Newspace parameters
Level: | \( N \) | \(=\) | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 342.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.73088374913\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-2}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 2 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/342\mathbb{Z}\right)^\times\).
\(n\) | \(191\) | \(325\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
341.1 |
|
−1.00000 | 0 | 1.00000 | − | 1.41421i | 0 | 2.00000 | −1.00000 | 0 | 1.41421i | |||||||||||||||||||||||
341.2 | −1.00000 | 0 | 1.00000 | 1.41421i | 0 | 2.00000 | −1.00000 | 0 | − | 1.41421i | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
57.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 342.2.b.a | ✓ | 2 |
3.b | odd | 2 | 1 | 342.2.b.b | yes | 2 | |
4.b | odd | 2 | 1 | 2736.2.f.b | 2 | ||
12.b | even | 2 | 1 | 2736.2.f.a | 2 | ||
19.b | odd | 2 | 1 | 342.2.b.b | yes | 2 | |
57.d | even | 2 | 1 | inner | 342.2.b.a | ✓ | 2 |
76.d | even | 2 | 1 | 2736.2.f.a | 2 | ||
228.b | odd | 2 | 1 | 2736.2.f.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
342.2.b.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
342.2.b.a | ✓ | 2 | 57.d | even | 2 | 1 | inner |
342.2.b.b | yes | 2 | 3.b | odd | 2 | 1 | |
342.2.b.b | yes | 2 | 19.b | odd | 2 | 1 | |
2736.2.f.a | 2 | 12.b | even | 2 | 1 | ||
2736.2.f.a | 2 | 76.d | even | 2 | 1 | ||
2736.2.f.b | 2 | 4.b | odd | 2 | 1 | ||
2736.2.f.b | 2 | 228.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{29} - 6 \)
acting on \(S_{2}^{\mathrm{new}}(342, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 1)^{2} \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 2 \)
$7$
\( (T - 2)^{2} \)
$11$
\( T^{2} + 2 \)
$13$
\( T^{2} \)
$17$
\( T^{2} + 2 \)
$19$
\( T^{2} - 2T + 19 \)
$23$
\( T^{2} + 2 \)
$29$
\( (T - 6)^{2} \)
$31$
\( T^{2} \)
$37$
\( T^{2} + 72 \)
$41$
\( (T - 6)^{2} \)
$43$
\( (T + 4)^{2} \)
$47$
\( T^{2} + 50 \)
$53$
\( (T - 6)^{2} \)
$59$
\( T^{2} \)
$61$
\( (T + 4)^{2} \)
$67$
\( T^{2} + 72 \)
$71$
\( (T + 12)^{2} \)
$73$
\( (T + 10)^{2} \)
$79$
\( T^{2} + 72 \)
$83$
\( T^{2} + 242 \)
$89$
\( (T - 6)^{2} \)
$97$
\( T^{2} + 72 \)
show more
show less