Properties

Label 3381.2.a.w.1.4
Level $3381$
Weight $2$
Character 3381.1
Self dual yes
Analytic conductor $26.997$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3381,2,Mod(1,3381)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3381, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3381.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3381 = 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3381.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9974209234\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.24197.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.27460\) of defining polynomial
Character \(\chi\) \(=\) 3381.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.27460 q^{2} +1.00000 q^{3} +3.17380 q^{4} -2.39532 q^{5} +2.27460 q^{6} +2.66992 q^{8} +1.00000 q^{9} -5.44840 q^{10} -4.56912 q^{11} +3.17380 q^{12} -5.05307 q^{13} -2.39532 q^{15} -0.274599 q^{16} +1.44840 q^{17} +2.27460 q^{18} -1.98008 q^{19} -7.60227 q^{20} -10.3929 q^{22} -1.00000 q^{23} +2.66992 q^{24} +0.737570 q^{25} -11.4937 q^{26} +1.00000 q^{27} +3.68985 q^{29} -5.44840 q^{30} +3.44840 q^{31} -5.96444 q^{32} -4.56912 q^{33} +3.29452 q^{34} +3.17380 q^{36} -3.99759 q^{37} -4.50388 q^{38} -5.05307 q^{39} -6.39532 q^{40} -1.77848 q^{41} -1.25467 q^{43} -14.5015 q^{44} -2.39532 q^{45} -2.27460 q^{46} -2.87928 q^{47} -0.274599 q^{48} +1.67768 q^{50} +1.44840 q^{51} -16.0374 q^{52} -10.4128 q^{53} +2.27460 q^{54} +10.9445 q^{55} -1.98008 q^{57} +8.39292 q^{58} +14.1315 q^{59} -7.60227 q^{60} -8.37540 q^{61} +7.84372 q^{62} -13.0175 q^{64} +12.1037 q^{65} -10.3929 q^{66} -7.73517 q^{67} +4.59692 q^{68} -1.00000 q^{69} -0.946925 q^{71} +2.66992 q^{72} -3.86711 q^{73} -9.09292 q^{74} +0.737570 q^{75} -6.28436 q^{76} -11.4937 q^{78} +4.23904 q^{79} +0.657752 q^{80} +1.00000 q^{81} -4.04532 q^{82} -10.8281 q^{83} -3.46938 q^{85} -2.85388 q^{86} +3.68985 q^{87} -12.1992 q^{88} -0.262430 q^{89} -5.44840 q^{90} -3.17380 q^{92} +3.44840 q^{93} -6.54920 q^{94} +4.74292 q^{95} -5.96444 q^{96} +7.20695 q^{97} -4.56912 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{4} - 5 q^{5} - 3 q^{8} + 4 q^{9} - 4 q^{10} - 5 q^{11} + 4 q^{12} - 7 q^{13} - 5 q^{15} + 8 q^{16} - 12 q^{17} - 3 q^{19} + q^{20} - q^{22} - 4 q^{23} - 3 q^{24} + 7 q^{25} - 5 q^{26}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27460 1.60838 0.804192 0.594370i \(-0.202598\pi\)
0.804192 + 0.594370i \(0.202598\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.17380 1.58690
\(5\) −2.39532 −1.07122 −0.535610 0.844465i \(-0.679918\pi\)
−0.535610 + 0.844465i \(0.679918\pi\)
\(6\) 2.27460 0.928601
\(7\) 0 0
\(8\) 2.66992 0.943960
\(9\) 1.00000 0.333333
\(10\) −5.44840 −1.72293
\(11\) −4.56912 −1.37764 −0.688821 0.724931i \(-0.741871\pi\)
−0.688821 + 0.724931i \(0.741871\pi\)
\(12\) 3.17380 0.916197
\(13\) −5.05307 −1.40147 −0.700735 0.713421i \(-0.747145\pi\)
−0.700735 + 0.713421i \(0.747145\pi\)
\(14\) 0 0
\(15\) −2.39532 −0.618470
\(16\) −0.274599 −0.0686497
\(17\) 1.44840 0.351288 0.175644 0.984454i \(-0.443799\pi\)
0.175644 + 0.984454i \(0.443799\pi\)
\(18\) 2.27460 0.536128
\(19\) −1.98008 −0.454261 −0.227130 0.973864i \(-0.572934\pi\)
−0.227130 + 0.973864i \(0.572934\pi\)
\(20\) −7.60227 −1.69992
\(21\) 0 0
\(22\) −10.3929 −2.21578
\(23\) −1.00000 −0.208514
\(24\) 2.66992 0.544995
\(25\) 0.737570 0.147514
\(26\) −11.4937 −2.25410
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.68985 0.685187 0.342594 0.939484i \(-0.388695\pi\)
0.342594 + 0.939484i \(0.388695\pi\)
\(30\) −5.44840 −0.994737
\(31\) 3.44840 0.619350 0.309675 0.950842i \(-0.399780\pi\)
0.309675 + 0.950842i \(0.399780\pi\)
\(32\) −5.96444 −1.05437
\(33\) −4.56912 −0.795382
\(34\) 3.29452 0.565006
\(35\) 0 0
\(36\) 3.17380 0.528966
\(37\) −3.99759 −0.657201 −0.328600 0.944469i \(-0.606577\pi\)
−0.328600 + 0.944469i \(0.606577\pi\)
\(38\) −4.50388 −0.730625
\(39\) −5.05307 −0.809140
\(40\) −6.39532 −1.01119
\(41\) −1.77848 −0.277751 −0.138876 0.990310i \(-0.544349\pi\)
−0.138876 + 0.990310i \(0.544349\pi\)
\(42\) 0 0
\(43\) −1.25467 −0.191336 −0.0956680 0.995413i \(-0.530499\pi\)
−0.0956680 + 0.995413i \(0.530499\pi\)
\(44\) −14.5015 −2.18618
\(45\) −2.39532 −0.357074
\(46\) −2.27460 −0.335371
\(47\) −2.87928 −0.419986 −0.209993 0.977703i \(-0.567344\pi\)
−0.209993 + 0.977703i \(0.567344\pi\)
\(48\) −0.274599 −0.0396349
\(49\) 0 0
\(50\) 1.67768 0.237259
\(51\) 1.44840 0.202816
\(52\) −16.0374 −2.22399
\(53\) −10.4128 −1.43031 −0.715157 0.698964i \(-0.753645\pi\)
−0.715157 + 0.698964i \(0.753645\pi\)
\(54\) 2.27460 0.309534
\(55\) 10.9445 1.47576
\(56\) 0 0
\(57\) −1.98008 −0.262267
\(58\) 8.39292 1.10204
\(59\) 14.1315 1.83977 0.919885 0.392188i \(-0.128282\pi\)
0.919885 + 0.392188i \(0.128282\pi\)
\(60\) −7.60227 −0.981449
\(61\) −8.37540 −1.07236 −0.536180 0.844104i \(-0.680133\pi\)
−0.536180 + 0.844104i \(0.680133\pi\)
