Properties

Label 3381.2.a.w.1.2
Level $3381$
Weight $2$
Character 3381.1
Self dual yes
Analytic conductor $26.997$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3381,2,Mod(1,3381)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3381, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3381.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3381 = 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3381.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.9974209234\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.24197.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 483)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.509552\) of defining polynomial
Character \(\chi\) \(=\) 3381.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.509552 q^{2} +1.00000 q^{3} -1.74036 q^{4} -4.41546 q^{5} -0.509552 q^{6} +1.90591 q^{8} +1.00000 q^{9} +2.24991 q^{10} -1.67510 q^{11} -1.74036 q^{12} +4.66537 q^{13} -4.41546 q^{15} +2.50955 q^{16} -6.24991 q^{17} -0.509552 q^{18} +0.694209 q^{19} +7.68447 q^{20} +0.853553 q^{22} -1.00000 q^{23} +1.90591 q^{24} +14.4963 q^{25} -2.37725 q^{26} +1.00000 q^{27} +5.60012 q^{29} +2.24991 q^{30} -4.24991 q^{31} -5.09056 q^{32} -1.67510 q^{33} +3.18466 q^{34} -1.74036 q^{36} +9.26901 q^{37} -0.353736 q^{38} +4.66537 q^{39} -8.41546 q^{40} +5.15582 q^{41} +4.20376 q^{43} +2.91528 q^{44} -4.41546 q^{45} +0.509552 q^{46} +1.92501 q^{47} +2.50955 q^{48} -7.38662 q^{50} -6.24991 q^{51} -8.11940 q^{52} -1.84066 q^{53} -0.509552 q^{54} +7.39636 q^{55} +0.694209 q^{57} -2.85355 q^{58} -9.39779 q^{59} +7.68447 q^{60} -7.72125 q^{61} +2.16555 q^{62} -2.42520 q^{64} -20.5998 q^{65} +0.853553 q^{66} -8.22728 q^{67} +10.8771 q^{68} -1.00000 q^{69} -10.6654 q^{71} +1.90591 q^{72} +11.9117 q^{73} -4.72305 q^{74} +14.4963 q^{75} -1.20817 q^{76} -2.37725 q^{78} +0.581012 q^{79} -11.0808 q^{80} +1.00000 q^{81} -2.62716 q^{82} -6.95032 q^{83} +27.5962 q^{85} -2.14204 q^{86} +5.60012 q^{87} -3.19259 q^{88} +13.4963 q^{89} +2.24991 q^{90} +1.74036 q^{92} -4.24991 q^{93} -0.980895 q^{94} -3.06525 q^{95} -5.09056 q^{96} -10.0999 q^{97} -1.67510 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{4} - 5 q^{5} - 3 q^{8} + 4 q^{9} - 4 q^{10} - 5 q^{11} + 4 q^{12} - 7 q^{13} - 5 q^{15} + 8 q^{16} - 12 q^{17} - 3 q^{19} + q^{20} - q^{22} - 4 q^{23} - 3 q^{24} + 7 q^{25} - 5 q^{26}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.509552 −0.360308 −0.180154 0.983638i \(-0.557660\pi\)
−0.180154 + 0.983638i \(0.557660\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.74036 −0.870178
\(5\) −4.41546 −1.97465 −0.987327 0.158699i \(-0.949270\pi\)
−0.987327 + 0.158699i \(0.949270\pi\)
\(6\) −0.509552 −0.208024
\(7\) 0 0
\(8\) 1.90591 0.673840
\(9\) 1.00000 0.333333
\(10\) 2.24991 0.711484
\(11\) −1.67510 −0.505063 −0.252531 0.967589i \(-0.581263\pi\)
−0.252531 + 0.967589i \(0.581263\pi\)
\(12\) −1.74036 −0.502398
\(13\) 4.66537 1.29394 0.646970 0.762515i \(-0.276036\pi\)
0.646970 + 0.762515i \(0.276036\pi\)
\(14\) 0 0
\(15\) −4.41546 −1.14007
\(16\) 2.50955 0.627388
\(17\) −6.24991 −1.51583 −0.757913 0.652356i \(-0.773781\pi\)
−0.757913 + 0.652356i \(0.773781\pi\)
\(18\) −0.509552 −0.120103
\(19\) 0.694209 0.159262 0.0796312 0.996824i \(-0.474626\pi\)
0.0796312 + 0.996824i \(0.474626\pi\)
\(20\) 7.68447 1.71830
\(21\) 0 0
\(22\) 0.853553 0.181978
\(23\) −1.00000 −0.208514
\(24\) 1.90591 0.389042
\(25\) 14.4963 2.89926
\(26\) −2.37725 −0.466217
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.60012 1.03992 0.519958 0.854192i \(-0.325948\pi\)
0.519958 + 0.854192i \(0.325948\pi\)
\(30\) 2.24991 0.410775
\(31\) −4.24991 −0.763306 −0.381653 0.924306i \(-0.624645\pi\)
−0.381653 + 0.924306i \(0.624645\pi\)
\(32\) −5.09056 −0.899893
\(33\) −1.67510 −0.291598
\(34\) 3.18466 0.546164
\(35\) 0 0
\(36\) −1.74036 −0.290059
\(37\) 9.26901 1.52382 0.761908 0.647685i \(-0.224263\pi\)
0.761908 + 0.647685i \(0.224263\pi\)
\(38\) −0.353736 −0.0573835
\(39\) 4.66537 0.747057
\(40\) −8.41546 −1.33060
\(41\) 5.15582 0.805203 0.402602 0.915375i \(-0.368106\pi\)
0.402602 + 0.915375i \(0.368106\pi\)
\(42\) 0 0
\(43\) 4.20376 0.641068 0.320534 0.947237i \(-0.396138\pi\)
0.320534 + 0.947237i \(0.396138\pi\)
\(44\) 2.91528 0.439495
\(45\) −4.41546 −0.658218
\(46\) 0.509552 0.0751294
\(47\) 1.92501 0.280792 0.140396 0.990095i \(-0.455162\pi\)
0.140396 + 0.990095i \(0.455162\pi\)
\(48\) 2.50955 0.362223
\(49\) 0 0
\(50\) −7.38662 −1.04463
\(51\) −6.24991 −0.875162
\(52\) −8.11940 −1.12596
\(53\) −1.84066 −0.252833 −0.126417 0.991977i \(-0.540348\pi\)
−0.126417 + 0.991977i \(0.540348\pi\)
\(54\) −0.509552 −0.0693413
\(55\) 7.39636 0.997324
\(56\) 0 0
\(57\) 0.694209 0.0919502
\(58\) −2.85355 −0.374690
\(59\) −9.39779 −1.22349 −0.611744 0.791056i \(-0.709532\pi\)
−0.611744 + 0.791056i \(0.709532\pi\)
\(60\) 7.68447 0.992061
\(61\) −7.72125 −0.988605 −0.494302 0.869290i \(-0.664576\pi\)
