Properties

Label 3380.2.f.i.3041.8
Level $3380$
Weight $2$
Character 3380.3041
Analytic conductor $26.989$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,2,Mod(3041,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.3041");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3380.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.9894358832\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.22581504.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3041.8
Root \(1.20036 + 0.747754i\) of defining polynomial
Character \(\chi\) \(=\) 3380.3041
Dual form 3380.2.f.i.3041.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82684 q^{3} +1.00000i q^{5} -2.09479i q^{7} +4.99102 q^{9} +O(q^{10})\) \(q+2.82684 q^{3} +1.00000i q^{5} -2.09479i q^{7} +4.99102 q^{9} -1.73205i q^{11} +2.82684i q^{15} +3.62828 q^{17} +1.06939i q^{19} -5.92163i q^{21} +7.81785 q^{23} -1.00000 q^{25} +5.62828 q^{27} -0.526914 q^{29} +5.84325i q^{31} -4.89623i q^{33} +2.09479 q^{35} -9.74846i q^{37} +4.26795i q^{41} -9.34477 q^{43} +4.99102i q^{45} -3.46410i q^{47} +2.61186 q^{49} +10.2566 q^{51} +12.5939 q^{53} +1.73205 q^{55} +3.02299i q^{57} -1.40370i q^{59} -11.1088 q^{61} -10.4551i q^{63} +10.8334i q^{67} +22.0998 q^{69} -14.1692i q^{71} +2.64469i q^{73} -2.82684 q^{75} -3.62828 q^{77} +13.5729 q^{79} +0.937188 q^{81} -15.7925i q^{83} +3.62828i q^{85} -1.48950 q^{87} +5.52451i q^{89} +16.5179i q^{93} -1.06939 q^{95} -15.1946i q^{97} -8.64469i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{3} + 8 q^{9} - 12 q^{17} + 12 q^{23} - 8 q^{25} + 4 q^{27} + 12 q^{35} - 20 q^{43} + 8 q^{49} + 24 q^{53} + 8 q^{61} + 48 q^{69} - 4 q^{75} + 12 q^{77} - 16 q^{79} - 16 q^{81} + 12 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.82684 1.63208 0.816038 0.577998i \(-0.196166\pi\)
0.816038 + 0.577998i \(0.196166\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) − 2.09479i − 0.791755i −0.918303 0.395878i \(-0.870440\pi\)
0.918303 0.395878i \(-0.129560\pi\)
\(8\) 0 0
\(9\) 4.99102 1.66367
\(10\) 0 0
\(11\) − 1.73205i − 0.522233i −0.965307 0.261116i \(-0.915909\pi\)
0.965307 0.261116i \(-0.0840907\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.82684i 0.729887i
\(16\) 0 0
\(17\) 3.62828 0.879987 0.439993 0.898001i \(-0.354981\pi\)
0.439993 + 0.898001i \(0.354981\pi\)
\(18\) 0 0
\(19\) 1.06939i 0.245335i 0.992448 + 0.122667i \(0.0391448\pi\)
−0.992448 + 0.122667i \(0.960855\pi\)
\(20\) 0 0
\(21\) − 5.92163i − 1.29220i
\(22\) 0 0
\(23\) 7.81785 1.63014 0.815068 0.579366i \(-0.196700\pi\)
0.815068 + 0.579366i \(0.196700\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.62828 1.08316
\(28\) 0 0
\(29\) −0.526914 −0.0978454 −0.0489227 0.998803i \(-0.515579\pi\)
−0.0489227 + 0.998803i \(0.515579\pi\)
\(30\) 0 0
\(31\) 5.84325i 1.04948i 0.851263 + 0.524740i \(0.175837\pi\)
−0.851263 + 0.524740i \(0.824163\pi\)
\(32\) 0 0
\(33\) − 4.89623i − 0.852324i
\(34\) 0 0
\(35\) 2.09479 0.354084
\(36\) 0 0
\(37\) − 9.74846i − 1.60264i −0.598238 0.801319i \(-0.704132\pi\)
0.598238 0.801319i \(-0.295868\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.26795i 0.666542i 0.942831 + 0.333271i \(0.108152\pi\)
−0.942831 + 0.333271i \(0.891848\pi\)
\(42\) 0 0