\(62\) 7.84372 0.996153
\(63\) 0 0
\(64\) −13.0175 −1.62719
\(65\) 12.1037 1.50128
\(66\) −10.3929 −1.27928
\(67\) −7.73517 −0.945001 −0.472500 0.881330i \(-0.656648\pi\)
−0.472500 + 0.881330i \(0.656648\pi\)
\(68\) 4.59692 0.557459
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −0.946925 −0.112379 −0.0561897 0.998420i \(-0.517895\pi\)
−0.0561897 + 0.998420i \(0.517895\pi\)
\(72\) 2.66992 0.314653
\(73\) −3.86711 −0.452611 −0.226305 0.974056i \(-0.572665\pi\)
−0.226305 + 0.974056i \(0.572665\pi\)
\(74\) −9.09292 −1.05703
\(75\) 0.737570 0.0851673
\(76\) −6.28436 −0.720866
\(77\) 0 0
\(78\) −11.4937 −1.30141
\(79\) 4.23904 0.476930 0.238465 0.971151i \(-0.423356\pi\)
0.238465 + 0.971151i \(0.423356\pi\)
\(80\) 0.657752 0.0735389
\(81\) 1.00000 0.111111
\(82\) −4.04532 −0.446731
\(83\) −10.8281 −1.18854 −0.594269 0.804267i \(-0.702558\pi\)
−0.594269 + 0.804267i \(0.702558\pi\)
\(84\) 0 0
\(85\) −3.46938 −0.376307
\(86\) −2.85388 −0.307742
\(87\) 3.68985 0.395593
\(88\) −12.1992 −1.30044
\(89\) −0.262430 −0.0278175 −0.0139087 0.999903i \(-0.504427\pi\)
−0.0139087 + 0.999903i \(0.504427\pi\)
\(90\) −5.44840 −0.574312
\(91\) 0 0
\(92\) −3.17380 −0.330891
\(93\) 3.44840 0.357582
\(94\) −6.54920 −0.675498
\(95\) 4.74292 0.486613
\(96\) −5.96444 −0.608744
\(97\) 7.20695 0.731755 0.365877 0.930663i \(-0.380769\pi\)
0.365877 + 0.930663i \(0.380769\pi\)
\(98\) 0 0
\(99\) −4.56912 −0.459214
\(100\) 2.34090 0.234090
\(101\) 8.26684 0.822582 0.411291 0.911504i \(-0.365078\pi\)
0.411291 + 0.911504i \(0.365078\pi\)
\(102\) 3.29452 0.326206
\(103\) 19.2619 1.89793 0.948966 0.315378i \(-0.102131\pi\)
0.948966 + 0.315378i \(0.102131\pi\)
\(104\) −13.4913 −1.32293
\(105\) 0 0
\(106\) −23.6850 −2.30049
\(107\) −11.0531 −1.06854 −0.534271 0.845314i \(-0.679414\pi\)
−0.534271 + 0.845314i \(0.679414\pi\)
\(108\) 3.17380 0.305399
\(109\) 12.9047 1.23604 0.618022 0.786161i \(-0.287934\pi\)
0.618022 + 0.786161i \(0.287934\pi\)
\(110\) 24.8944 2.37359
\(111\) −3.99759 −0.379435
\(112\) 0 0
\(113\) −1.25708 −0.118256 −0.0591281 0.998250i \(-0.518832\pi\)
−0.0591281 + 0.998250i \(0.518832\pi\)
\(114\) −4.50388 −0.421827
\(115\) 2.39532 0.223365
\(116\) 11.7108 1.08732
\(117\) −5.05307 −0.467157
\(118\) 32.1436 2.95906
\(119\) 0 0
\(120\) −6.39532 −0.583810
\(121\) 9.87687 0.897897
\(122\) −19.0507 −1.72477
\(123\) −1.77848 −0.160360
\(124\) 10.9445 0.982847
\(125\) 10.2099 0.913201
\(126\) 0 0
\(127\) 19.3385 1.71601 0.858007 0.513638i \(-0.171703\pi\)
0.858007 + 0.513638i \(0.171703\pi\)
\(128\) −17.6807 −1.56277
\(129\) −1.25467 −0.110468
\(130\) 27.5312 2.41464
\(131\) −19.4659 −1.70075 −0.850373 0.526181i \(-0.823623\pi\)
−0.850373 + 0.526181i \(0.823623\pi\)
\(132\) −14.5015 −1.26219
\(133\) 0 0
\(134\) −17.5944 −1.51992
\(135\) −2.39532 −0.206157
\(136\) 3.86711 0.331602
\(137\) 20.4980 1.75126 0.875632 0.482980i \(-0.160446\pi\)
0.875632 + 0.482980i \(0.160446\pi\)
\(138\) −2.27460 −0.193627
\(139\) −21.0507 −1.78549 −0.892747 0.450558i \(-0.851225\pi\)
−0.892747 + 0.450558i \(0.851225\pi\)
\(140\) 0 0
\(141\) −2.87928 −0.242479
\(142\) −2.15387 −0.180749
\(143\) 23.0881 1.93072
\(144\) −0.274599 −0.0228832
\(145\) −8.83837 −0.733987
\(146\) −8.79612 −0.727972
\(147\) 0 0
\(148\) −12.6876 −1.04291
\(149\) −19.1159 −1.56604 −0.783018 0.621999i \(-0.786321\pi\)
−0.783018 + 0.621999i \(0.786321\pi\)
\(150\) 1.67768 0.136982
\(151\) 18.2542 1.48550 0.742751 0.669568i \(-0.233521\pi\)
0.742751 + 0.669568i \(0.233521\pi\)
\(152\) −5.28665 −0.428804
\(153\) 1.44840 0.117096
\(154\) 0 0
\(155\) −8.26002 −0.663461
\(156\) −16.0374 −1.28402
\(157\) −6.63783 −0.529756 −0.264878 0.964282i \(-0.585332\pi\)
−0.264878 + 0.964282i \(0.585332\pi\)
\(158\) 9.64212 0.767086
\(159\) −10.4128 −0.825792
\(160\) 14.2868 1.12947
\(161\) 0 0
\(162\) 2.27460 0.178709
\(163\) 21.1080 1.65331 0.826655 0.562710i \(-0.190241\pi\)
0.826655 + 0.562710i \(0.190241\pi\)
\(164\) −5.64453 −0.440763
\(165\) 10.9445 0.852030
\(166\) −24.6296 −1.91162
\(167\) 1.01217 0.0783240 0.0391620 0.999233i \(-0.487531\pi\)
0.0391620 + 0.999233i \(0.487531\pi\)
\(168\) 0 0
\(169\) 12.5336 0.964120
\(170\) −7.89144 −0.605246
\(171\) −1.98008 −0.151420
\(172\) −3.98208 −0.303631
\(173\) −15.2069 −1.15616 −0.578081 0.815979i \(-0.696198\pi\)
−0.578081 + 0.815979i \(0.696198\pi\)
\(174\) 8.39292 0.636265
\(175\) 0 0
\(176\) 1.25467 0.0945746
\(177\) 14.1315 1.06219
\(178\) −0.596922 −0.0447412
\(179\) 18.1491 1.35652 0.678262 0.734820i \(-0.262733\pi\)
0.678262 + 0.734820i \(0.262733\pi\)
\(180\) −7.60227 −0.566640
\(181\) −10.5866 −0.786899 −0.393449 0.919346i \(-0.628718\pi\)
−0.393449 + 0.919346i \(0.628718\pi\)
\(182\) 0 0
\(183\) −8.37540 −0.619127
\(184\) −2.66992 −0.196829
\(185\) 9.57553 0.704007
\(186\) 7.84372 0.575129
\(187\) −6.61790 −0.483949
\(188\) −9.13824 −0.666475
\(189\) 0 0