−0.494302 + 0.869290i \(0.664576\pi\)
\(62\) 2.16555 0.275025
\(63\) 0 0
\(64\) −2.42520 −0.303149
\(65\) −20.5998 −2.55508
\(66\) 0.853553 0.105065
\(67\) −8.22728 −1.00512 −0.502561 0.864542i \(-0.667609\pi\)
−0.502561 + 0.864542i \(0.667609\pi\)
\(68\) 10.8771 1.31904
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −10.6654 −1.26575 −0.632873 0.774255i \(-0.718125\pi\)
−0.632873 + 0.774255i \(0.718125\pi\)
\(72\) 1.90591 0.224613
\(73\) 11.9117 1.39416 0.697082 0.716991i \(-0.254481\pi\)
0.697082 + 0.716991i \(0.254481\pi\)
\(74\) −4.72305 −0.549043
\(75\) 14.4963 1.67389
\(76\) −1.20817 −0.138587
\(77\) 0 0
\(78\) −2.37725 −0.269171
\(79\) 0.581012 0.0653689 0.0326845 0.999466i \(-0.489594\pi\)
0.0326845 + 0.999466i \(0.489594\pi\)
\(80\) −11.0808 −1.23887
\(81\) 1.00000 0.111111
\(82\) −2.62716 −0.290121
\(83\) −6.95032 −0.762897 −0.381449 0.924390i \(-0.624575\pi\)
−0.381449 + 0.924390i \(0.624575\pi\)
\(84\) 0 0
\(85\) 27.5962 2.99323
\(86\) −2.14204 −0.230982
\(87\) 5.60012 0.600396
\(88\) −3.19259 −0.340332
\(89\) 13.4963 1.43060 0.715302 0.698816i \(-0.246289\pi\)
0.715302 + 0.698816i \(0.246289\pi\)
\(90\) 2.24991 0.237161
\(91\) 0 0
\(92\) 1.74036 0.181445
\(93\) −4.24991 −0.440695
\(94\) −0.980895 −0.101172
\(95\) −3.06525 −0.314488
\(96\) −5.09056 −0.519554
\(97\) −10.0999 −1.02549 −0.512746 0.858540i \(-0.671372\pi\)
−0.512746 + 0.858540i \(0.671372\pi\)
\(98\) 0 0
\(99\) −1.67510 −0.168354
\(100\) −25.2287 −2.52287
\(101\) 13.7830 1.37146 0.685729 0.727857i \(-0.259484\pi\)
0.685729 + 0.727857i \(0.259484\pi\)
\(102\) 3.18466 0.315328
\(103\) −16.5553 −1.63125 −0.815623 0.578584i \(-0.803605\pi\)
−0.815623 + 0.578584i \(0.803605\pi\)
\(104\) 8.89176 0.871909
\(105\) 0 0
\(106\) 0.937911 0.0910979
\(107\) −1.33463 −0.129024 −0.0645118 0.997917i \(-0.520549\pi\)
−0.0645118 + 0.997917i \(0.520549\pi\)
\(108\) −1.74036 −0.167466
\(109\) 4.00794 0.383891 0.191945 0.981406i \(-0.438520\pi\)
0.191945 + 0.981406i \(0.438520\pi\)
\(110\) −3.76883 −0.359344
\(111\) 9.26901 0.879776
\(112\) 0 0
\(113\) −9.06525 −0.852787 −0.426394 0.904538i \(-0.640216\pi\)
−0.426394 + 0.904538i \(0.640216\pi\)
\(114\) −0.353736 −0.0331304
\(115\) 4.41546 0.411744
\(116\) −9.74620 −0.904912
\(117\) 4.66537 0.431314
\(118\) 4.78867 0.440832
\(119\) 0 0
\(120\) −8.41546 −0.768223
\(121\) −8.19403 −0.744911
\(122\) 3.93438 0.356202
\(123\) 5.15582 0.464884
\(124\) 7.39636 0.664212
\(125\) −41.9305 −3.75038
\(126\) 0 0
\(127\) −21.4977 −1.90761 −0.953807 0.300419i \(-0.902873\pi\)
−0.953807 + 0.300419i \(0.902873\pi\)
\(128\) 11.4169 1.00912
\(129\) 4.20376 0.370121
\(130\) 10.4967 0.920618
\(131\) −1.17529 −0.102685 −0.0513426 0.998681i \(-0.516350\pi\)
−0.0513426 + 0.998681i \(0.516350\pi\)
\(132\) 2.91528 0.253742
\(133\) 0 0
\(134\) 4.19223 0.362153
\(135\) −4.41546 −0.380022
\(136\) −11.9117 −1.02142
\(137\) 15.8562 1.35469 0.677345 0.735666i \(-0.263131\pi\)
0.677345 + 0.735666i \(0.263131\pi\)
\(138\) 0.509552 0.0433760
\(139\) 1.93438 0.164072 0.0820361 0.996629i \(-0.473858\pi\)
0.0820361 + 0.996629i \(0.473858\pi\)
\(140\) 0 0
\(141\) 1.92501 0.162115
\(142\) 5.43457 0.456059
\(143\) −7.81498 −0.653521
\(144\) 2.50955 0.209129
\(145\) −24.7271 −2.05347
\(146\) −6.06966 −0.502329
\(147\) 0 0
\(148\) −16.1314 −1.32599
\(149\) 2.61301 0.214067 0.107033 0.994255i \(-0.465865\pi\)
0.107033 + 0.994255i \(0.465865\pi\)
\(150\) −7.38662 −0.603115
\(151\) −9.26281 −0.753797 −0.376898 0.926255i \(-0.623009\pi\)
−0.376898 + 0.926255i \(0.623009\pi\)
\(152\) 1.32310 0.107317
\(153\) −6.24991 −0.505275
\(154\) 0 0
\(155\) 18.7653 1.50727
\(156\) −8.11940 −0.650073
\(157\) 7.77504 0.620516 0.310258 0.950652i \(-0.399585\pi\)
0.310258 + 0.950652i \(0.399585\pi\)
\(158\) −0.296056 −0.0235530
\(159\) −1.84066 −0.145973
\(160\) 22.4772 1.77698
\(161\) 0 0
\(162\) −0.509552 −0.0400342
\(163\) −7.12077 −0.557742 −0.278871 0.960329i \(-0.589960\pi\)
−0.278871 + 0.960329i \(0.589960\pi\)
\(164\) −8.97296 −0.700670
\(165\) 7.39636 0.575805
\(166\) 3.54156 0.274878
\(167\) 11.9867 0.927562 0.463781 0.885950i \(-0.346493\pi\)
0.463781 + 0.885950i \(0.346493\pi\)
\(168\) 0 0
\(169\) 8.76567 0.674282
\(170\) −14.0617 −1.07849
\(171\) 0.694209 0.0530875
\(172\) −7.31604 −0.557843
\(173\) 2.09993 0.159655 0.0798275 0.996809i \(-0.474563\pi\)
0.0798275 + 0.996809i \(0.474563\pi\)
\(174\) −2.85355 −0.216327
\(175\) 0 0
\(176\) −4.20376 −0.316870
\(177\) −9.39779 −0.706381
\(178\) −6.87707 −0.515458
\(179\) −15.9726 −1.19385 −0.596924 0.802298i \(-0.703611\pi\)
−0.596924 + 0.802298i \(0.703611\pi\)
\(180\) 7.68447 0.572767
\(181\) 2.89970 0.215533 0.107767 0.994176i \(-0.465630\pi\)
0.107767 + 0.994176i \(0.465630\pi\)
\(182\) 0 0
\(183\) −7.72125 −0.570771
\(184\) −1.90591 −0.140505
\(185\) −40.9270 −3.00901
\(186\) 2.16555 0.158786
\(187\) 10.4692 0.765587
\(188\) −3.35021 −0.244339
