Properties

Label 342.2.a
Level $342$
Weight $2$
Character orbit 342.a
Rep. character $\chi_{342}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $7$
Sturm bound $120$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 342 = 2 \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 342.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(120\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(342))\).

Total New Old
Modular forms 68 7 61
Cusp forms 53 7 46
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(5\)\(1\)\(4\)\(4\)\(1\)\(3\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(11\)\(0\)\(11\)\(9\)\(0\)\(9\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(10\)\(2\)\(8\)\(8\)\(2\)\(6\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(7\)\(1\)\(6\)\(5\)\(1\)\(4\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(9\)\(1\)\(8\)\(7\)\(1\)\(6\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(9\)\(0\)\(9\)\(7\)\(0\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(10\)\(0\)\(10\)\(8\)\(0\)\(8\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(7\)\(2\)\(5\)\(5\)\(2\)\(3\)\(2\)\(0\)\(2\)
Plus space\(+\)\(31\)\(2\)\(29\)\(24\)\(2\)\(22\)\(7\)\(0\)\(7\)
Minus space\(-\)\(37\)\(5\)\(32\)\(29\)\(5\)\(24\)\(8\)\(0\)\(8\)

Trace form

\( 7 q - q^{2} + 7 q^{4} + 2 q^{5} + 2 q^{7} - q^{8} + 2 q^{10} + 4 q^{11} - 6 q^{13} + 4 q^{14} + 7 q^{16} - 4 q^{17} - q^{19} + 2 q^{20} + 4 q^{22} + 10 q^{23} - 7 q^{25} + 8 q^{26} + 2 q^{28} - 2 q^{29}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(342))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 19
342.2.a.a 342.a 1.a $1$ $2.731$ \(\Q\) None 342.2.a.a \(-1\) \(0\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-q^{8}+2q^{10}-2q^{11}+\cdots\)
342.2.a.b 342.a 1.a $1$ $2.731$ \(\Q\) None 114.2.a.b \(-1\) \(0\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-q^{8}+2q^{10}+4q^{11}+\cdots\)
342.2.a.c 342.a 1.a $1$ $2.731$ \(\Q\) None 114.2.a.c \(-1\) \(0\) \(0\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{7}-q^{8}-4q^{13}+4q^{14}+\cdots\)
342.2.a.d 342.a 1.a $1$ $2.731$ \(\Q\) None 38.2.a.b \(-1\) \(0\) \(4\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{5}+3q^{7}-q^{8}-4q^{10}+\cdots\)
342.2.a.e 342.a 1.a $1$ $2.731$ \(\Q\) None 38.2.a.a \(1\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{7}+q^{8}+6q^{11}+5q^{13}+\cdots\)
342.2.a.f 342.a 1.a $1$ $2.731$ \(\Q\) None 114.2.a.a \(1\) \(0\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{7}+q^{8}-4q^{11}+4q^{14}+\cdots\)
342.2.a.g 342.a 1.a $1$ $2.731$ \(\Q\) None 342.2.a.a \(1\) \(0\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+q^{8}+2q^{10}+2q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(342))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(342)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)