709\) 15.5000 26.8468i 0.582115 1.00825i −0.413114 0.910679i \(-0.635559\pi\)
0.995228 0.0975728i \(-0.0311079\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −7.00000 + 12.1244i −0.262336 + 0.454379i
\(713\) −6.00000 + 10.3923i −0.224702 + 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 2.00000 3.46410i 0.0747435 0.129460i
\(717\) 0 0
\(718\) −18.0000 + 31.1769i −0.671754 + 1.16351i
\(719\) 20.0000 + 34.6410i 0.745874 + 1.29189i 0.949785 + 0.312903i \(0.101301\pi\)
−0.203911 + 0.978989i \(0.565365\pi\)
\(720\) 0 0
\(721\) −3.00000 −0.111726
\(722\) −18.5000 4.33013i −0.688499 0.161151i
\(723\) 0 0
\(724\) 9.00000 + 15.5885i 0.334482 + 0.579340i
\(725\) 0 0
\(726\) 0 0
\(727\) −8.50000 14.7224i −0.315248 0.546025i 0.664243 0.747517i \(-0.268754\pi\)
−0.979490 + 0.201492i \(0.935421\pi\)
\(728\) 1.50000 2.59808i 0.0555937 0.0962911i
\(729\) 0 0
\(730\) 0 0
\(731\) −18.0000 + 31.1769i −0.665754 + 1.15312i
\(732\) 0 0
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 23.0000 0.848945
\(735\) 0 0
\(736\) 2.00000 + 3.46410i 0.0737210 + 0.127688i
\(737\) −3.00000 + 5.19615i −0.110506 + 0.191403i
\(738\) 0 0
\(739\) 2.50000 + 4.33013i 0.0919640 + 0.159286i 0.908337 0.418238i \(-0.137352\pi\)
−0.816373 + 0.577524i \(0.804019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.00000 0.146845
\(743\) −9.00000 15.5885i −0.330178 0.571885i 0.652369 0.757902i \(-0.273775\pi\)
−0.982547 + 0.186017i \(0.940442\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −13.0000 22.5167i −0.475964 0.824394i
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 10.0000 0.365392
\(750\) 0 0
\(751\) −6.50000 + 11.2583i −0.237188 + 0.410822i −0.959906 0.280321i \(-0.909559\pi\)
0.722718 + 0.691143i \(0.242893\pi\)
\(752\) −10.0000 −0.364662
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.50000 4.33013i −0.0908640 0.157381i 0.817011 0.576622i \(-0.195630\pi\)
−0.907875 + 0.419241i \(0.862296\pi\)
\(758\) 6.50000 + 11.2583i 0.236091 + 0.408921i
\(759\) 0 0
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) −7.00000 12.1244i −0.253417 0.438931i
\(764\) −4.00000 + 6.92820i −0.144715 + 0.250654i
\(765\) 0 0
\(766\) 7.00000 12.1244i 0.252920 0.438071i
\(767\) −42.0000 −1.51653
\(768\) 0 0
\(769\) −13.5000 + 23.3827i −0.486822 + 0.843201i −0.999885 0.0151499i \(-0.995177\pi\)
0.513063 + 0.858351i \(0.328511\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13.0000 −0.467880
\(773\) −9.00000 + 15.5885i −0.323708 + 0.560678i −0.981250 0.192740i \(-0.938263\pi\)
0.657542 + 0.753418i \(0.271596\pi\)
\(774\) 0 0
\(775\) −7.50000 + 12.9904i −0.269408 + 0.466628i
\(776\) −1.00000 1.73205i −0.0358979 0.0621770i
\(777\) 0 0
\(778\) 16.0000 0.573628
\(779\) 14.0000 + 10.3923i 0.501602 + 0.372343i
\(780\) 0 0
\(781\) 14.0000 + 24.2487i 0.500959 + 0.867687i
\(782\) −8.00000 13.8564i −0.286079 0.495504i
\(783\) 0 0
\(784\) 3.00000 + 5.19615i 0.107143 + 0.185577i
\(785\) 0 0
\(786\) 0 0
\(787\) −47.0000 −1.67537 −0.837685 0.546154i \(-0.816091\pi\)
