Properties

Label 3400.2.a
Level $3400$
Weight $2$
Character orbit 3400.a
Rep. character $\chi_{3400}(1,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $25$
Sturm bound $1080$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3400 = 2^{3} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3400.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 25 \)
Sturm bound: \(1080\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3400))\).

Total New Old
Modular forms 564 76 488
Cusp forms 517 76 441
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(66\)\(7\)\(59\)\(61\)\(7\)\(54\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(72\)\(11\)\(61\)\(66\)\(11\)\(55\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(73\)\(12\)\(61\)\(67\)\(12\)\(55\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(71\)\(8\)\(63\)\(65\)\(8\)\(57\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(75\)\(8\)\(67\)\(69\)\(8\)\(61\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(69\)\(10\)\(59\)\(63\)\(10\)\(53\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(68\)\(10\)\(58\)\(62\)\(10\)\(52\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(70\)\(10\)\(60\)\(64\)\(10\)\(54\)\(6\)\(0\)\(6\)
Plus space\(+\)\(274\)\(35\)\(239\)\(251\)\(35\)\(216\)\(23\)\(0\)\(23\)
Minus space\(-\)\(290\)\(41\)\(249\)\(266\)\(41\)\(225\)\(24\)\(0\)\(24\)

Trace form

\( 76 q - 2 q^{3} - 8 q^{7} + 72 q^{9} + 2 q^{11} - 4 q^{13} + 2 q^{17} - 8 q^{19} + 8 q^{21} - 4 q^{23} + 4 q^{27} + 6 q^{29} - 16 q^{31} + 4 q^{33} - 2 q^{37} - 12 q^{39} + 4 q^{41} - 20 q^{43} + 8 q^{47}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3400))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 17
3400.2.a.a 3400.a 1.a $1$ $27.149$ \(\Q\) None 680.2.a.c \(0\) \(-2\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{7}+q^{9}-2q^{11}-2q^{13}+\cdots\)
3400.2.a.b 3400.a 1.a $1$ $27.149$ \(\Q\) None 136.2.a.b \(0\) \(-2\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{9}+2q^{11}+6q^{13}+q^{17}+\cdots\)
3400.2.a.c 3400.a 1.a $1$ $27.149$ \(\Q\) None 680.2.e.a \(0\) \(-1\) \(0\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{7}-2q^{9}+2q^{11}-5q^{13}+\cdots\)
3400.2.a.d 3400.a 1.a $1$ $27.149$ \(\Q\) None 680.2.a.b \(0\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{9}+2q^{13}-q^{17}-4q^{19}+8q^{23}+\cdots\)
3400.2.a.e 3400.a 1.a $1$ $27.149$ \(\Q\) None 680.2.a.a \(0\) \(1\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}-2q^{9}+4q^{11}+q^{13}+\cdots\)
3400.2.a.f 3400.a 1.a $1$ $27.149$ \(\Q\) None 680.2.e.a \(0\) \(1\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{7}-2q^{9}+2q^{11}+5q^{13}+\cdots\)
3400.2.a.g 3400.a 1.a $1$ $27.149$ \(\Q\) None 136.2.a.a \(0\) \(2\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{7}+q^{9}-6q^{11}-2q^{13}+\cdots\)
3400.2.a.h 3400.a 1.a $2$ $27.149$ \(\Q(\sqrt{2}) \) None 680.2.a.e \(0\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-\beta q^{7}-q^{9}+(-2+3\beta )q^{11}+\cdots\)
3400.2.a.i 3400.a 1.a $2$ $27.149$ \(\Q(\sqrt{5}) \) None 136.2.a.c \(0\) \(2\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(-1-\beta )q^{7}+(3+2\beta )q^{9}+\cdots\)
3400.2.a.j 3400.a 1.a $2$ $27.149$ \(\Q(\sqrt{3}) \) None 680.2.a.d \(0\) \(2\) \(0\) \(6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(3-\beta )q^{7}+(1+2\beta )q^{9}+\cdots\)