\(190\) 10.7882 0.782661
\(191\) −19.8004 −1.43271 −0.716354 0.697737i \(-0.754190\pi\)
−0.716354 + 0.697737i \(0.754190\pi\)
\(192\) −13.0175 −0.939459
\(193\) 22.4956 1.61927 0.809635 0.586934i \(-0.199665\pi\)
0.809635 + 0.586934i \(0.199665\pi\)
\(194\) 16.3929 1.17694
\(195\) 12.1037 0.866767
\(196\) 0 0
\(197\) 1.67338 0.119224 0.0596118 0.998222i \(-0.481014\pi\)
0.0596118 + 0.998222i \(0.481014\pi\)
\(198\) −10.3929 −0.738592
\(199\) −5.82380 −0.412838 −0.206419 0.978464i \(-0.566181\pi\)
−0.206419 + 0.978464i \(0.566181\pi\)
\(200\) 1.96925 0.139247
\(201\) −7.73517 −0.545596
\(202\) 18.8038 1.32303
\(203\) 0 0
\(204\) 4.59692 0.321849
\(205\) 4.26002 0.297533
\(206\) 43.8131 3.05260
\(207\) −1.00000 −0.0695048
\(208\) 1.38757 0.0962105
\(209\) 9.04721 0.625808
\(210\) 0 0
\(211\) −14.2809 −0.983138 −0.491569 0.870839i \(-0.663576\pi\)
−0.491569 + 0.870839i \(0.663576\pi\)
\(212\) −33.0483 −2.26976
\(213\) −0.946925 −0.0648822
\(214\) −25.1413 −1.71862
\(215\) 3.00535 0.204963
\(216\) 2.66992 0.181665
\(217\) 0 0
\(218\) 29.3529 1.98803
\(219\) −3.86711 −0.261315
\(220\) 34.7357 2.34188
\(221\) −7.31886 −0.492320
\(222\) −9.09292 −0.610277
\(223\) 20.0031 1.33950 0.669752 0.742585i \(-0.266400\pi\)
0.669752 + 0.742585i \(0.266400\pi\)
\(224\) 0 0
\(225\) 0.737570 0.0491714
\(226\) −2.85935 −0.190201
\(227\) −18.4547 −1.22488 −0.612441 0.790517i \(-0.709812\pi\)
−0.612441 + 0.790517i \(0.709812\pi\)
\(228\) −6.28436 −0.416192
\(229\) 17.2299 1.13859 0.569293 0.822135i \(-0.307217\pi\)
0.569293 + 0.822135i \(0.307217\pi\)
\(230\) 5.44840 0.359257
\(231\) 0 0
\(232\) 9.85160 0.646789
\(233\) −16.2844 −1.06682 −0.533412 0.845856i \(-0.679090\pi\)
−0.533412 + 0.845856i \(0.679090\pi\)
\(234\) −11.4937 −0.751368
\(235\) 6.89679 0.449897
\(236\) 44.8507 2.91953
\(237\) 4.23904 0.275355
\(238\) 0 0
\(239\) −26.1539 −1.69175 −0.845877 0.533378i \(-0.820922\pi\)
−0.845877 + 0.533378i \(0.820922\pi\)
\(240\) 0.657752 0.0424577
\(241\) −8.67527 −0.558823 −0.279412 0.960171i \(-0.590139\pi\)
−0.279412 + 0.960171i \(0.590139\pi\)
\(242\) 22.4659 1.44416
\(243\) 1.00000 0.0641500
\(244\) −26.5818 −1.70173
\(245\) 0 0
\(246\) −4.04532 −0.257920
\(247\) 10.0055 0.636633
\(248\) 9.20695 0.584642
\(249\) −10.8281 −0.686202
\(250\) 23.2234 1.46878
\(251\) −9.22888 −0.582522 −0.291261 0.956644i \(-0.594075\pi\)
−0.291261 + 0.956644i \(0.594075\pi\)
\(252\) 0 0
\(253\) 4.56912 0.287258
\(254\) 43.9873 2.76001
\(255\) −3.46938 −0.217261
\(256\) −14.1816 −0.886347
\(257\) −17.7606 −1.10787 −0.553937 0.832559i \(-0.686875\pi\)
−0.553937 + 0.832559i \(0.686875\pi\)
\(258\) −2.85388 −0.177675
\(259\) 0 0
\(260\) 38.4148 2.38239
\(261\) 3.68985 0.228396
\(262\) −44.2771 −2.73545
\(263\) −10.2721 −0.633403 −0.316702 0.948525i \(-0.602575\pi\)
−0.316702 + 0.948525i \(0.602575\pi\)
\(264\) −12.1992 −0.750809
\(265\) 24.9421 1.53218
\(266\) 0 0
\(267\) −0.262430 −0.0160604
\(268\) −24.5499 −1.49962
\(269\) 17.5312 1.06889 0.534447 0.845202i \(-0.320520\pi\)
0.534447 + 0.845202i \(0.320520\pi\)
\(270\) −5.44840 −0.331579
\(271\) −21.1602 −1.28539 −0.642695 0.766123i \(-0.722184\pi\)
−0.642695 + 0.766123i \(0.722184\pi\)
\(272\) −0.397728 −0.0241158
\(273\) 0 0
\(274\) 46.6247 2.81670
\(275\) −3.37005 −0.203222
\(276\) −3.17380 −0.191040
\(277\) 2.92941 0.176011 0.0880055 0.996120i \(-0.471951\pi\)
0.0880055 + 0.996120i \(0.471951\pi\)
\(278\) −47.8818 −2.87176
\(279\) 3.44840 0.206450
\(280\) 0 0
\(281\) −26.8655 −1.60266 −0.801332 0.598220i \(-0.795875\pi\)
−0.801332 + 0.598220i \(0.795875\pi\)
\(282\) −6.54920 −0.389999
\(283\) 22.0584 1.31124 0.655619 0.755092i \(-0.272408\pi\)
0.655619 + 0.755092i \(0.272408\pi\)
\(284\) −3.00535 −0.178335
\(285\) 4.74292 0.280946
\(286\) 52.5162 3.10535
\(287\) 0 0
\(288\) −5.96444 −0.351458
\(289\) −14.9021 −0.876597
\(290\) −20.1037 −1.18053
\(291\) 7.20695 0.422479
\(292\) −12.2734 −0.718248
\(293\) −23.7537 −1.38771 −0.693854 0.720116i \(-0.744089\pi\)
−0.693854 + 0.720116i \(0.744089\pi\)
\(294\) 0 0
\(295\) −33.8496 −1.97080
\(296\) −10.6733 −0.620371
\(297\) −4.56912 −0.265127
\(298\) −43.4810 −2.51879
\(299\) 5.05307 0.292227
\(300\) 2.34090 0.135152
\(301\) 0 0
\(302\) 41.5209 2.38926
\(303\) 8.26684 0.474918
\(304\) 0.543726 0.0311848
\(305\) 20.0618 1.14873
\(306\) 3.29452 0.188335
\(307\) −9.61015 −0.548480 −0.274240 0.961661i \(-0.588426\pi\)
−0.274240 + 0.961661i \(0.588426\pi\)
\(308\) 0 0
\(309\) 19.2619 1.09577
\(310\) −18.7882 −1.06710
\(311\) −13.5642 −0.769155 −0.384577 0.923093i \(-0.625653\pi\)
−0.384577 + 0.923093i \(0.625653\pi\)
\(312\) −13.4913 −0.763795
\(313\) −1.23168 −0.0696189 −0.0348095 0.999394i \(-0.511082\pi\)
−0.0348095 + 0.999394i \(0.511082\pi\)
\(314\) −15.0984 −0.852052
\(315\) 0 0
\(316\) 13.4539 0.756839
\(317\) 16.0584 0.901931 0.450965 0.892541i \(-0.351080\pi\)
0.450965 + 0.892541i \(0.351080\pi\)
