Defining parameters
Level: | \( N \) | \(=\) | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 342.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(342, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 68 | 4 | 64 |
Cusp forms | 52 | 4 | 48 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(342, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
342.2.b.a | $2$ | $2.731$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(0\) | \(0\) | \(4\) | \(q-q^{2}+q^{4}+\beta q^{5}+2q^{7}-q^{8}-\beta q^{10}+\cdots\) |
342.2.b.b | $2$ | $2.731$ | \(\Q(\sqrt{-2}) \) | None | \(2\) | \(0\) | \(0\) | \(4\) | \(q+q^{2}+q^{4}+\beta q^{5}+2q^{7}+q^{8}+\beta q^{10}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(342, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(342, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)