−0.837685 + 0.546154i \(0.816091\pi\)
\(788\) −1.00000 + 1.73205i −0.0356235 + 0.0617018i
\(789\) 0 0
\(790\) 0 0
\(791\) −10.0000 −0.355559
\(792\) 0 0
\(793\) 16.5000 + 28.5788i 0.585932 + 1.01486i
\(794\) −7.50000 + 12.9904i −0.266165 + 0.461011i
\(795\) 0 0
\(796\) −2.50000 4.33013i −0.0886102 0.153477i
\(797\) −26.0000 −0.920967 −0.460484 0.887668i \(-0.652324\pi\)
−0.460484 + 0.887668i \(0.652324\pi\)
\(798\) 0 0
\(799\) 40.0000 1.41510
\(800\) 2.50000 + 4.33013i 0.0883883 + 0.153093i
\(801\) 0 0
\(802\) 9.00000 15.5885i 0.317801 0.550448i
\(803\) 11.0000 + 19.0526i 0.388182 + 0.672350i
\(804\) 0 0
\(805\) 0 0
\(806\) 9.00000 0.317011
\(807\) 0 0
\(808\) −5.00000 + 8.66025i −0.175899 + 0.304667i
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −2.00000 + 3.46410i −0.0702295 + 0.121641i −0.899002 0.437945i \(-0.855706\pi\)
0.828772 + 0.559586i \(0.189040\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.00000 + 8.66025i 0.175250 + 0.303542i
\(815\) 0 0
\(816\) 0 0
\(817\) 31.5000 + 23.3827i 1.10205 + 0.818057i
\(818\) −30.0000 −1.04893
\(819\) 0 0
\(820\) 0 0
\(821\) 24.0000 41.5692i 0.837606 1.45078i −0.0542853 0.998525i \(-0.517288\pi\)
0.891891 0.452250i \(-0.149379\pi\)
\(822\) 0 0
\(823\) −2.00000 + 3.46410i −0.0697156 + 0.120751i −0.898776 0.438408i \(-0.855543\pi\)
0.829060 + 0.559159i \(0.188876\pi\)
\(824\) −3.00000 −0.104510
\(825\) 0 0
\(826\) −7.00000 + 12.1244i −0.243561 + 0.421860i
\(827\) 18.0000 31.1769i 0.625921 1.08413i −0.362441 0.932007i \(-0.618056\pi\)
0.988362 0.152121i \(-0.0486102\pi\)
\(828\) 0 0
\(829\) −31.0000 −1.07667 −0.538337 0.842729i \(-0.680947\pi\)
−0.538337 + 0.842729i \(0.680947\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.50000 2.59808i 0.0520031 0.0900721i
\(833\) −12.0000 20.7846i −0.415775 0.720144i
\(834\) 0 0
\(835\) 0 0
\(836\) −1.00000 + 8.66025i −0.0345857 + 0.299521i
\(837\) 0 0
\(838\) 9.00000 + 15.5885i 0.310900 + 0.538494i
\(839\) −6.00000 10.3923i −0.207143 0.358782i 0.743670 0.668546i \(-0.233083\pi\)
−0.950813 + 0.309764i \(0.899750\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) −5.00000 + 8.66025i −0.172311 + 0.298452i
\(843\) 0 0
\(844\) 25.0000 0.860535
\(845\) 0 0
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 4.00000 0.137361
\(849\) 0 0
\(850\) −10.0000 17.3205i −0.342997 0.594089i
\(851\) −10.0000 + 17.3205i −0.342796 + 0.593739i
\(852\) 0 0
\(853\) −1.50000 2.59808i −0.0513590 0.0889564i 0.839203 0.543818i \(-0.183022\pi\)
−0.890562 + 0.454862i \(0.849689\pi\)
\(854\) 11.0000 0.376412
\(855\) 0 0
\(856\) 10.0000 0.341793
\(857\) 21.0000 + 36.3731i 0.717346 + 1.24248i 0.962048 + 0.272882i \(0.0879768\pi\)
−0.244701 + 0.969599i \(0.578690\pi\)
\(858\) 0 0
\(859\) −3.50000 + 6.06218i −0.119418 + 0.206839i −0.919537 0.393003i \(-0.871436\pi\)
0.800119 + 0.599841i \(0.204770\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.0000 0.340601
\(863\) 22.0000 0.748889 0.374444 0.927249i \(-0.377833\pi\)