\(318\) −23.6850 −1.32819
\(319\) −16.8594 −0.943942
\(320\) 31.1812 1.74308
\(321\) −11.0531 −0.616922
\(322\) 0 0
\(323\) −2.86794 −0.159576
\(324\) 3.17380 0.176322
\(325\) −3.72700 −0.206737
\(326\) 48.0123 2.65916
\(327\) 12.9047 0.713630
\(328\) −4.74839 −0.262186
\(329\) 0 0
\(330\) 24.8944 1.37039
\(331\) −12.5424 −0.689391 −0.344696 0.938714i \(-0.612018\pi\)
−0.344696 + 0.938714i \(0.612018\pi\)
\(332\) −34.3662 −1.88609
\(333\) −3.99759 −0.219067
\(334\) 2.30228 0.125975
\(335\) 18.5282 1.01230
\(336\) 0 0
\(337\) 9.62661 0.524395 0.262197 0.965014i \(-0.415553\pi\)
0.262197 + 0.965014i \(0.415553\pi\)
\(338\) 28.5088 1.55068
\(339\) −1.25708 −0.0682752
\(340\) −11.0111 −0.597161
\(341\) −15.7561 −0.853243
\(342\) −4.50388 −0.243542
\(343\) 0 0
\(344\) −3.34988 −0.180614
\(345\) 2.39532 0.128960
\(346\) −34.5897 −1.85955
\(347\) −9.94199 −0.533714 −0.266857 0.963736i \(-0.585985\pi\)
−0.266857 + 0.963736i \(0.585985\pi\)
\(348\) 11.7108 0.627766
\(349\) 12.7274 0.681283 0.340641 0.940193i \(-0.389356\pi\)
0.340641 + 0.940193i \(0.389356\pi\)
\(350\) 0 0
\(351\) −5.05307 −0.269713
\(352\) 27.2523 1.45255
\(353\) 1.67433 0.0891159 0.0445579 0.999007i \(-0.485812\pi\)
0.0445579 + 0.999007i \(0.485812\pi\)
\(354\) 32.1436 1.70841
\(355\) 2.26819 0.120383
\(356\) −0.832899 −0.0441436
\(357\) 0 0
\(358\) 41.2818 2.18181
\(359\) −36.9662 −1.95100 −0.975500 0.220001i \(-0.929394\pi\)
−0.975500 + 0.220001i \(0.929394\pi\)
\(360\) −6.39532 −0.337063
\(361\) −15.0793 −0.793647
\(362\) −24.0804 −1.26564
\(363\) 9.87687 0.518401
\(364\) 0 0
\(365\) 9.26297 0.484846
\(366\) −19.0507 −0.995794
\(367\) 22.5080 1.17491 0.587454 0.809258i \(-0.300130\pi\)
0.587454 + 0.809258i \(0.300130\pi\)
\(368\) 0.274599 0.0143144
\(369\) −1.77848 −0.0925838
\(370\) 21.7805 1.13231
\(371\) 0 0
\(372\) 10.9445 0.567447
\(373\) 23.5896 1.22142 0.610711 0.791853i \(-0.290884\pi\)
0.610711 + 0.791853i \(0.290884\pi\)
\(374\) −15.0531 −0.778376
\(375\) 10.2099 0.527237
\(376\) −7.68744 −0.396449
\(377\) −18.6451 −0.960270
\(378\) 0 0
\(379\) 6.93664 0.356311 0.178156 0.984002i \(-0.442987\pi\)
0.178156 + 0.984002i \(0.442987\pi\)
\(380\) 15.0531 0.772206
\(381\) 19.3385 0.990741
\(382\) −45.0380 −2.30434
\(383\) 22.8281 1.16646 0.583230 0.812307i \(-0.301788\pi\)
0.583230 + 0.812307i \(0.301788\pi\)
\(384\) −17.6807 −0.902267
\(385\) 0 0
\(386\) 51.1685 2.60441
\(387\) −1.25467 −0.0637787
\(388\) 22.8734 1.16122
\(389\) 16.1350 0.818077 0.409039 0.912517i \(-0.365864\pi\)
0.409039 + 0.912517i \(0.365864\pi\)
\(390\) 27.5312 1.39409
\(391\) −1.44840 −0.0732486
\(392\) 0 0
\(393\) −19.4659 −0.981926
\(394\) 3.80628 0.191757
\(395\) −10.1539 −0.510897
\(396\) −14.5015 −0.728726
\(397\) −18.5687 −0.931938 −0.465969 0.884801i \(-0.654294\pi\)
−0.465969 + 0.884801i \(0.654294\pi\)
\(398\) −13.2468 −0.664002
\(399\) 0 0
\(400\) −0.202536 −0.0101268
\(401\) −7.22928 −0.361013 −0.180506 0.983574i \(-0.557774\pi\)
−0.180506 + 0.983574i \(0.557774\pi\)
\(402\) −17.5944 −0.877529
\(403\) −17.4250 −0.868002
\(404\) 26.2373 1.30535
\(405\) −2.39532 −0.119025
\(406\) 0 0
\(407\) 18.2655 0.905387
\(408\) 3.86711 0.191450
\(409\) −17.7912 −0.879717 −0.439859 0.898067i \(-0.644971\pi\)
−0.439859 + 0.898067i \(0.644971\pi\)
\(410\) 9.68985 0.478547
\(411\) 20.4980 1.01109
\(412\) 61.1334 3.01183
\(413\) 0 0
\(414\) −2.27460 −0.111790
\(415\) 25.9368 1.27319
\(416\) 30.1388 1.47768
\(417\) −21.0507 −1.03086
\(418\) 20.5788 1.00654
\(419\) 16.7937 0.820426 0.410213 0.911990i \(-0.365454\pi\)
0.410213 + 0.911990i \(0.365454\pi\)
\(420\) 0 0
\(421\) −11.1194 −0.541925 −0.270963 0.962590i \(-0.587342\pi\)
−0.270963 + 0.962590i \(0.587342\pi\)
\(422\) −32.4833 −1.58126
\(423\) −2.87928 −0.139995
\(424\) −27.8015 −1.35016
\(425\) 1.06829 0.0518199
\(426\) −2.15387 −0.104356
\(427\) 0 0
\(428\) −35.0802 −1.69567
\(429\) 23.0881 1.11470
\(430\) 6.83596 0.329659
\(431\) 35.8516 1.72691 0.863456 0.504424i \(-0.168295\pi\)
0.863456 + 0.504424i \(0.168295\pi\)
\(432\) −0.274599 −0.0132116
\(433\) −13.2199 −0.635310 −0.317655 0.948206i \(-0.602895\pi\)
−0.317655 + 0.948206i \(0.602895\pi\)
\(434\) 0 0
\(435\) −8.83837 −0.423767
\(436\) 40.9568 1.96148
\(437\) 1.98008 0.0947199
\(438\) −8.79612 −0.420295
\(439\) 28.2898 1.35020 0.675100 0.737726i \(-0.264100\pi\)
0.675100 + 0.737726i \(0.264100\pi\)
\(440\) 29.2210 1.39306
\(441\) 0 0
\(442\) −16.6475 −0.791839
\(443\) 23.7781 1.12973 0.564865 0.825183i \(-0.308928\pi\)
0.564865 + 0.825183i \(0.308928\pi\)
\(444\) −12.6876 −0.602125
\(445\) 0.628604 0.0297987
\(446\) 45.4989 2.15444
\(447\) −19.1159 −0.904152
\(448\) 0 0
\(449\) −2.97578 −0.140436 −0.0702179 0.997532i \(-0.522369\pi\)
−0.0702179 + 0.997532i \(0.522369\pi\)
\(450\) 1.67768 0.0790864
\(451\) 8.12607 0.382642
\(452\) −3.98972 −0.187661
\(453\) 18.2542 0.857655
\(454\) −41.9770 −1.97008