\(43\) −9.34477 −1.42506 −0.712532 0.701640i \(-0.752452\pi\)
−0.712532 + 0.701640i \(0.752452\pi\)
\(44\) 0 0
\(45\) 4.99102i 0.744017i
\(46\) 0 0
\(47\) − 3.46410i − 0.505291i −0.967559 0.252646i \(-0.918699\pi\)
0.967559 0.252646i \(-0.0813007\pi\)
\(48\) 0 0
\(49\) 2.61186 0.373124
\(50\) 0 0
\(51\) 10.2566 1.43621
\(52\) 0 0
\(53\) 12.5939 1.72990 0.864952 0.501854i \(-0.167349\pi\)
0.864952 + 0.501854i \(0.167349\pi\)
\(54\) 0 0
\(55\) 1.73205 0.233550
\(56\) 0 0
\(57\) 3.02299i 0.400405i
\(58\) 0 0
\(59\) − 1.40370i − 0.182746i −0.995817 0.0913729i \(-0.970874\pi\)
0.995817 0.0913729i \(-0.0291255\pi\)
\(60\) 0 0
\(61\) −11.1088 −1.42234 −0.711168 0.703022i \(-0.751833\pi\)
−0.711168 + 0.703022i \(0.751833\pi\)
\(62\) 0 0
\(63\) − 10.4551i − 1.31722i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.8334i 1.32351i 0.749719 + 0.661756i \(0.230189\pi\)
−0.749719 + 0.661756i \(0.769811\pi\)
\(68\) 0 0
\(69\) 22.0998 2.66050
\(70\) 0 0
\(71\) − 14.1692i − 1.68157i −0.541366 0.840787i \(-0.682093\pi\)
0.541366 0.840787i \(-0.317907\pi\)
\(72\) 0 0
\(73\) 2.64469i 0.309538i 0.987951 + 0.154769i \(0.0494633\pi\)
−0.987951 + 0.154769i \(0.950537\pi\)
\(74\) 0 0
\(75\) −2.82684 −0.326415
\(76\) 0 0
\(77\) −3.62828 −0.413481
\(78\) 0 0
\(79\) 13.5729 1.52707 0.763535 0.645766i \(-0.223462\pi\)
0.763535 + 0.645766i \(0.223462\pi\)
\(80\) 0 0
\(81\) 0.937188 0.104132
\(82\) 0 0
\(83\) − 15.7925i − 1.73345i −0.498789 0.866724i \(-0.666222\pi\)
0.498789 0.866724i \(-0.333778\pi\)
\(84\) 0 0
\(85\) 3.62828i 0.393542i
\(86\) 0 0
\(87\) −1.48950 −0.159691
\(88\) 0 0
\(89\) 5.52451i 0.585596i 0.956174 + 0.292798i \(0.0945864\pi\)
−0.956174 + 0.292798i \(0.905414\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 16.5179i 1.71283i
\(94\) 0 0
\(95\) −1.06939 −0.109717
\(96\) 0 0
\(97\) − 15.1946i − 1.54278i −0.636364 0.771389i \(-0.719562\pi\)
0.636364 0.771389i \(-0.280438\pi\)
\(98\) 0 0
\(99\) − 8.64469i − 0.868824i
\(100\) 0 0
\(101\) 3.66266 0.364448 0.182224 0.983257i \(-0.441670\pi\)
0.182224 + 0.983257i \(0.441670\pi\)
\(102\) 0 0
\(103\) 13.7804 1.35783 0.678914 0.734218i \(-0.262451\pi\)
0.678914 + 0.734218i \(0.262451\pi\)
\(104\) 0 0
\(105\) 5.92163 0.577892
\(106\) 0 0
\(107\) 3.23711 0.312943 0.156472 0.987682i \(-0.449988\pi\)
0.156472 + 0.987682i \(0.449988\pi\)
\(108\) 0 0
\(109\) 9.12979i 0.874476i 0.899346 + 0.437238i \(0.144043\pi\)
−0.899346 + 0.437238i \(0.855957\pi\)
\(110\) 0 0
\(111\) − 27.5573i − 2.61563i
\(112\) 0 0
\(113\) −10.9536 −1.03043 −0.515214 0.857062i \(-0.672288\pi\)
−0.515214 + 0.857062i \(0.672288\pi\)
\(114\) 0 0
\(115\) 7.81785i 0.729019i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 7.60047i − 0.696734i
\(120\) 0 0
\(121\) 8.00000 0.727273
\(122\) 0 0
\(123\) 12.0648i 1.08785i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −0.907620 −0.0805382 −0.0402691 0.999189i \(-0.512822\pi\)
−0.0402691 + 0.999189i \(0.512822\pi\)
\(128\) 0 0
\(129\) −26.4161 −2.32581
\(130\) 0 0
\(131\) −13.1626 −1.15002 −0.575012 0.818145i \(-0.695003\pi\)
−0.575012 + 0.818145i \(0.695003\pi\)
\(132\) 0 0
\(133\) 2.24014 0.194245
\(134\) 0 0
\(135\) 5.62828i 0.484405i
\(136\) 0 0
\(137\) 12.0648i 1.03077i 0.856960 + 0.515383i \(0.172350\pi\)