0.374444 + 0.927249i \(0.377833\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −9.00000 −0.305832
\(867\) 0 0
\(868\) 1.50000 2.59808i 0.0509133 0.0881845i
\(869\) −1.00000 1.73205i −0.0339227 0.0587558i
\(870\) 0 0
\(871\) 4.50000 + 7.79423i 0.152477 + 0.264097i
\(872\) −7.00000 12.1244i −0.237050 0.410582i
\(873\) 0 0
\(874\) −16.0000 + 6.92820i −0.541208 + 0.234350i
\(875\) 0 0
\(876\) 0 0
\(877\) 12.5000 + 21.6506i 0.422095 + 0.731090i 0.996144 0.0877308i \(-0.0279615\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(878\) −9.50000 + 16.4545i −0.320609 + 0.555312i
\(879\) 0 0
\(880\) 0 0
\(881\) −36.0000 −1.21287 −0.606435 0.795133i \(-0.707401\pi\)
−0.606435 + 0.795133i \(0.707401\pi\)
\(882\) 0 0
\(883\) 4.50000 7.79423i 0.151437 0.262297i −0.780319 0.625382i \(-0.784943\pi\)
0.931756 + 0.363085i \(0.118277\pi\)
\(884\) −6.00000 + 10.3923i −0.201802 + 0.349531i
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 9.00000 15.5885i 0.302190 0.523409i −0.674441 0.738328i \(-0.735615\pi\)
0.976632 + 0.214919i \(0.0689488\pi\)
\(888\) 0 0
\(889\) 4.00000 6.92820i 0.134156 0.232364i
\(890\) 0 0
\(891\) 0 0
\(892\) 9.00000 0.301342
\(893\) 5.00000 43.3013i 0.167319 1.44902i
\(894\) 0 0
\(895\) 0 0
\(896\) −0.500000 0.866025i −0.0167038 0.0289319i
\(897\) 0 0
\(898\) −18.0000 31.1769i −0.600668 1.04039i
\(899\) 0 0
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) 4.00000 6.92820i 0.133185 0.230684i
\(903\) 0 0
\(904\) −10.0000 −0.332595
\(905\) 0 0
\(906\) 0 0
\(907\) −26.0000 45.0333i −0.863316 1.49531i −0.868710 0.495321i \(-0.835050\pi\)
0.00539395 0.999985i \(-0.498283\pi\)
\(908\) 4.00000 6.92820i 0.132745 0.229920i
\(909\) 0 0
\(910\) 0 0
\(911\) 60.0000 1.98789 0.993944 0.109885i \(-0.0350482\pi\)
0.993944 + 0.109885i \(0.0350482\pi\)
\(912\) 0 0
\(913\) −16.0000 −0.529523
\(914\) −2.50000 4.33013i −0.0826927 0.143228i
\(915\) 0 0
\(916\) 5.50000 9.52628i 0.181725 0.314757i
\(917\) −3.00000 5.19615i −0.0990687 0.171592i
\(918\) 0 0
\(919\) 55.0000 1.81428 0.907141 0.420826i \(-0.138260\pi\)
0.907141 + 0.420826i \(0.138260\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 3.00000 5.19615i 0.0987997 0.171126i
\(923\) 42.0000 1.38245
\(924\) 0 0
\(925\) −12.5000 + 21.6506i −0.410997 + 0.711868i
\(926\) 4.50000 + 7.79423i 0.147879 + 0.256134i
\(927\) 0 0
\(928\) 0 0
\(929\) 6.00000 + 10.3923i 0.196854 + 0.340960i 0.947507 0.319736i \(-0.103594\pi\)
−0.750653 + 0.660697i \(0.770261\pi\)
\(930\) 0 0
\(931\) −24.0000 + 10.3923i −0.786568 + 0.340594i
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 4.00000 + 6.92820i 0.130884 + 0.226698i
\(935\) 0 0
\(936\) 0 0
\(937\) 12.5000 21.6506i 0.408357 0.707295i −0.586349 0.810059i \(-0.699435\pi\)
0.994706 + 0.102763i \(0.0327685\pi\)
\(938\) 3.00000 0.0979535
\(939\) 0 0
\(940\) 0 0
\(941\) −16.0000 + 27.7128i −0.521585 + 0.903412i 0.478100 + 0.878306i \(0.341326\pi\)
−0.999685 + 0.0251063i \(0.992008\pi\)