\(189\) 0 0
\(190\) 1.56191 0.113313
\(191\) −21.5486 −1.55921 −0.779603 0.626275i \(-0.784579\pi\)
−0.779603 + 0.626275i \(0.784579\pi\)
\(192\) −2.42520 −0.175023
\(193\) 4.58722 0.330195 0.165098 0.986277i \(-0.447206\pi\)
0.165098 + 0.986277i \(0.447206\pi\)
\(194\) 5.14645 0.369493
\(195\) −20.5998 −1.47518
\(196\) 0 0
\(197\) −11.8656 −0.845389 −0.422695 0.906272i \(-0.638916\pi\)
−0.422695 + 0.906272i \(0.638916\pi\)
\(198\) 0.853553 0.0606594
\(199\) 2.52866 0.179252 0.0896259 0.995976i \(-0.471433\pi\)
0.0896259 + 0.995976i \(0.471433\pi\)
\(200\) 27.6286 1.95364
\(201\) −8.22728 −0.580307
\(202\) −7.02315 −0.494147
\(203\) 0 0
\(204\) 10.8771 0.761547
\(205\) −22.7653 −1.59000
\(206\) 8.43581 0.587751
\(207\) −1.00000 −0.0695048
\(208\) 11.7080 0.811803
\(209\) −1.16287 −0.0804376
\(210\) 0 0
\(211\) −21.9797 −1.51314 −0.756572 0.653911i \(-0.773127\pi\)
−0.756572 + 0.653911i \(0.773127\pi\)
\(212\) 3.20340 0.220010
\(213\) −10.6654 −0.730779
\(214\) 0.680065 0.0464883
\(215\) −18.5615 −1.26589
\(216\) 1.90591 0.129681
\(217\) 0 0
\(218\) −2.04225 −0.138319
\(219\) 11.9117 0.804921
\(220\) −12.8723 −0.867850
\(221\) −29.1581 −1.96139
\(222\) −4.72305 −0.316990
\(223\) −0.0302726 −0.00202720 −0.00101360 0.999999i \(-0.500323\pi\)
−0.00101360 + 0.999999i \(0.500323\pi\)
\(224\) 0 0
\(225\) 14.4963 0.966419
\(226\) 4.61922 0.307266
\(227\) −21.2393 −1.40970 −0.704852 0.709355i \(-0.748986\pi\)
−0.704852 + 0.709355i \(0.748986\pi\)
\(228\) −1.20817 −0.0800131
\(229\) −17.4360 −1.15220 −0.576102 0.817378i \(-0.695427\pi\)
−0.576102 + 0.817378i \(0.695427\pi\)
\(230\) −2.24991 −0.148355
\(231\) 0 0
\(232\) 10.6733 0.700737
\(233\) −11.2082 −0.734272 −0.367136 0.930167i \(-0.619662\pi\)
−0.367136 + 0.930167i \(0.619662\pi\)
\(234\) −2.37725 −0.155406
\(235\) −8.49982 −0.554467
\(236\) 16.3555 1.06465
\(237\) 0.581012 0.0377408
\(238\) 0 0
\(239\) −18.5654 −1.20090 −0.600449 0.799663i \(-0.705011\pi\)
−0.600449 + 0.799663i \(0.705011\pi\)
\(240\) −11.0808 −0.715264
\(241\) 13.6556 0.879637 0.439818 0.898087i \(-0.355043\pi\)
0.439818 + 0.898087i \(0.355043\pi\)
\(242\) 4.17529 0.268398
\(243\) 1.00000 0.0641500
\(244\) 13.4377 0.860262
\(245\) 0 0
\(246\) −2.62716 −0.167502
\(247\) 3.23874 0.206076
\(248\) −8.09993 −0.514346
\(249\) −6.95032 −0.440459
\(250\) 21.3658 1.35129
\(251\) −0.604526 −0.0381574 −0.0190787 0.999818i \(-0.506073\pi\)
−0.0190787 + 0.999818i \(0.506073\pi\)
\(252\) 0 0
\(253\) 1.67510 0.105313
\(254\) 10.9542 0.687329
\(255\) 27.5962 1.72814
\(256\) −0.967116 −0.0604447
\(257\) −14.1602 −0.883291 −0.441645 0.897190i \(-0.645605\pi\)
−0.441645 + 0.897190i \(0.645605\pi\)
\(258\) −2.14204 −0.133357
\(259\) 0 0
\(260\) 35.8509 2.22338
\(261\) 5.60012 0.346639
\(262\) 0.598870 0.0369983
\(263\) 20.5788 1.26895 0.634473 0.772945i \(-0.281217\pi\)
0.634473 + 0.772945i \(0.281217\pi\)
\(264\) −3.19259 −0.196491
\(265\) 8.12734 0.499259
\(266\) 0 0
\(267\) 13.4963 0.825960
\(268\) 14.3184 0.874635
\(269\) 0.496655 0.0302816 0.0151408 0.999885i \(-0.495180\pi\)
0.0151408 + 0.999885i \(0.495180\pi\)
\(270\) 2.24991 0.136925
\(271\) −24.0547 −1.46122 −0.730609 0.682797i \(-0.760764\pi\)
−0.730609 + 0.682797i \(0.760764\pi\)
\(272\) −15.6845 −0.951011
\(273\) 0 0
\(274\) −8.07958 −0.488105
\(275\) −24.2828 −1.46431
\(276\) 1.74036 0.104757
\(277\) 23.2402 1.39637 0.698183 0.715919i \(-0.253992\pi\)
0.698183 + 0.715919i \(0.253992\pi\)
\(278\) −0.985670 −0.0591165
\(279\) −4.24991 −0.254435
\(280\) 0 0
\(281\) −15.0697 −0.898985 −0.449492 0.893284i \(-0.648395\pi\)
−0.449492 + 0.893284i \(0.648395\pi\)
\(282\) −0.980895 −0.0584114
\(283\) −9.22691 −0.548483 −0.274241 0.961661i \(-0.588427\pi\)
−0.274241 + 0.961661i \(0.588427\pi\)
\(284\) 18.5615 1.10142
\(285\) −3.06525 −0.181570
\(286\) 3.98214 0.235469
\(287\) 0 0
\(288\) −5.09056 −0.299964
\(289\) 22.0614 1.29773
\(290\) 12.5998 0.739883
\(291\) −10.0999 −0.592069
\(292\) −20.7307 −1.21317
\(293\) 12.3881 0.723718 0.361859 0.932233i \(-0.382142\pi\)
0.361859 + 0.932233i \(0.382142\pi\)
\(294\) 0 0
\(295\) 41.4956 2.41596
\(296\) 17.6659 1.02681
\(297\) −1.67510 −0.0971994
\(298\) −1.33147 −0.0771299
\(299\) −4.66537 −0.269805
\(300\) −25.2287 −1.45658
\(301\) 0 0
\(302\) 4.71989 0.271599
\(303\) 13.7830 0.791811
\(304\) 1.74215 0.0999194
\(305\) 34.0929 1.95215
\(306\) 3.18466 0.182055
\(307\) −0.823281 −0.0469871 −0.0234936 0.999724i \(-0.507479\pi\)
−0.0234936 + 0.999724i \(0.507479\pi\)
\(308\) 0 0
\(309\) −16.5553 −0.941800
\(310\) −9.56191 −0.543080
\(311\) 30.6632 1.73875 0.869375 0.494152i \(-0.164521\pi\)
0.869375 + 0.494152i \(0.164521\pi\)
\(312\) 8.89176 0.503397
\(313\) −13.1323 −0.742282 −0.371141 0.928577i \(-0.621033\pi\)
−0.371141 + 0.928577i \(0.621033\pi\)
\(314\) −3.96179 −0.223577
\(315\) 0 0
\(316\) −1.01117 −0.0568826
\(317\) −15.2269 −0.855229 −0.427614 0.903961i \(-0.640646\pi\)