\(455\) 0 0
\(456\) −5.28665 −0.247570
\(457\) −19.4381 −0.909277 −0.454638 0.890676i \(-0.650231\pi\)
−0.454638 + 0.890676i \(0.650231\pi\)
\(458\) 39.1912 1.83128
\(459\) 1.44840 0.0676054
\(460\) 7.60227 0.354458
\(461\) 4.92877 0.229556 0.114778 0.993391i \(-0.463384\pi\)
0.114778 + 0.993391i \(0.463384\pi\)
\(462\) 0 0
\(463\) 3.27983 0.152427 0.0762133 0.997092i \(-0.475717\pi\)
0.0762133 + 0.997092i \(0.475717\pi\)
\(464\) −1.01323 −0.0470379
\(465\) −8.26002 −0.383049
\(466\) −37.0404 −1.71586
\(467\) −3.04520 −0.140915 −0.0704575 0.997515i \(-0.522446\pi\)
−0.0704575 + 0.997515i \(0.522446\pi\)
\(468\) −16.0374 −0.741331
\(469\) 0 0
\(470\) 15.6874 0.723608
\(471\) −6.63783 −0.305855
\(472\) 37.7301 1.73667
\(473\) 5.73276 0.263593
\(474\) 9.64212 0.442877
\(475\) −1.46045 −0.0670098
\(476\) 0 0
\(477\) −10.4128 −0.476771
\(478\) −59.4896 −2.72099
\(479\) −3.10080 −0.141679 −0.0708396 0.997488i \(-0.522568\pi\)
−0.0708396 + 0.997488i \(0.522568\pi\)
\(480\) 14.2868 0.652099
\(481\) 20.2001 0.921047
\(482\) −19.7328 −0.898803
\(483\) 0 0
\(484\) 31.3472 1.42487
\(485\) −17.2630 −0.783871
\(486\) 2.27460 0.103178
\(487\) 17.5634 0.795872 0.397936 0.917413i \(-0.369727\pi\)
0.397936 + 0.917413i \(0.369727\pi\)
\(488\) −22.3617 −1.01226
\(489\) 21.1080 0.954538
\(490\) 0 0
\(491\) 32.6646 1.47413 0.737066 0.675821i \(-0.236211\pi\)
0.737066 + 0.675821i \(0.236211\pi\)
\(492\) −5.64453 −0.254475
\(493\) 5.34436 0.240698
\(494\) 22.7584 1.02395
\(495\) 10.9445 0.491920
\(496\) −0.946925 −0.0425182
\(497\) 0 0
\(498\) −24.6296 −1.10368
\(499\) −16.9084 −0.756926 −0.378463 0.925616i \(-0.623547\pi\)
−0.378463 + 0.925616i \(0.623547\pi\)
\(500\) 32.4041 1.44916
\(501\) 1.01217 0.0452204
\(502\) −20.9920 −0.936919
\(503\) 9.22582 0.411359 0.205679 0.978619i \(-0.434060\pi\)
0.205679 + 0.978619i \(0.434060\pi\)
\(504\) 0 0
\(505\) −19.8018 −0.881167
\(506\) 10.3929 0.462022
\(507\) 12.5336 0.556635
\(508\) 61.3765 2.72314
\(509\) 12.4362 0.551226 0.275613 0.961269i \(-0.411119\pi\)
0.275613 + 0.961269i \(0.411119\pi\)
\(510\) −7.89144 −0.349439
\(511\) 0 0
\(512\) 3.10414 0.137185
\(513\) −1.98008 −0.0874225
\(514\) −40.3981 −1.78189
\(515\) −46.1385 −2.03310
\(516\) −3.98208 −0.175301
\(517\) 13.1558 0.578590
\(518\) 0 0
\(519\) −15.2069 −0.667511
\(520\) 32.3160 1.41715
\(521\) 26.2123 1.14838 0.574191 0.818721i \(-0.305317\pi\)
0.574191 + 0.818721i \(0.305317\pi\)
\(522\) 8.39292 0.367348
\(523\) −25.3309 −1.10764 −0.553822 0.832635i \(-0.686831\pi\)
−0.553822 + 0.832635i \(0.686831\pi\)
\(524\) −61.7809 −2.69891
\(525\) 0 0
\(526\) −23.3648 −1.01876
\(527\) 4.99465 0.217570
\(528\) 1.25467 0.0546027
\(529\) 1.00000 0.0434783
\(530\) 56.7333 2.46434
\(531\) 14.1315 0.613257
\(532\) 0 0
\(533\) 8.98677 0.389260
\(534\) −0.596922 −0.0258313
\(535\) 26.4757 1.14464
\(536\) −20.6523 −0.892043
\(537\) 18.1491 0.783190
\(538\) 39.8764 1.71919
\(539\) 0 0
\(540\) −7.60227 −0.327150
\(541\) −16.2940 −0.700534 −0.350267 0.936650i \(-0.613909\pi\)
−0.350267 + 0.936650i \(0.613909\pi\)
\(542\) −48.1309 −2.06740
\(543\) −10.5866 −0.454316
\(544\) −8.63889 −0.370389
\(545\) −30.9109 −1.32408
\(546\) 0 0
\(547\) 13.1461 0.562087 0.281044 0.959695i \(-0.409319\pi\)
0.281044 + 0.959695i \(0.409319\pi\)
\(548\) 65.0566 2.77908
\(549\) −8.37540 −0.357453
\(550\) −7.66551 −0.326858
\(551\) −7.30617 −0.311253
\(552\) −2.66992 −0.113639
\(553\) 0 0
\(554\) 6.66322 0.283093
\(555\) 9.57553 0.406459
\(556\) −66.8106 −2.83340
\(557\) 1.28424 0.0544150 0.0272075 0.999630i \(-0.491339\pi\)
0.0272075 + 0.999630i \(0.491339\pi\)
\(558\) 7.84372 0.332051
\(559\) 6.33996 0.268152
\(560\) 0 0
\(561\) −6.61790 −0.279408
\(562\) −61.1083 −2.57770
\(563\) 1.02181 0.0430642 0.0215321 0.999768i \(-0.493146\pi\)
0.0215321 + 0.999768i \(0.493146\pi\)
\(564\) −9.13824 −0.384789
\(565\) 3.01111 0.126678
\(566\) 50.1741 2.10897
\(567\) 0 0
\(568\) −2.52822 −0.106082
\(569\) −14.9943 −0.628592 −0.314296 0.949325i \(-0.601768\pi\)
−0.314296 + 0.949325i \(0.601768\pi\)
\(570\) 10.7882 0.451870
\(571\) −15.3179 −0.641035 −0.320517 0.947243i \(-0.603857\pi\)
−0.320517 + 0.947243i \(0.603857\pi\)
\(572\) 73.2770 3.06387
\(573\) −19.8004 −0.827174
\(574\) 0 0
\(575\) −0.737570 −0.0307588
\(576\) −13.0175 −0.542397
\(577\) 36.4091 1.51573 0.757865 0.652411i \(-0.226243\pi\)
0.757865 + 0.652411i \(0.226243\pi\)
\(578\) −33.8964 −1.40990
\(579\) 22.4956 0.934885
\(580\) −28.0512 −1.16476
\(581\) 0 0
\(582\) 16.3929 0.679508
\(583\) 47.5775 1.97046
\(584\) −10.3249 −0.427246
\(585\) 12.1037 0.500428
\(586\) −54.0302 −2.23197
\(587\) 32.1484 1.32691 0.663454 0.748217i \(-0.269090\pi\)
0.663454 + 0.748217i \(0.269090\pi\)
\(588\) 0 0
\(589\) −6.82809 −0.281346
\(590\) −76.9943 −3.16980
\(591\) 1.67338 0.0688338
\(592\) 1.09773 0.0451166
\(593\) −31.6719 −1.30061 −0.650305 0.759673i \(-0.725359\pi\)
