Properties

Label 342.2.bb
Level $342$
Weight $2$
Character orbit 342.bb
Rep. character $\chi_{342}(53,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $48$
Newform subspaces $2$
Sturm bound $120$
Trace bound $8$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 342.bb (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 2 \)
Sturm bound: \(120\)
Trace bound: \(8\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(342, [\chi])\).

Total New Old
Modular forms 408 48 360
Cusp forms 312 48 264
Eisenstein series 96 0 96

Trace form

\( 48 q + 48 q^{19} + 24 q^{22} + 72 q^{25} + 24 q^{34} - 72 q^{46} - 72 q^{49} - 120 q^{55} - 48 q^{58} - 120 q^{61} - 24 q^{64} - 96 q^{70} + 48 q^{79} + 24 q^{82} - 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(342, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
342.2.bb.a 342.bb 57.j $24$ $2.731$ None 342.2.bb.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$
342.2.bb.b 342.bb 57.j $24$ $2.731$ None 342.2.bb.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(342, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(342, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)