−0.427614 + 0.903961i \(0.640646\pi\)
\(318\) 0.937911 0.0525954
\(319\) −9.38078 −0.525223
\(320\) 10.7084 0.598615
\(321\) −1.33463 −0.0744918
\(322\) 0 0
\(323\) −4.33874 −0.241414
\(324\) −1.74036 −0.0966865
\(325\) 67.6305 3.75147
\(326\) 3.62841 0.200959
\(327\) 4.00794 0.221639
\(328\) 9.82651 0.542578
\(329\) 0 0
\(330\) −3.76883 −0.207467
\(331\) 25.5674 1.40531 0.702655 0.711530i \(-0.251998\pi\)
0.702655 + 0.711530i \(0.251998\pi\)
\(332\) 12.0960 0.663857
\(333\) 9.26901 0.507939
\(334\) −6.10787 −0.334208
\(335\) 36.3272 1.98477
\(336\) 0 0
\(337\) 16.2890 0.887318 0.443659 0.896196i \(-0.353680\pi\)
0.443659 + 0.896196i \(0.353680\pi\)
\(338\) −4.46657 −0.242949
\(339\) −9.06525 −0.492357
\(340\) −48.0273 −2.60464
\(341\) 7.11904 0.385518
\(342\) −0.353736 −0.0191278
\(343\) 0 0
\(344\) 8.01198 0.431977
\(345\) 4.41546 0.237720
\(346\) −1.07003 −0.0575250
\(347\) 21.6729 1.16346 0.581732 0.813380i \(-0.302375\pi\)
0.581732 + 0.813380i \(0.302375\pi\)
\(348\) −9.74620 −0.522451
\(349\) 21.5198 1.15193 0.575964 0.817475i \(-0.304627\pi\)
0.575964 + 0.817475i \(0.304627\pi\)
\(350\) 0 0
\(351\) 4.66537 0.249019
\(352\) 8.52722 0.454503
\(353\) 20.1852 1.07435 0.537174 0.843471i \(-0.319492\pi\)
0.537174 + 0.843471i \(0.319492\pi\)
\(354\) 4.78867 0.254515
\(355\) 47.0925 2.49941
\(356\) −23.4884 −1.24488
\(357\) 0 0
\(358\) 8.13887 0.430153
\(359\) 23.2492 1.22705 0.613524 0.789676i \(-0.289751\pi\)
0.613524 + 0.789676i \(0.289751\pi\)
\(360\) −8.41546 −0.443534
\(361\) −18.5181 −0.974635
\(362\) −1.47755 −0.0776583
\(363\) −8.19403 −0.430075
\(364\) 0 0
\(365\) −52.5959 −2.75299
\(366\) 3.93438 0.205653
\(367\) −27.7171 −1.44682 −0.723409 0.690419i \(-0.757426\pi\)
−0.723409 + 0.690419i \(0.757426\pi\)
\(368\) −2.50955 −0.130819
\(369\) 5.15582 0.268401
\(370\) 20.8544 1.08417
\(371\) 0 0
\(372\) 7.39636 0.383483
\(373\) −24.7303 −1.28048 −0.640242 0.768173i \(-0.721166\pi\)
−0.640242 + 0.768173i \(0.721166\pi\)
\(374\) −5.33463 −0.275847
\(375\) −41.9305 −2.16528
\(376\) 3.66890 0.189209
\(377\) 26.1266 1.34559
\(378\) 0 0
\(379\) −3.11140 −0.159822 −0.0799109 0.996802i \(-0.525464\pi\)
−0.0799109 + 0.996802i \(0.525464\pi\)
\(380\) 5.33463 0.273661
\(381\) −21.4977 −1.10136
\(382\) 10.9802 0.561794
\(383\) 18.9503 0.968316 0.484158 0.874980i \(-0.339126\pi\)
0.484158 + 0.874980i \(0.339126\pi\)
\(384\) 11.4169 0.582616
\(385\) 0 0
\(386\) −2.33743 −0.118972
\(387\) 4.20376 0.213689
\(388\) 17.5775 0.892362
\(389\) −20.1693 −1.02262 −0.511312 0.859395i \(-0.670840\pi\)
−0.511312 + 0.859395i \(0.670840\pi\)
\(390\) 10.4967 0.531519
\(391\) 6.24991 0.316071
\(392\) 0 0
\(393\) −1.17529 −0.0592854
\(394\) 6.04615 0.304600
\(395\) −2.56543 −0.129081
\(396\) 2.91528 0.146498
\(397\) −8.41634 −0.422404 −0.211202 0.977442i \(-0.567738\pi\)
−0.211202 + 0.977442i \(0.567738\pi\)
\(398\) −1.28848 −0.0645859
\(399\) 0 0
\(400\) 36.3792 1.81896
\(401\) −5.86329 −0.292799 −0.146399 0.989226i \(-0.546768\pi\)
−0.146399 + 0.989226i \(0.546768\pi\)
\(402\) 4.19223 0.209089
\(403\) −19.8274 −0.987673
\(404\) −23.9873 −1.19341
\(405\) −4.41546 −0.219406
\(406\) 0 0
\(407\) −15.5266 −0.769623
\(408\) −11.9117 −0.589719
\(409\) 26.2686 1.29890 0.649451 0.760404i \(-0.274999\pi\)
0.649451 + 0.760404i \(0.274999\pi\)
\(410\) 11.6001 0.572889
\(411\) 15.8562 0.782130
\(412\) 28.8122 1.41947
\(413\) 0 0
\(414\) 0.509552 0.0250431
\(415\) 30.6889 1.50646
\(416\) −23.7494 −1.16441
\(417\) 1.93438 0.0947271
\(418\) 0.592544 0.0289823
\(419\) 0.800648 0.0391142 0.0195571 0.999809i \(-0.493774\pi\)
0.0195571 + 0.999809i \(0.493774\pi\)
\(420\) 0 0
\(421\) 23.3845 1.13969 0.569846 0.821751i \(-0.307003\pi\)
0.569846 + 0.821751i \(0.307003\pi\)
\(422\) 11.1998 0.545198
\(423\) 1.92501 0.0935973
\(424\) −3.50812 −0.170369
\(425\) −90.6005 −4.39477
\(426\) 5.43457 0.263306
\(427\) 0 0
\(428\) 2.32273 0.112274
\(429\) −7.81498 −0.377311
\(430\) 9.45808 0.456109
\(431\) −33.4853 −1.61293 −0.806465 0.591281i \(-0.798622\pi\)
−0.806465 + 0.591281i \(0.798622\pi\)
\(432\) 2.50955 0.120741
\(433\) −24.1373 −1.15996 −0.579982 0.814629i \(-0.696941\pi\)
−0.579982 + 0.814629i \(0.696941\pi\)
\(434\) 0 0
\(435\) −24.7271 −1.18557
\(436\) −6.97524 −0.334053
\(437\) −0.694209 −0.0332085
\(438\) −6.06966 −0.290020
\(439\) 16.4469 0.784968 0.392484 0.919759i \(-0.371616\pi\)
0.392484 + 0.919759i \(0.371616\pi\)
\(440\) 14.0968 0.672037
\(441\) 0 0
\(442\) 14.8576 0.706704
\(443\) 9.58542 0.455417 0.227709 0.973729i \(-0.426877\pi\)
0.227709 + 0.973729i \(0.426877\pi\)
\(444\) −16.1314 −0.765562
\(445\) −59.5923 −2.82495
\(446\) 0.0154255 0.000730417 0
\(447\) 2.61301 0.123591
\(448\) 0 0
\(449\) 4.17319 0.196945 0.0984725 0.995140i \(-0.468604\pi\)
0.0984725 + 0.995140i \(0.468604\pi\)
\(450\) −7.38662 −0.348209
\(451\) −8.63653 −0.406678
\(452\) 15.7768 0.742077
\(453\) −9.26281 −0.435205
\(454\) 10.8226 0.507927