\(942\) 0 0
\(943\) 16.0000 0.521032
\(944\) −7.00000 + 12.1244i −0.227831 + 0.394614i
\(945\) 0 0
\(946\) 9.00000 15.5885i 0.292615 0.506824i
\(947\) 5.00000 + 8.66025i 0.162478 + 0.281420i 0.935757 0.352646i \(-0.114718\pi\)
−0.773279 + 0.634066i \(0.781385\pi\)
\(948\) 0 0
\(949\) 33.0000 1.07123
\(950\) −20.0000 + 8.66025i −0.648886 + 0.280976i
\(951\) 0 0
\(952\) 2.00000 + 3.46410i 0.0648204 + 0.112272i
\(953\) −15.0000 25.9808i −0.485898 0.841599i 0.513971 0.857808i \(-0.328174\pi\)
−0.999869 + 0.0162081i \(0.994841\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −6.00000 + 10.3923i −0.194054 + 0.336111i
\(957\) 0 0
\(958\) −6.00000 −0.193851
\(959\) −3.00000 + 5.19615i −0.0968751 + 0.167793i
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 15.0000 0.483619
\(963\) 0 0
\(964\) −12.5000 21.6506i −0.402598 0.697320i
\(965\) 0 0
\(966\) 0 0
\(967\) −25.5000 44.1673i −0.820025 1.42032i −0.905663 0.423998i \(-0.860626\pi\)
0.0856383 0.996326i \(-0.472707\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) 0 0
\(971\) 3.00000 + 5.19615i 0.0962746 + 0.166752i 0.910140 0.414301i \(-0.135974\pi\)
−0.813865 + 0.581054i \(0.802641\pi\)
\(972\) 0 0
\(973\) 9.50000 16.4545i 0.304556 0.527506i
\(974\) −16.0000 27.7128i −0.512673 0.887976i
\(975\) 0 0
\(976\) 11.0000 0.352101
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) −14.0000 + 24.2487i −0.447442 + 0.774992i
\(980\) 0 0
\(981\) 0 0
\(982\) 15.0000 25.9808i 0.478669 0.829079i
\(983\) −3.00000 5.19615i −0.0956851 0.165732i 0.814209 0.580572i \(-0.197171\pi\)
−0.909894 + 0.414840i \(0.863838\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 10.5000 + 7.79423i 0.334050 + 0.247967i
\(989\) 36.0000 1.14473
\(990\) 0 0
\(991\) 8.50000 + 14.7224i 0.270011 + 0.467673i 0.968864 0.247592i \(-0.0796392\pi\)
−0.698853 + 0.715265i \(0.746306\pi\)
\(992\) 1.50000 2.59808i 0.0476250 0.0824890i
\(993\) 0 0
\(994\) 7.00000 12.1244i 0.222027 0.384561i
\(995\) 0 0
\(996\) 0 0
\(997\) 24.5000 42.4352i 0.775923 1.34394i −0.158352 0.987383i \(-0.550618\pi\)
0.934274 0.356555i \(-0.116049\pi\)
\(998\) −2.50000 + 4.33013i −0.0791361 + 0.137068i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 342.2.g.c.235.1 2
3.2 odd 2 114.2.e.b.7.1 2
4.3 odd 2 2736.2.s.k.577.1 2
12.11 even 2 912.2.q.b.577.1 2
19.7 even 3 6498.2.a.u.1.1 1
19.11 even 3 inner 342.2.g.c.163.1 2
19.12 odd 6 6498.2.a.g.1.1 1
57.11 odd 6 114.2.e.b.49.1 yes 2
57.26 odd 6 2166.2.a.b.1.1 1
57.50 even 6 2166.2.a.h.1.1 1
76.11 odd 6 2736.2.s.k.1873.1 2
228.11 even 6 912.2.q.b.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
114.2.e.b.7.1 2 3.2 odd 2
114.2.e.b.49.1 yes 2 57.11 odd 6
342.2.g.c.163.1 2 19.11 even 3 inner
342.2.g.c.235.1 2 1.1 even 1 trivial
912.2.q.b.49.1 2 228.11 even 6
912.2.q.b.577.1 2 12.11 even 2
2166.2.a.b.1.1 1 57.26 odd 6
2166.2.a.h.1.1 1 57.50 even 6
2736.2.s.k.577.1 2 4.3 odd 2
2736.2.s.k.1873.1 2 76.11 odd 6
6498.2.a.g.1.1 1 19.12 odd 6
6498.2.a.u.1.1 1 19.7 even 3