Properties

Label 342.2.g
Level $342$
Weight $2$
Character orbit 342.g
Rep. character $\chi_{342}(163,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $14$
Newform subspaces $6$
Sturm bound $120$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 342.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(120\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(342, [\chi])\).

Total New Old
Modular forms 136 14 122
Cusp forms 104 14 90
Eisenstein series 32 0 32

Trace form

\( 14 q + q^{2} - 7 q^{4} - 2 q^{5} + 4 q^{7} - 2 q^{8} - 2 q^{10} + 2 q^{11} + 6 q^{13} + 2 q^{14} - 7 q^{16} - 2 q^{17} - 11 q^{19} + 4 q^{20} - q^{22} - 4 q^{23} - 5 q^{25} + 4 q^{26} - 2 q^{28} + 2 q^{29}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(342, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
342.2.g.a 342.g 19.c $2$ $2.731$ \(\Q(\sqrt{-3}) \) None 342.2.g.a \(-1\) \(0\) \(-2\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-2+2\zeta_{6})q^{5}+\cdots\)
342.2.g.b 342.g 19.c $2$ $2.731$ \(\Q(\sqrt{-3}) \) None 38.2.c.a \(-1\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-4q^{7}+q^{8}+\cdots\)
342.2.g.c 342.g 19.c $2$ $2.731$ \(\Q(\sqrt{-3}) \) None 114.2.e.b \(-1\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{7}+q^{8}+\cdots\)
342.2.g.d 342.g 19.c $2$ $2.731$ \(\Q(\sqrt{-3}) \) None 114.2.e.a \(1\) \(0\) \(-4\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-4+4\zeta_{6})q^{5}+\cdots\)
342.2.g.e 342.g 19.c $2$ $2.731$ \(\Q(\sqrt{-3}) \) None 342.2.g.a \(1\) \(0\) \(2\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(2-2\zeta_{6})q^{5}+\cdots\)
342.2.g.f 342.g 19.c $4$ $2.731$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 38.2.c.b \(2\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{2}+\beta _{2}q^{4}+(1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(342, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(342, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)