\(455\) 0 0
\(456\) 1.32310 0.0619598
\(457\) 8.02668 0.375472 0.187736 0.982220i \(-0.439885\pi\)
0.187736 + 0.982220i \(0.439885\pi\)
\(458\) 8.88456 0.415148
\(459\) −6.24991 −0.291721
\(460\) −7.68447 −0.358290
\(461\) −11.6192 −0.541158 −0.270579 0.962698i \(-0.587215\pi\)
−0.270579 + 0.962698i \(0.587215\pi\)
\(462\) 0 0
\(463\) −35.8714 −1.66708 −0.833542 0.552456i \(-0.813691\pi\)
−0.833542 + 0.552456i \(0.813691\pi\)
\(464\) 14.0538 0.652431
\(465\) 18.7653 0.870220
\(466\) 5.71115 0.264564
\(467\) 13.1731 0.609579 0.304790 0.952420i \(-0.401414\pi\)
0.304790 + 0.952420i \(0.401414\pi\)
\(468\) −8.11940 −0.375320
\(469\) 0 0
\(470\) 4.33110 0.199779
\(471\) 7.77504 0.358255
\(472\) −17.9113 −0.824435
\(473\) −7.04174 −0.323779
\(474\) −0.296056 −0.0135983
\(475\) 10.0635 0.461743
\(476\) 0 0
\(477\) −1.84066 −0.0842778
\(478\) 9.46006 0.432693
\(479\) −5.23080 −0.239002 −0.119501 0.992834i \(-0.538129\pi\)
−0.119501 + 0.992834i \(0.538129\pi\)
\(480\) 22.4772 1.02594
\(481\) 43.2434 1.97173
\(482\) −6.95826 −0.316940
\(483\) 0 0
\(484\) 14.2605 0.648206
\(485\) 44.5959 2.02499
\(486\) −0.509552 −0.0231138
\(487\) 28.9779 1.31311 0.656557 0.754277i \(-0.272012\pi\)
0.656557 + 0.754277i \(0.272012\pi\)
\(488\) −14.7160 −0.666162
\(489\) −7.12077 −0.322012
\(490\) 0 0
\(491\) −16.6912 −0.753262 −0.376631 0.926363i \(-0.622917\pi\)
−0.376631 + 0.926363i \(0.622917\pi\)
\(492\) −8.97296 −0.404532
\(493\) −35.0002 −1.57633
\(494\) −1.65031 −0.0742509
\(495\) 7.39636 0.332441
\(496\) −10.6654 −0.478889
\(497\) 0 0
\(498\) 3.54156 0.158701
\(499\) 9.57213 0.428507 0.214254 0.976778i \(-0.431268\pi\)
0.214254 + 0.976778i \(0.431268\pi\)
\(500\) 72.9740 3.26350
\(501\) 11.9867 0.535528
\(502\) 0.308038 0.0137484
\(503\) 20.6348 0.920060 0.460030 0.887903i \(-0.347839\pi\)
0.460030 + 0.887903i \(0.347839\pi\)
\(504\) 0 0
\(505\) −60.8582 −2.70815
\(506\) −0.853553 −0.0379451
\(507\) 8.76567 0.389297
\(508\) 37.4137 1.65996
\(509\) −6.23665 −0.276434 −0.138217 0.990402i \(-0.544137\pi\)
−0.138217 + 0.990402i \(0.544137\pi\)
\(510\) −14.0617 −0.622664
\(511\) 0 0
\(512\) −22.3410 −0.987342
\(513\) 0.694209 0.0306501
\(514\) 7.21538 0.318257
\(515\) 73.0994 3.22115
\(516\) −7.31604 −0.322071
\(517\) −3.22460 −0.141818
\(518\) 0 0
\(519\) 2.09993 0.0921769
\(520\) −39.2612 −1.72172
\(521\) −12.6615 −0.554709 −0.277355 0.960768i \(-0.589458\pi\)
−0.277355 + 0.960768i \(0.589458\pi\)
\(522\) −2.85355 −0.124897
\(523\) −43.3446 −1.89533 −0.947663 0.319272i \(-0.896562\pi\)
−0.947663 + 0.319272i \(0.896562\pi\)
\(524\) 2.04542 0.0893545
\(525\) 0 0
\(526\) −10.4860 −0.457211
\(527\) 26.5615 1.15704
\(528\) −4.20376 −0.182945
\(529\) 1.00000 0.0434783
\(530\) −4.14131 −0.179887
\(531\) −9.39779 −0.407829
\(532\) 0 0
\(533\) 24.0538 1.04189
\(534\) −6.87707 −0.297600
\(535\) 5.89301 0.254777
\(536\) −15.6804 −0.677291
\(537\) −15.9726 −0.689268
\(538\) −0.253072 −0.0109107
\(539\) 0 0
\(540\) 7.68447 0.330687
\(541\) 5.87439 0.252560 0.126280 0.991995i \(-0.459696\pi\)
0.126280 + 0.991995i \(0.459696\pi\)
\(542\) 12.2571 0.526488
\(543\) 2.89970 0.124438
\(544\) 31.8156 1.36408
\(545\) −17.6969 −0.758051
\(546\) 0 0
\(547\) 13.8580 0.592524 0.296262 0.955107i \(-0.404260\pi\)
0.296262 + 0.955107i \(0.404260\pi\)
\(548\) −27.5955 −1.17882
\(549\) −7.72125 −0.329535
\(550\) 12.3734 0.527602
\(551\) 3.88765 0.165620
\(552\) −1.90591 −0.0811208
\(553\) 0 0
\(554\) −11.8421 −0.503122
\(555\) −40.9270 −1.73725
\(556\) −3.36652 −0.142772
\(557\) −18.5921 −0.787773 −0.393887 0.919159i \(-0.628870\pi\)
−0.393887 + 0.919159i \(0.628870\pi\)
\(558\) 2.16555 0.0916751
\(559\) 19.6121 0.829503
\(560\) 0 0
\(561\) 10.4692 0.442012
\(562\) 7.67882 0.323911
\(563\) −5.09582 −0.214763 −0.107382 0.994218i \(-0.534247\pi\)
−0.107382 + 0.994218i \(0.534247\pi\)
\(564\) −3.35021 −0.141069
\(565\) 40.0273 1.68396
\(566\) 4.70160 0.197623
\(567\) 0 0
\(568\) −20.3272 −0.852911
\(569\) −29.3028 −1.22844 −0.614218 0.789136i \(-0.710529\pi\)
−0.614218 + 0.789136i \(0.710529\pi\)
\(570\) 1.56191 0.0654211
\(571\) −5.10736 −0.213736 −0.106868 0.994273i \(-0.534082\pi\)
−0.106868 + 0.994273i \(0.534082\pi\)
\(572\) 13.6008 0.568680
\(573\) −21.5486 −0.900208
\(574\) 0 0
\(575\) −14.4963 −0.604537
\(576\) −2.42520 −0.101050
\(577\) −24.7379 −1.02985 −0.514926 0.857235i \(-0.672181\pi\)
−0.514926 + 0.857235i \(0.672181\pi\)
\(578\) −11.2414 −0.467581
\(579\) 4.58722 0.190638
\(580\) 43.0340 1.78689
\(581\) 0 0
\(582\) 5.14645 0.213327
\(583\) 3.08329 0.127697
\(584\) 22.7027 0.939444
\(585\) −20.5998 −0.851695
\(586\) −6.31236 −0.260761
\(587\) −38.8319 −1.60276 −0.801382 0.598152i \(-0.795902\pi\)
−0.801382 + 0.598152i \(0.795902\pi\)
\(588\) 0 0
\(589\) −2.95032 −0.121566
\(590\) −21.1442 −0.870492
\(591\) −11.8656 −0.488086
\(592\) 23.2611 0.956024
\(593\) −36.9162 −1.51596 −0.757982 0.652275i \(-0.773815\pi\)
