Defining parameters
| Level: | \( N \) | \(=\) | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 342.g (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(342, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 136 | 14 | 122 |
| Cusp forms | 104 | 14 | 90 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(342, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 342.2.g.a | $2$ | $2.731$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(-2\) | \(6\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-2+2\zeta_{6})q^{5}+\cdots\) |
| 342.2.g.b | $2$ | $2.731$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(0\) | \(-8\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-4q^{7}+q^{8}+\cdots\) |
| 342.2.g.c | $2$ | $2.731$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(0\) | \(2\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{7}+q^{8}+\cdots\) |
| 342.2.g.d | $2$ | $2.731$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(-4\) | \(-6\) | \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(-4+4\zeta_{6})q^{5}+\cdots\) |
| 342.2.g.e | $2$ | $2.731$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(2\) | \(6\) | \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(2-2\zeta_{6})q^{5}+\cdots\) |
| 342.2.g.f | $4$ | $2.731$ | \(\Q(\sqrt{-3}, \sqrt{7})\) | None | \(2\) | \(0\) | \(2\) | \(4\) | \(q+(1+\beta _{2})q^{2}+\beta _{2}q^{4}+(1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(342, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(342, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)