−0.650305 + 0.759673i \(0.725359\pi\)
\(594\) −10.3929 −0.426427
\(595\) 0 0
\(596\) −60.6701 −2.48514
\(597\) −5.82380 −0.238352
\(598\) 11.4937 0.470013
\(599\) −36.0114 −1.47138 −0.735692 0.677316i \(-0.763143\pi\)
−0.735692 + 0.677316i \(0.763143\pi\)
\(600\) 1.96925 0.0803945
\(601\) 33.4295 1.36362 0.681810 0.731530i \(-0.261193\pi\)
0.681810 + 0.731530i \(0.261193\pi\)
\(602\) 0 0
\(603\) −7.73517 −0.315000
\(604\) 57.9350 2.35734
\(605\) −23.6583 −0.961846
\(606\) 18.8038 0.763850
\(607\) −0.510803 −0.0207329 −0.0103664 0.999946i \(-0.503300\pi\)
−0.0103664 + 0.999946i \(0.503300\pi\)
\(608\) 11.8101 0.478961
\(609\) 0 0
\(610\) 45.6325 1.84761
\(611\) 14.5492 0.588598
\(612\) 4.59692 0.185820
\(613\) −29.7444 −1.20137 −0.600683 0.799488i \(-0.705104\pi\)
−0.600683 + 0.799488i \(0.705104\pi\)
\(614\) −21.8592 −0.882167
\(615\) 4.26002 0.171781
\(616\) 0 0
\(617\) −18.2312 −0.733959 −0.366980 0.930229i \(-0.619608\pi\)
−0.366980 + 0.930229i \(0.619608\pi\)
\(618\) 43.8131 1.76242
\(619\) −31.3889 −1.26163 −0.630814 0.775934i \(-0.717279\pi\)
−0.630814 + 0.775934i \(0.717279\pi\)
\(620\) −26.2157 −1.05285
\(621\) −1.00000 −0.0401286
\(622\) −30.8531 −1.23710
\(623\) 0 0
\(624\) 1.38757 0.0555471
\(625\) −28.1438 −1.12575
\(626\) −2.80159 −0.111974
\(627\) 9.04721 0.361311
\(628\) −21.0671 −0.840670
\(629\) −5.79011 −0.230867
\(630\) 0 0
\(631\) 42.9030 1.70794 0.853970 0.520322i \(-0.174188\pi\)
0.853970 + 0.520322i \(0.174188\pi\)
\(632\) 11.3179 0.450202
\(633\) −14.2809 −0.567615
\(634\) 36.5265 1.45065
\(635\) −46.3219 −1.83823
\(636\) −33.0483 −1.31045
\(637\) 0 0
\(638\) −38.3483 −1.51822
\(639\) −0.946925 −0.0374598
\(640\) 42.3511 1.67407
\(641\) −19.8505 −0.784049 −0.392025 0.919955i \(-0.628225\pi\)
−0.392025 + 0.919955i \(0.628225\pi\)
\(642\) −25.1413 −0.992248
\(643\) −26.5457 −1.04686 −0.523431 0.852068i \(-0.675348\pi\)
−0.523431 + 0.852068i \(0.675348\pi\)
\(644\) 0 0
\(645\) 3.00535 0.118336
\(646\) −6.52340 −0.256660
\(647\) −30.0117 −1.17988 −0.589940 0.807447i \(-0.700849\pi\)
−0.589940 + 0.807447i \(0.700849\pi\)
\(648\) 2.66992 0.104884
\(649\) −64.5687 −2.53454
\(650\) −8.47742 −0.332512
\(651\) 0 0
\(652\) 66.9927 2.62364
\(653\) 4.41083 0.172609 0.0863046 0.996269i \(-0.472494\pi\)
0.0863046 + 0.996269i \(0.472494\pi\)
\(654\) 29.3529 1.14779
\(655\) 46.6271 1.82187
\(656\) 0.488367 0.0190675
\(657\) −3.86711 −0.150870
\(658\) 0 0
\(659\) −30.2147 −1.17700 −0.588499 0.808498i \(-0.700281\pi\)
−0.588499 + 0.808498i \(0.700281\pi\)
\(660\) 34.7357 1.35209
\(661\) −18.8322 −0.732488 −0.366244 0.930519i \(-0.619356\pi\)
−0.366244 + 0.930519i \(0.619356\pi\)
\(662\) −28.5289 −1.10881
\(663\) −7.31886 −0.284241
\(664\) −28.9101 −1.12193
\(665\) 0 0
\(666\) −9.09292 −0.352344
\(667\) −3.68985 −0.142871
\(668\) 3.21242 0.124292
\(669\) 20.0031 0.773363
\(670\) 42.1443 1.62817
\(671\) 38.2682 1.47733
\(672\) 0 0
\(673\) −17.0208 −0.656102 −0.328051 0.944660i \(-0.606392\pi\)
−0.328051 + 0.944660i \(0.606392\pi\)
\(674\) 21.8967 0.843428
\(675\) 0.737570 0.0283891
\(676\) 39.7790 1.52996
\(677\) −33.4116 −1.28411 −0.642056 0.766657i \(-0.721918\pi\)
−0.642056 + 0.766657i \(0.721918\pi\)
\(678\) −2.85935 −0.109813
\(679\) 0 0
\(680\) −9.26297 −0.355219
\(681\) −18.4547 −0.707186
\(682\) −35.8389 −1.37234
\(683\) −9.95082 −0.380758 −0.190379 0.981711i \(-0.560972\pi\)
−0.190379 + 0.981711i \(0.560972\pi\)
\(684\) −6.28436 −0.240289
\(685\) −49.0993 −1.87599
\(686\) 0 0
\(687\) 17.2299 0.657363
\(688\) 0.344532 0.0131352
\(689\) 52.6169 2.00454
\(690\) 5.44840 0.207417
\(691\) −21.7795 −0.828533 −0.414266 0.910156i \(-0.635962\pi\)
−0.414266 + 0.910156i \(0.635962\pi\)
\(692\) −48.2638 −1.83471
\(693\) 0 0
\(694\) −22.6140 −0.858417
\(695\) 50.4231 1.91266
\(696\) 9.85160 0.373424
\(697\) −2.57594 −0.0975707
\(698\) 28.9497 1.09576
\(699\) −16.2844 −0.615931
\(700\) 0 0
\(701\) 17.4292 0.658291 0.329146 0.944279i \(-0.393239\pi\)
0.329146 + 0.944279i \(0.393239\pi\)
\(702\) −11.4937 −0.433802
\(703\) 7.91554 0.298540
\(704\) 59.4786 2.24169
\(705\) 6.89679 0.259748
\(706\) 3.80844 0.143333
\(707\) 0 0
\(708\) 44.8507 1.68559
\(709\) 29.6266 1.11265 0.556325 0.830965i \(-0.312211\pi\)
0.556325 + 0.830965i \(0.312211\pi\)
\(710\) 5.15922 0.193622
\(711\) 4.23904 0.158977
\(712\) −0.700667 −0.0262586
\(713\) −3.44840 −0.129143
\(714\) 0 0
\(715\) −55.3035 −2.06823
\(716\) 57.6015 2.15267
\(717\) −26.1539 −0.976734
\(718\) −84.0832 −3.13796
\(719\) 17.1492 0.639558 0.319779 0.947492i \(-0.396391\pi\)
0.319779 + 0.947492i \(0.396391\pi\)
\(720\) 0.657752 0.0245130
\(721\) 0 0
\(722\) −34.2994 −1.27649
\(723\) −8.67527 −0.322637
\(724\) −33.5999 −1.24873
\(725\) 2.72152 0.101075
\(726\) 22.4659 0.833788
\(727\) −48.6199 −1.80321 −0.901606 0.432557i \(-0.857611\pi\)
−0.901606 + 0.432557i \(0.857611\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 21.0695 0.779819