−0.757982 + 0.652275i \(0.773815\pi\)
\(594\) 0.853553 0.0350217
\(595\) 0 0
\(596\) −4.54758 −0.186276
\(597\) 2.52866 0.103491
\(598\) 2.37725 0.0972130
\(599\) 40.4224 1.65161 0.825807 0.563953i \(-0.190720\pi\)
0.825807 + 0.563953i \(0.190720\pi\)
\(600\) 27.6286 1.12793
\(601\) −2.98464 −0.121746 −0.0608730 0.998146i \(-0.519388\pi\)
−0.0608730 + 0.998146i \(0.519388\pi\)
\(602\) 0 0
\(603\) −8.22728 −0.335041
\(604\) 16.1206 0.655937
\(605\) 36.1804 1.47094
\(606\) −7.02315 −0.285296
\(607\) 29.1893 1.18476 0.592378 0.805660i \(-0.298189\pi\)
0.592378 + 0.805660i \(0.298189\pi\)
\(608\) −3.53392 −0.143319
\(609\) 0 0
\(610\) −17.3721 −0.703376
\(611\) 8.98090 0.363328
\(612\) 10.8771 0.439679
\(613\) −5.88595 −0.237731 −0.118866 0.992910i \(-0.537926\pi\)
−0.118866 + 0.992910i \(0.537926\pi\)
\(614\) 0.419505 0.0169298
\(615\) −22.7653 −0.917986
\(616\) 0 0
\(617\) −8.07326 −0.325017 −0.162509 0.986707i \(-0.551959\pi\)
−0.162509 + 0.986707i \(0.551959\pi\)
\(618\) 8.43581 0.339338
\(619\) −10.8589 −0.436457 −0.218228 0.975898i \(-0.570028\pi\)
−0.218228 + 0.975898i \(0.570028\pi\)
\(620\) −32.6583 −1.31159
\(621\) −1.00000 −0.0401286
\(622\) −15.6245 −0.626486
\(623\) 0 0
\(624\) 11.7080 0.468695
\(625\) 112.661 4.50644
\(626\) 6.69160 0.267450
\(627\) −1.16287 −0.0464406
\(628\) −13.5313 −0.539959
\(629\) −57.9305 −2.30984
\(630\) 0 0
\(631\) 23.1891 0.923145 0.461572 0.887103i \(-0.347285\pi\)
0.461572 + 0.887103i \(0.347285\pi\)
\(632\) 1.10736 0.0440482
\(633\) −21.9797 −0.873614
\(634\) 7.75891 0.308146
\(635\) 94.9223 3.76688
\(636\) 3.20340 0.127023
\(637\) 0 0
\(638\) 4.78000 0.189242
\(639\) −10.6654 −0.421915
\(640\) −50.4108 −1.99266
\(641\) −46.7138 −1.84509 −0.922543 0.385895i \(-0.873893\pi\)
−0.922543 + 0.385895i \(0.873893\pi\)
\(642\) 0.680065 0.0268400
\(643\) −33.7524 −1.33106 −0.665532 0.746369i \(-0.731795\pi\)
−0.665532 + 0.746369i \(0.731795\pi\)
\(644\) 0 0
\(645\) −18.5615 −0.730860
\(646\) 2.21082 0.0869834
\(647\) −18.9277 −0.744124 −0.372062 0.928208i \(-0.621349\pi\)
−0.372062 + 0.928208i \(0.621349\pi\)
\(648\) 1.90591 0.0748711
\(649\) 15.7423 0.617938
\(650\) −34.4613 −1.35168
\(651\) 0 0
\(652\) 12.3927 0.485335
\(653\) −10.1696 −0.397967 −0.198984 0.980003i \(-0.563764\pi\)
−0.198984 + 0.980003i \(0.563764\pi\)
\(654\) −2.04225 −0.0798585
\(655\) 5.18943 0.202768
\(656\) 12.9388 0.505175
\(657\) 11.9117 0.464722
\(658\) 0 0
\(659\) −4.60754 −0.179484 −0.0897421 0.995965i \(-0.528604\pi\)
−0.0897421 + 0.995965i \(0.528604\pi\)
\(660\) −12.8723 −0.501053
\(661\) 31.1205 1.21045 0.605223 0.796056i \(-0.293084\pi\)
0.605223 + 0.796056i \(0.293084\pi\)
\(662\) −13.0279 −0.506345
\(663\) −29.1581 −1.13241
\(664\) −13.2467 −0.514071
\(665\) 0 0
\(666\) −4.72305 −0.183014
\(667\) −5.60012 −0.216837
\(668\) −20.8612 −0.807144
\(669\) −0.0302726 −0.00117041
\(670\) −18.5106 −0.715128
\(671\) 12.9339 0.499308
\(672\) 0 0
\(673\) −36.9447 −1.42411 −0.712057 0.702122i \(-0.752236\pi\)
−0.712057 + 0.702122i \(0.752236\pi\)
\(674\) −8.30010 −0.319708
\(675\) 14.4963 0.557962
\(676\) −15.2554 −0.586746
\(677\) −0.331401 −0.0127368 −0.00636838 0.999980i \(-0.502027\pi\)
−0.00636838 + 0.999980i \(0.502027\pi\)
\(678\) 4.61922 0.177400
\(679\) 0 0
\(680\) 52.5959 2.01696
\(681\) −21.2393 −0.813893
\(682\) −3.62752 −0.138905
\(683\) −16.8856 −0.646109 −0.323055 0.946380i \(-0.604710\pi\)
−0.323055 + 0.946380i \(0.604710\pi\)
\(684\) −1.20817 −0.0461956
\(685\) −70.0126 −2.67504
\(686\) 0 0
\(687\) −17.4360 −0.665225
\(688\) 10.5496 0.402198
\(689\) −8.58734 −0.327152
\(690\) −2.24991 −0.0856526
\(691\) 11.1963 0.425929 0.212964 0.977060i \(-0.431688\pi\)
0.212964 + 0.977060i \(0.431688\pi\)
\(692\) −3.65463 −0.138928
\(693\) 0 0
\(694\) −11.0435 −0.419206
\(695\) −8.54119 −0.323986
\(696\) 10.6733 0.404571
\(697\) −32.2234 −1.22055
\(698\) −10.9655 −0.415049
\(699\) −11.2082 −0.423932
\(700\) 0 0
\(701\) 9.50609 0.359040 0.179520 0.983754i \(-0.442546\pi\)
0.179520 + 0.983754i \(0.442546\pi\)
\(702\) −2.37725 −0.0897235
\(703\) 6.43463 0.242687
\(704\) 4.06245 0.153110
\(705\) −8.49982 −0.320122
\(706\) −10.2854 −0.387096
\(707\) 0 0
\(708\) 16.3555 0.614677
\(709\) 36.2890 1.36286 0.681431 0.731882i \(-0.261358\pi\)
0.681431 + 0.731882i \(0.261358\pi\)
\(710\) −23.9961 −0.900558
\(711\) 0.581012 0.0217896
\(712\) 25.7227 0.963998
\(713\) 4.24991 0.159160
\(714\) 0 0
\(715\) 34.5067 1.29048
\(716\) 27.7980 1.03886
\(717\) −18.5654 −0.693339
\(718\) −11.8467 −0.442115
\(719\) 33.5772 1.25222 0.626109 0.779736i \(-0.284647\pi\)
0.626109 + 0.779736i \(0.284647\pi\)
\(720\) −11.0808 −0.412958
\(721\) 0 0
\(722\) 9.43593 0.351169
\(723\) 13.6556 0.507858
\(724\) −5.04651 −0.187552
\(725\) 81.1809 3.01498
\(726\) 4.17529 0.154959
\(727\) −37.5410 −1.39232 −0.696159 0.717887i \(-0.745109\pi\)
−0.696159 + 0.717887i \(0.745109\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 26.8004 0.991925
