Defining parameters
| Level: | \( N \) | \(=\) | \( 340 = 2^{2} \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 340.i (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 340 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(108\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(340, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 116 | 116 | 0 |
| Cusp forms | 100 | 100 | 0 |
| Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(340, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 340.2.i.a | $2$ | $2.715$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(2\) | \(0\) | \(2\) | \(0\) | \(q+(-i+1)q^{2}-2 i q^{4}+(2 i+1)q^{5}+\cdots\) |
| 340.2.i.b | $2$ | $2.715$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(2\) | \(0\) | \(4\) | \(0\) | \(q+(-i+1)q^{2}-2 i q^{4}+(-i+2)q^{5}+\cdots\) |
| 340.2.i.c | $96$ | $2.715$ | None | \(-4\) | \(0\) | \(-8\) | \(0\) | ||