\(731\) −1.81727 −0.0672141
\(732\) −26.5818 −0.982493
\(733\) 39.3216 1.45238 0.726189 0.687495i \(-0.241290\pi\)
0.726189 + 0.687495i \(0.241290\pi\)
\(734\) 51.1967 1.88970
\(735\) 0 0
\(736\) 5.96444 0.219852
\(737\) 35.3429 1.30187
\(738\) −4.04532 −0.148910
\(739\) 20.5818 0.757115 0.378557 0.925578i \(-0.376420\pi\)
0.378557 + 0.925578i \(0.376420\pi\)
\(740\) 30.3908 1.11719
\(741\) 10.0055 0.367560
\(742\) 0 0
\(743\) −38.0313 −1.39523 −0.697616 0.716472i \(-0.745756\pi\)
−0.697616 + 0.716472i \(0.745756\pi\)
\(744\) 9.20695 0.337543
\(745\) 45.7888 1.67757
\(746\) 53.6568 1.96452
\(747\) −10.8281 −0.396179
\(748\) −21.0039 −0.767978
\(749\) 0 0
\(750\) 23.2234 0.847999
\(751\) −38.3146 −1.39812 −0.699060 0.715063i \(-0.746398\pi\)
−0.699060 + 0.715063i \(0.746398\pi\)
\(752\) 0.790645 0.0288319
\(753\) −9.22888 −0.336319
\(754\) −42.4100 −1.54448
\(755\) −43.7246 −1.59130
\(756\) 0 0
\(757\) −25.4278 −0.924190 −0.462095 0.886830i \(-0.652902\pi\)
−0.462095 + 0.886830i \(0.652902\pi\)
\(758\) 15.7781 0.573086
\(759\) 4.56912 0.165849
\(760\) 12.6632 0.459343
\(761\) −46.3205 −1.67912 −0.839558 0.543271i \(-0.817186\pi\)
−0.839558 + 0.543271i \(0.817186\pi\)
\(762\) 43.9873 1.59349
\(763\) 0 0
\(764\) −62.8425 −2.27356
\(765\) −3.46938 −0.125436
\(766\) 51.9247 1.87612
\(767\) −71.4078 −2.57838
\(768\) −14.1816 −0.511733
\(769\) −2.92806 −0.105588 −0.0527942 0.998605i \(-0.516813\pi\)
−0.0527942 + 0.998605i \(0.516813\pi\)
\(770\) 0 0
\(771\) −17.7606 −0.639631
\(772\) 71.3965 2.56962
\(773\) −0.848652 −0.0305239 −0.0152619 0.999884i \(-0.504858\pi\)
−0.0152619 + 0.999884i \(0.504858\pi\)
\(774\) −2.85388 −0.102581
\(775\) 2.54344 0.0913629
\(776\) 19.2420 0.690747
\(777\) 0 0
\(778\) 36.7007 1.31578
\(779\) 3.52152 0.126171
\(780\) 38.4148 1.37547
\(781\) 4.32662 0.154818
\(782\) −3.29452 −0.117812
\(783\) 3.68985 0.131864
\(784\) 0 0
\(785\) 15.8997 0.567486
\(786\) −44.2771 −1.57931
\(787\) −31.3118 −1.11614 −0.558072 0.829793i \(-0.688459\pi\)
−0.558072 + 0.829793i \(0.688459\pi\)
\(788\) 5.31098 0.189196
\(789\) −10.2721 −0.365695
\(790\) −23.0960 −0.821718
\(791\) 0 0
\(792\) −12.1992 −0.433479
\(793\) 42.3215 1.50288
\(794\) −42.2364 −1.49891
\(795\) 24.9421 0.884606
\(796\) −18.4836 −0.655132
\(797\) −4.66393 −0.165205 −0.0826025 0.996583i \(-0.526323\pi\)
−0.0826025 + 0.996583i \(0.526323\pi\)
\(798\) 0 0
\(799\) −4.17034 −0.147536
\(800\) −4.39920 −0.155535
\(801\) −0.262430 −0.00927250
\(802\) −16.4437 −0.580648
\(803\) 17.6693 0.623535
\(804\) −24.5499 −0.865807
\(805\) 0 0
\(806\) −39.6349 −1.39608
\(807\) 17.5312 0.617126
\(808\) 22.0718 0.776484
\(809\) 26.2106 0.921516 0.460758 0.887526i \(-0.347578\pi\)
0.460758 + 0.887526i \(0.347578\pi\)
\(810\) −5.44840 −0.191437
\(811\) 35.2107 1.23642 0.618208 0.786015i \(-0.287859\pi\)
0.618208 + 0.786015i \(0.287859\pi\)
\(812\) 0 0
\(813\) −21.1602 −0.742120
\(814\) 41.5467 1.45621
\(815\) −50.5606 −1.77106
\(816\) −0.397728 −0.0139233
\(817\) 2.48435 0.0869164
\(818\) −40.4678 −1.41492
\(819\) 0 0
\(820\) 13.5205 0.472155
\(821\) 30.9369 1.07970 0.539852 0.841760i \(-0.318480\pi\)
0.539852 + 0.841760i \(0.318480\pi\)
\(822\) 46.6247 1.62622
\(823\) −17.7770 −0.619668 −0.309834 0.950791i \(-0.600273\pi\)
−0.309834 + 0.950791i \(0.600273\pi\)
\(824\) 51.4278 1.79157
\(825\) −3.37005 −0.117330
\(826\) 0 0
\(827\) −3.40509 −0.118406 −0.0592032 0.998246i \(-0.518856\pi\)
−0.0592032 + 0.998246i \(0.518856\pi\)
\(828\) −3.17380 −0.110297
\(829\) −0.475680 −0.0165210 −0.00826052 0.999966i \(-0.502629\pi\)
−0.00826052 + 0.999966i \(0.502629\pi\)
\(830\) 58.9957 2.04777
\(831\) 2.92941 0.101620
\(832\) 65.7785 2.28046
\(833\) 0 0
\(834\) −47.8818 −1.65801
\(835\) −2.42447 −0.0839023
\(836\) 28.7140 0.993095
\(837\) 3.44840 0.119194
\(838\) 38.1990 1.31956
\(839\) 15.4804 0.534442 0.267221 0.963635i \(-0.413895\pi\)
0.267221 + 0.963635i \(0.413895\pi\)
\(840\) 0 0
\(841\) −15.3850 −0.530519
\(842\) −25.2921 −0.871624
\(843\) −26.8655 −0.925298
\(844\) −45.3247 −1.56014
\(845\) −30.0219 −1.03279
\(846\) −6.54920 −0.225166
\(847\) 0 0
\(848\) 2.85935 0.0981905
\(849\) 22.0584 0.757043
\(850\) 2.42994 0.0833463
\(851\) 3.99759 0.137036
\(852\) −3.00535 −0.102962
\(853\) −23.6583 −0.810044 −0.405022 0.914307i \(-0.632736\pi\)
−0.405022 + 0.914307i \(0.632736\pi\)
\(854\) 0 0
\(855\) 4.74292 0.162204
\(856\) −29.5108 −1.00866
\(857\) 10.2346 0.349608 0.174804 0.984603i \(-0.444071\pi\)
0.174804 + 0.984603i \(0.444071\pi\)
\(858\) 52.5162 1.79287
\(859\) 38.4043 1.31034 0.655169 0.755483i \(-0.272598\pi\)
0.655169 + 0.755483i \(0.272598\pi\)
\(860\) 9.53838 0.325256
\(861\) 0 0
\(862\) 81.5480 2.77754
\(863\) 33.5209 1.14106 0.570532 0.821275i \(-0.306737\pi\)
0.570532 + 0.821275i \(0.306737\pi\)
\(864\) −5.96444 −0.202915
\(865\) 36.4255 1.23851
\(866\) −30.0701 −1.02182