\(731\) −26.2731 −0.971747
\(732\) 13.4377 0.496673
\(733\) −24.2222 −0.894668 −0.447334 0.894367i \(-0.647626\pi\)
−0.447334 + 0.894367i \(0.647626\pi\)
\(734\) 14.1233 0.521300
\(735\) 0 0
\(736\) 5.09056 0.187641
\(737\) 13.7815 0.507650
\(738\) −2.62716 −0.0967071
\(739\) −19.4377 −0.715028 −0.357514 0.933908i \(-0.616376\pi\)
−0.357514 + 0.933908i \(0.616376\pi\)
\(740\) 71.2275 2.61837
\(741\) 3.23874 0.118978
\(742\) 0 0
\(743\) 35.7282 1.31074 0.655370 0.755308i \(-0.272513\pi\)
0.655370 + 0.755308i \(0.272513\pi\)
\(744\) −8.09993 −0.296958
\(745\) −11.5377 −0.422707
\(746\) 12.6014 0.461369
\(747\) −6.95032 −0.254299
\(748\) −18.2202 −0.666197
\(749\) 0 0
\(750\) 21.3658 0.780168
\(751\) 14.4795 0.528363 0.264182 0.964473i \(-0.414898\pi\)
0.264182 + 0.964473i \(0.414898\pi\)
\(752\) 4.83092 0.176166
\(753\) −0.604526 −0.0220302
\(754\) −13.3129 −0.484826
\(755\) 40.8996 1.48849
\(756\) 0 0
\(757\) 21.8034 0.792460 0.396230 0.918151i \(-0.370318\pi\)
0.396230 + 0.918151i \(0.370318\pi\)
\(758\) 1.58542 0.0575851
\(759\) 1.67510 0.0608024
\(760\) −5.84209 −0.211915
\(761\) 5.98196 0.216846 0.108423 0.994105i \(-0.465420\pi\)
0.108423 + 0.994105i \(0.465420\pi\)
\(762\) 10.9542 0.396829
\(763\) 0 0
\(764\) 37.5023 1.35679
\(765\) 27.5962 0.997744
\(766\) −9.65619 −0.348892
\(767\) −43.8441 −1.58312
\(768\) −0.967116 −0.0348978
\(769\) 16.0694 0.579476 0.289738 0.957106i \(-0.406432\pi\)
0.289738 + 0.957106i \(0.406432\pi\)
\(770\) 0 0
\(771\) −14.1602 −0.509968
\(772\) −7.98340 −0.287329
\(773\) −36.5039 −1.31295 −0.656476 0.754347i \(-0.727954\pi\)
−0.656476 + 0.754347i \(0.727954\pi\)
\(774\) −2.14204 −0.0769939
\(775\) −61.6079 −2.21302
\(776\) −19.2495 −0.691018
\(777\) 0 0
\(778\) 10.2773 0.368460
\(779\) 3.57921 0.128239
\(780\) 35.8509 1.28367
\(781\) 17.8656 0.639282
\(782\) −3.18466 −0.113883
\(783\) 5.60012 0.200132
\(784\) 0 0
\(785\) −34.3304 −1.22530
\(786\) 0.598870 0.0213610
\(787\) 44.7402 1.59482 0.797408 0.603440i \(-0.206204\pi\)
0.797408 + 0.603440i \(0.206204\pi\)
\(788\) 20.6504 0.735639
\(789\) 20.5788 0.732626
\(790\) 1.30722 0.0465089
\(791\) 0 0
\(792\) −3.19259 −0.113444
\(793\) −36.0225 −1.27920
\(794\) 4.28857 0.152196
\(795\) 8.12734 0.288247
\(796\) −4.40076 −0.155981
\(797\) 11.3919 0.403521 0.201761 0.979435i \(-0.435334\pi\)
0.201761 + 0.979435i \(0.435334\pi\)
\(798\) 0 0
\(799\) −12.0312 −0.425632
\(800\) −73.7943 −2.60902
\(801\) 13.4963 0.476868
\(802\) 2.98765 0.105498
\(803\) −19.9534 −0.704141
\(804\) 14.3184 0.504971
\(805\) 0 0
\(806\) 10.1031 0.355866
\(807\) 0.496655 0.0174831
\(808\) 26.2691 0.924143
\(809\) −23.4803 −0.825523 −0.412761 0.910839i \(-0.635436\pi\)
−0.412761 + 0.910839i \(0.635436\pi\)
\(810\) 2.24991 0.0790537
\(811\) 0.320003 0.0112368 0.00561841 0.999984i \(-0.498212\pi\)
0.00561841 + 0.999984i \(0.498212\pi\)
\(812\) 0 0
\(813\) −24.0547 −0.843634
\(814\) 7.91160 0.277301
\(815\) 31.4415 1.10135
\(816\) −15.6845 −0.549066
\(817\) 2.91829 0.102098
\(818\) −13.3853 −0.468004
\(819\) 0 0
\(820\) 39.6197 1.38358
\(821\) 50.4892 1.76208 0.881042 0.473038i \(-0.156843\pi\)
0.881042 + 0.473038i \(0.156843\pi\)
\(822\) −8.07958 −0.281808
\(823\) −29.6259 −1.03270 −0.516348 0.856379i \(-0.672709\pi\)
−0.516348 + 0.856379i \(0.672709\pi\)
\(824\) −31.5529 −1.09920
\(825\) −24.2828 −0.845418
\(826\) 0 0
\(827\) −3.13318 −0.108951 −0.0544757 0.998515i \(-0.517349\pi\)
−0.0544757 + 0.998515i \(0.517349\pi\)
\(828\) 1.74036 0.0604816
\(829\) 20.1070 0.698345 0.349172 0.937059i \(-0.386463\pi\)
0.349172 + 0.937059i \(0.386463\pi\)
\(830\) −15.6376 −0.542789
\(831\) 23.2402 0.806193
\(832\) −11.3144 −0.392257
\(833\) 0 0
\(834\) −0.985670 −0.0341309
\(835\) −52.9270 −1.83161
\(836\) 2.02381 0.0699950
\(837\) −4.24991 −0.146898
\(838\) −0.407972 −0.0140932
\(839\) 6.63075 0.228919 0.114460 0.993428i \(-0.463486\pi\)
0.114460 + 0.993428i \(0.463486\pi\)
\(840\) 0 0
\(841\) 2.36131 0.0814244
\(842\) −11.9156 −0.410640
\(843\) −15.0697 −0.519029
\(844\) 38.2525 1.31670
\(845\) −38.7045 −1.33147
\(846\) −0.980895 −0.0337239
\(847\) 0 0
\(848\) −4.61922 −0.158625
\(849\) −9.22691 −0.316667
\(850\) 46.1657 1.58347
\(851\) −9.26901 −0.317738
\(852\) 18.5615 0.635908
\(853\) 36.1804 1.23879 0.619397 0.785078i \(-0.287377\pi\)
0.619397 + 0.785078i \(0.287377\pi\)
\(854\) 0 0
\(855\) −3.06525 −0.104829
\(856\) −2.54368 −0.0869413
\(857\) −12.6983 −0.433764 −0.216882 0.976198i \(-0.569589\pi\)
−0.216882 + 0.976198i \(0.569589\pi\)
\(858\) 3.98214 0.135948
\(859\) −49.2759 −1.68127 −0.840636 0.541600i \(-0.817819\pi\)
−0.840636 + 0.541600i \(0.817819\pi\)
\(860\) 32.3037 1.10155
\(861\) 0 0
\(862\) 17.0625 0.581152
\(863\) −3.28011 −0.111656 −0.0558282 0.998440i \(-0.517780\pi\)
−0.0558282 + 0.998440i \(0.517780\pi\)
\(864\) −5.09056 −0.173185
\(865\) −9.27218 −0.315263