3400.2.a.k 3400.a 1.a $3$ $27.149$ 3.3.940.1 None 680.2.a.h \(0\) \(-3\) \(0\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-1+\beta _{2})q^{7}+(3+\cdots)q^{9}+\cdots\)
3400.2.a.l 3400.a 1.a $3$ $27.149$ 3.3.1016.1 None 680.2.a.g \(0\) \(-1\) \(0\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-2-\beta _{2})q^{7}+(1+\beta _{1}+\beta _{2})q^{9}+\cdots\)
3400.2.a.m 3400.a 1.a $3$ $27.149$ 3.3.564.1 None 3400.2.a.m \(0\) \(-1\) \(0\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1+\beta _{1}-\beta _{2})q^{7}+(1+\beta _{2})q^{9}+\cdots\)
3400.2.a.n 3400.a 1.a $3$ $27.149$ 3.3.229.1 None 680.2.a.f \(0\) \(-1\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}+(-\beta _{1}+\beta _{2})q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)
3400.2.a.o 3400.a 1.a $3$ $27.149$ 3.3.148.1 None 3400.2.a.o \(0\) \(-1\) \(0\) \(3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(1+\beta _{2})q^{7}+(-1+\beta _{1}+\beta _{2})q^{9}+\cdots\)
3400.2.a.p 3400.a 1.a $3$ $27.149$ 3.3.148.1 None 3400.2.a.o \(0\) \(1\) \(0\) \(-3\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1-\beta _{2})q^{7}+(-1+\beta _{1}+\cdots)q^{9}+\cdots\)
3400.2.a.q 3400.a 1.a $3$ $27.149$ 3.3.564.1 None 3400.2.a.m \(0\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(1-\beta _{1}+\beta _{2})q^{7}+(1+\beta _{2})q^{9}+\cdots\)
3400.2.a.r 3400.a 1.a $5$ $27.149$ 5.5.1981136.1 None 3400.2.a.r \(0\) \(-3\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-1+\beta _{1}+\beta _{3}-\beta _{4})q^{7}+\cdots\)
3400.2.a.s 3400.a 1.a $5$ $27.149$ 5.5.4153680.1 None 3400.2.a.s \(0\) \(-1\) \(0\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1+\beta _{3})q^{7}+(2+\beta _{2}-\beta _{3}+\cdots)q^{9}+\cdots\)
3400.2.a.t 3400.a 1.a $5$ $27.149$ 5.5.563792.1 None 680.2.e.b \(0\) \(-1\) \(0\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(\beta _{1}+\beta _{3}-\beta _{4})q^{7}+(\beta _{1}+\beta _{2}+\cdots)q^{9}+\cdots\)
3400.2.a.u 3400.a 1.a $5$ $27.149$ 5.5.563792.1 None 680.2.e.b \(0\) \(1\) \(0\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-\beta _{1}-\beta _{3}+\beta _{4})q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
3400.2.a.v 3400.a 1.a $5$ $27.149$ 5.5.4153680.1 None 3400.2.a.s \(0\) \(1\) \(0\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(1-\beta _{3})q^{7}+(2+\beta _{2}-\beta _{3}+\cdots)q^{9}+\cdots\)
3400.2.a.w 3400.a 1.a $5$ $27.149$ 5.5.1981136.1 None 3400.2.a.r \(0\) \(3\) \(0\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(1-\beta _{1}-\beta _{3}+\beta _{4})q^{7}+\cdots\)
3400.2.a.x 3400.a 1.a $6$ $27.149$ 6.6.358395264.1 None 680.2.e.c \(0\) \(-4\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}-\beta _{4}q^{7}+(3-\beta _{1}-\beta _{2}+\cdots)q^{9}+\cdots\)
3400.2.a.y 3400.a 1.a $6$ $27.149$ 6.6.358395264.1 None 680.2.e.c \(0\) \(4\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+\beta _{4}q^{7}+(3-\beta _{1}-\beta _{2}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3400))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3400)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(340))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(425))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(680))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(850))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1700))\)\(^{\oplus 2}\)