\(867\) −14.9021 −0.506103
\(868\) 0 0
\(869\) −19.3687 −0.657038
\(870\) −20.1037 −0.681581
\(871\) 39.0864 1.32439
\(872\) 34.4545 1.16678
\(873\) 7.20695 0.243918
\(874\) 4.50388 0.152346
\(875\) 0 0
\(876\) −12.2734 −0.414680
\(877\) −52.7392 −1.78088 −0.890438 0.455105i \(-0.849602\pi\)
−0.890438 + 0.455105i \(0.849602\pi\)
\(878\) 64.3480 2.17164
\(879\) −23.7537 −0.801194
\(880\) −3.00535 −0.101310
\(881\) −19.1890 −0.646495 −0.323247 0.946314i \(-0.604775\pi\)
−0.323247 + 0.946314i \(0.604775\pi\)
\(882\) 0 0
\(883\) −33.2985 −1.12059 −0.560293 0.828295i \(-0.689311\pi\)
−0.560293 + 0.828295i \(0.689311\pi\)
\(884\) −23.2286 −0.781262
\(885\) −33.8496 −1.13784
\(886\) 54.0856 1.81704
\(887\) 17.8750 0.600183 0.300092 0.953910i \(-0.402983\pi\)
0.300092 + 0.953910i \(0.402983\pi\)
\(888\) −10.6733 −0.358171
\(889\) 0 0
\(890\) 1.42982 0.0479277
\(891\) −4.56912 −0.153071
\(892\) 63.4857 2.12566
\(893\) 5.70118 0.190783
\(894\) −43.4810 −1.45422
\(895\) −43.4729 −1.45314
\(896\) 0 0
\(897\) 5.05307 0.168717
\(898\) −6.76871 −0.225875
\(899\) 12.7241 0.424371
\(900\) 2.34090 0.0780300
\(901\) −15.0819 −0.502452
\(902\) 18.4836 0.615435
\(903\) 0 0
\(904\) −3.35630 −0.111629
\(905\) 25.3584 0.842942
\(906\) 41.5209 1.37944
\(907\) 6.71166 0.222857 0.111428 0.993772i \(-0.464457\pi\)
0.111428 + 0.993772i \(0.464457\pi\)
\(908\) −58.5715 −1.94376
\(909\) 8.26684 0.274194
\(910\) 0 0
\(911\) −14.5404 −0.481744 −0.240872 0.970557i \(-0.577433\pi\)
−0.240872 + 0.970557i \(0.577433\pi\)
\(912\) 0.543726 0.0180046
\(913\) 49.4749 1.63738
\(914\) −44.2139 −1.46247
\(915\) 20.0618 0.663222
\(916\) 54.6844 1.80682
\(917\) 0 0
\(918\) 3.29452 0.108735
\(919\) 25.3532 0.836325 0.418162 0.908372i \(-0.362674\pi\)
0.418162 + 0.908372i \(0.362674\pi\)
\(920\) 6.39532 0.210848
\(921\) −9.61015 −0.316665
\(922\) 11.2110 0.369214
\(923\) 4.78488 0.157496
\(924\) 0 0
\(925\) −2.94851 −0.0969463
\(926\) 7.46029 0.245160
\(927\) 19.2619 0.632644
\(928\) −22.0079 −0.722444
\(929\) −46.6378 −1.53014 −0.765069 0.643948i \(-0.777295\pi\)
−0.765069 + 0.643948i \(0.777295\pi\)
\(930\) −18.7882 −0.616091
\(931\) 0 0
\(932\) −51.6833 −1.69294
\(933\) −13.5642 −0.444072
\(934\) −6.92660 −0.226645
\(935\) 15.8520 0.518416
\(936\) −13.4913 −0.440977
\(937\) 34.8699 1.13915 0.569576 0.821939i \(-0.307108\pi\)
0.569576 + 0.821939i \(0.307108\pi\)
\(938\) 0 0
\(939\) −1.23168 −0.0401945
\(940\) 21.8890 0.713942
\(941\) 12.0243 0.391982 0.195991 0.980606i \(-0.437208\pi\)
0.195991 + 0.980606i \(0.437208\pi\)
\(942\) −15.0984 −0.491932
\(943\) 1.77848 0.0579152
\(944\) −3.88050 −0.126300
\(945\) 0 0
\(946\) 13.0397 0.423958
\(947\) −18.4626 −0.599953 −0.299977 0.953947i \(-0.596979\pi\)
−0.299977 + 0.953947i \(0.596979\pi\)
\(948\) 13.4539 0.436961
\(949\) 19.5408 0.634321
\(950\) −3.32193 −0.107778
\(951\) 16.0584 0.520730
\(952\) 0 0
\(953\) 8.91601 0.288818 0.144409 0.989518i \(-0.453872\pi\)
0.144409 + 0.989518i \(0.453872\pi\)
\(954\) −23.6850 −0.766831
\(955\) 47.4284 1.53475
\(956\) −83.0071 −2.68464
\(957\) −16.8594 −0.544985
\(958\) −7.05307 −0.227875
\(959\) 0 0
\(960\) 31.1812 1.00637
\(961\) −19.1086 −0.616405
\(962\) 45.9472 1.48140
\(963\) −11.0531 −0.356180
\(964\) −27.5336 −0.886796
\(965\) −53.8842 −1.73459
\(966\) 0 0
\(967\) −11.1091 −0.357244 −0.178622 0.983918i \(-0.557164\pi\)
−0.178622 + 0.983918i \(0.557164\pi\)
\(968\) 26.3705 0.847579
\(969\) −2.86794 −0.0921314
\(970\) −39.2663 −1.26077
\(971\) −18.9226 −0.607255 −0.303627 0.952791i \(-0.598198\pi\)
−0.303627 + 0.952791i \(0.598198\pi\)
\(972\) 3.17380 0.101800
\(973\) 0 0
\(974\) 39.9496 1.28007
\(975\) −3.72700 −0.119359
\(976\) 2.29987 0.0736171
\(977\) 17.0219 0.544579 0.272290 0.962215i \(-0.412219\pi\)
0.272290 + 0.962215i \(0.412219\pi\)
\(978\) 48.0123 1.53526
\(979\) 1.19907 0.0383225
\(980\) 0 0
\(981\) 12.9047 0.412014
\(982\) 74.2988 2.37097
\(983\) −37.7249 −1.20324 −0.601618 0.798784i \(-0.705477\pi\)
−0.601618 + 0.798784i \(0.705477\pi\)
\(984\) −4.74839 −0.151373
\(985\) −4.00829 −0.127715
\(986\) 12.1563 0.387135
\(987\) 0 0
\(988\) 31.7554 1.01027
\(989\) 1.25467 0.0398963
\(990\) 24.8944 0.791196
\(991\) −51.0190 −1.62067 −0.810336 0.585965i \(-0.800715\pi\)
−0.810336 + 0.585965i \(0.800715\pi\)
\(992\) −20.5678 −0.653027
\(993\) −12.5424 −0.398020
\(994\) 0 0
\(995\) 13.9499 0.442241
\(996\) −34.3662 −1.08893
\(997\) 43.6823 1.38343 0.691717 0.722169i \(-0.256855\pi\)
0.691717 + 0.722169i \(0.256855\pi\)
\(998\) −38.4599 −1.21743
\(999\) −3.99759 −0.126478
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3381.2.a.w.1.4 4
7.6 odd 2 483.2.a.i.1.4 4
21.20 even 2 1449.2.a.p.1.1 4
28.27 even 2 7728.2.a.cd.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.i.1.4 4 7.6 odd 2
1449.2.a.p.1.1 4 21.20 even 2
3381.2.a.w.1.4 4 1.1 even 1 trivial
7728.2.a.cd.1.3 4 28.27 even 2