\(866\) 12.2992 0.417944
\(867\) 22.0614 0.749243
\(868\) 0 0
\(869\) −0.973255 −0.0330154
\(870\) 12.5998 0.427172
\(871\) −38.3833 −1.30057
\(872\) 7.63876 0.258681
\(873\) −10.0999 −0.341831
\(874\) 0.353736 0.0119653
\(875\) 0 0
\(876\) −20.7307 −0.700425
\(877\) 7.64380 0.258113 0.129056 0.991637i \(-0.458805\pi\)
0.129056 + 0.991637i \(0.458805\pi\)
\(878\) −8.38056 −0.282830
\(879\) 12.3881 0.417839
\(880\) 18.5615 0.625709
\(881\) −5.21611 −0.175735 −0.0878676 0.996132i \(-0.528005\pi\)
−0.0878676 + 0.996132i \(0.528005\pi\)
\(882\) 0 0
\(883\) −45.2052 −1.52127 −0.760637 0.649177i \(-0.775113\pi\)
−0.760637 + 0.649177i \(0.775113\pi\)
\(884\) 50.7455 1.70676
\(885\) 41.4956 1.39486
\(886\) −4.88428 −0.164090
\(887\) 8.59600 0.288626 0.144313 0.989532i \(-0.453903\pi\)
0.144313 + 0.989532i \(0.453903\pi\)
\(888\) 17.6659 0.592828
\(889\) 0 0
\(890\) 30.3654 1.01785
\(891\) −1.67510 −0.0561181
\(892\) 0.0526851 0.00176403
\(893\) 1.33636 0.0447196
\(894\) −1.33147 −0.0445310
\(895\) 70.5263 2.35744
\(896\) 0 0
\(897\) −4.66537 −0.155772
\(898\) −2.12646 −0.0709609
\(899\) −23.8000 −0.793774
\(900\) −25.2287 −0.840957
\(901\) 11.5039 0.383251
\(902\) 4.40076 0.146529
\(903\) 0 0
\(904\) −17.2775 −0.574642
\(905\) −12.8035 −0.425603
\(906\) 4.71989 0.156808
\(907\) 2.50429 0.0831537 0.0415769 0.999135i \(-0.486762\pi\)
0.0415769 + 0.999135i \(0.486762\pi\)
\(908\) 36.9640 1.22669
\(909\) 13.7830 0.457152
\(910\) 0 0
\(911\) 29.5776 0.979951 0.489975 0.871736i \(-0.337006\pi\)
0.489975 + 0.871736i \(0.337006\pi\)
\(912\) 1.74215 0.0576885
\(913\) 11.6425 0.385311
\(914\) −4.09001 −0.135286
\(915\) 34.0929 1.12708
\(916\) 30.3448 1.00262
\(917\) 0 0
\(918\) 3.18466 0.105109
\(919\) 23.5583 0.777117 0.388558 0.921424i \(-0.372973\pi\)
0.388558 + 0.921424i \(0.372973\pi\)
\(920\) 8.41546 0.277450
\(921\) −0.823281 −0.0271280
\(922\) 5.92057 0.194984
\(923\) −49.7579 −1.63780
\(924\) 0 0
\(925\) 134.366 4.41794
\(926\) 18.2783 0.600664
\(927\) −16.5553 −0.543749
\(928\) −28.5078 −0.935813
\(929\) 37.9337 1.24456 0.622281 0.782794i \(-0.286206\pi\)
0.622281 + 0.782794i \(0.286206\pi\)
\(930\) −9.56191 −0.313547
\(931\) 0 0
\(932\) 19.5062 0.638947
\(933\) 30.6632 1.00387
\(934\) −6.71240 −0.219636
\(935\) −46.2265 −1.51177
\(936\) 8.89176 0.290636
\(937\) 42.3490 1.38348 0.691741 0.722146i \(-0.256844\pi\)
0.691741 + 0.722146i \(0.256844\pi\)
\(938\) 0 0
\(939\) −13.1323 −0.428556
\(940\) 14.7927 0.482485
\(941\) 33.9735 1.10750 0.553752 0.832682i \(-0.313196\pi\)
0.553752 + 0.832682i \(0.313196\pi\)
\(942\) −3.96179 −0.129082
\(943\) −5.15582 −0.167896
\(944\) −23.5842 −0.767602
\(945\) 0 0
\(946\) 3.58813 0.116660
\(947\) −27.7471 −0.901659 −0.450829 0.892610i \(-0.648872\pi\)
−0.450829 + 0.892610i \(0.648872\pi\)
\(948\) −1.01117 −0.0328412
\(949\) 55.5727 1.80397
\(950\) −5.12786 −0.166370
\(951\) −15.2269 −0.493766
\(952\) 0 0
\(953\) −6.25582 −0.202646 −0.101323 0.994854i \(-0.532308\pi\)
−0.101323 + 0.994854i \(0.532308\pi\)
\(954\) 0.937911 0.0303660
\(955\) 95.1472 3.07889
\(956\) 32.3105 1.04500
\(957\) −9.38078 −0.303237
\(958\) 2.66537 0.0861142
\(959\) 0 0
\(960\) 10.7084 0.345611
\(961\) −12.9383 −0.417364
\(962\) −22.0348 −0.710429
\(963\) −1.33463 −0.0430079
\(964\) −23.7657 −0.765441
\(965\) −20.2547 −0.652021
\(966\) 0 0
\(967\) 43.1613 1.38797 0.693987 0.719988i \(-0.255853\pi\)
0.693987 + 0.719988i \(0.255853\pi\)
\(968\) −15.6171 −0.501951
\(969\) −4.33874 −0.139381
\(970\) −22.7239 −0.729621
\(971\) −6.69189 −0.214753 −0.107377 0.994218i \(-0.534245\pi\)
−0.107377 + 0.994218i \(0.534245\pi\)
\(972\) −1.74036 −0.0558220
\(973\) 0 0
\(974\) −14.7658 −0.473125
\(975\) 67.6305 2.16591
\(976\) −19.3769 −0.620239
\(977\) −47.1871 −1.50965 −0.754825 0.655926i \(-0.772278\pi\)
−0.754825 + 0.655926i \(0.772278\pi\)
\(978\) 3.62841 0.116024
\(979\) −22.6077 −0.722545
\(980\) 0 0
\(981\) 4.00794 0.127964
\(982\) 8.50502 0.271406
\(983\) −18.4505 −0.588480 −0.294240 0.955732i \(-0.595066\pi\)
−0.294240 + 0.955732i \(0.595066\pi\)
\(984\) 9.82651 0.313258
\(985\) 52.3921 1.66935
\(986\) 17.8344 0.567965
\(987\) 0 0
\(988\) −5.63656 −0.179323
\(989\) −4.20376 −0.133672
\(990\) −3.76883 −0.119781
\(991\) −24.3764 −0.774342 −0.387171 0.922008i \(-0.626548\pi\)
−0.387171 + 0.922008i \(0.626548\pi\)
\(992\) 21.6344 0.686894
\(993\) 25.5674 0.811356
\(994\) 0 0
\(995\) −11.1652 −0.353960
\(996\) 12.0960 0.383278
\(997\) −59.5570 −1.88619 −0.943094 0.332525i \(-0.892099\pi\)
−0.943094 + 0.332525i \(0.892099\pi\)
\(998\) −4.87750 −0.154395
\(999\) 9.26901 0.293259
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3381.2.a.w.1.2 4
7.6 odd 2 483.2.a.i.1.2 4
21.20 even 2 1449.2.a.p.1.3 4
28.27 even 2 7728.2.a.cd.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.i.1.2 4 7.6 odd 2
1449.2.a.p.1.3 4 21.20 even 2
3381.2.a.w.1.2 4 1.1 even 1 trivial
7728.2.a.cd.1.4 4 28.27 even 2