−0.856960 + 0.515383i \(0.827650\pi\)
\(138\) 0 0
\(139\) −5.61186 −0.475992 −0.237996 0.971266i \(-0.576491\pi\)
−0.237996 + 0.971266i \(0.576491\pi\)
\(140\) 0 0
\(141\) − 9.79246i − 0.824674i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 0.526914i − 0.0437578i
\(146\) 0 0
\(147\) 7.38332 0.608966
\(148\) 0 0
\(149\) 20.9886i 1.71945i 0.510754 + 0.859727i \(0.329366\pi\)
−0.510754 + 0.859727i \(0.670634\pi\)
\(150\) 0 0
\(151\) − 6.99102i − 0.568921i −0.958688 0.284460i \(-0.908186\pi\)
0.958688 0.284460i \(-0.0918144\pi\)
\(152\) 0 0
\(153\) 18.1088 1.46401
\(154\) 0 0
\(155\) −5.84325 −0.469341
\(156\) 0 0
\(157\) 3.74761 0.299092 0.149546 0.988755i \(-0.452219\pi\)
0.149546 + 0.988755i \(0.452219\pi\)
\(158\) 0 0
\(159\) 35.6009 2.82334
\(160\) 0 0
\(161\) − 16.3767i − 1.29067i
\(162\) 0 0
\(163\) − 6.37830i − 0.499587i −0.968299 0.249793i \(-0.919637\pi\)
0.968299 0.249793i \(-0.0803627\pi\)
\(164\) 0 0
\(165\) 4.89623 0.381171
\(166\) 0 0
\(167\) 15.5289i 1.20166i 0.799376 + 0.600831i \(0.205164\pi\)
−0.799376 + 0.600831i \(0.794836\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 5.33734i 0.408156i
\(172\) 0 0
\(173\) 4.77604 0.363116 0.181558 0.983380i \(-0.441886\pi\)
0.181558 + 0.983380i \(0.441886\pi\)
\(174\) 0 0
\(175\) 2.09479i 0.158351i
\(176\) 0 0
\(177\) − 3.96802i − 0.298255i
\(178\) 0 0
\(179\) −15.7027 −1.17367 −0.586837 0.809705i \(-0.699627\pi\)
−0.586837 + 0.809705i \(0.699627\pi\)
\(180\) 0 0
\(181\) 10.8851 0.809080 0.404540 0.914520i \(-0.367432\pi\)
0.404540 + 0.914520i \(0.367432\pi\)
\(182\) 0 0
\(183\) −31.4028 −2.32136
\(184\) 0 0
\(185\) 9.74846 0.716721
\(186\) 0 0
\(187\) − 6.28436i − 0.459558i
\(188\) 0 0
\(189\) − 11.7900i − 0.857600i
\(190\) 0 0
\(191\) −5.95819 −0.431119 −0.215560 0.976491i \(-0.569158\pi\)
−0.215560 + 0.976491i \(0.569158\pi\)
\(192\) 0 0
\(193\) − 12.7695i − 0.919166i −0.888135 0.459583i \(-0.847999\pi\)
0.888135 0.459583i \(-0.152001\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.1079i 1.14764i 0.818980 + 0.573822i \(0.194540\pi\)
−0.818980 + 0.573822i \(0.805460\pi\)
\(198\) 0 0
\(199\) 8.52805 0.604538 0.302269 0.953223i \(-0.402256\pi\)
0.302269 + 0.953223i \(0.402256\pi\)
\(200\) 0 0
\(201\) 30.6243i 2.16007i
\(202\) 0 0
\(203\) 1.10377i 0.0774696i
\(204\) 0 0
\(205\) −4.26795 −0.298087
\(206\) 0 0
\(207\) 39.0190 2.71201
\(208\) 0 0
\(209\) 1.85224 0.128122
\(210\) 0 0
\(211\) −4.18059 −0.287804 −0.143902 0.989592i \(-0.545965\pi\)
−0.143902 + 0.989592i \(0.545965\pi\)
\(212\) 0 0
\(213\) − 40.0540i − 2.74446i
\(214\) 0 0
\(215\) − 9.34477i − 0.637308i
\(216\) 0 0
\(217\) 12.2404 0.830931
\(218\) 0 0
\(219\) 7.47612i 0.505189i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 10.4991i 0.703072i 0.936174 + 0.351536i \(0.114341\pi\)
−0.936174 + 0.351536i \(0.885659\pi\)
\(224\) 0 0
\(225\) −4.99102 −0.332734
\(226\) 0 0
\(227\) 15.5858i 1.03446i 0.855845 + 0.517232i \(0.173037\pi\)
−0.855845 + 0.517232i \(0.826963\pi\)
\(228\) 0 0
\(229\) 19.2714i 1.27349i 0.771074 + 0.636745i \(0.219720\pi\)
−0.771074 + 0.636745i \(0.780280\pi\)
\(230\) 0 0
\(231\) −10.2566 −0.674832
\(232\) 0 0
\(233\) 2.48794 0.162991 0.0814953 0.996674i \(-0.474030\pi\)
0.0814953 + 0.996674i \(0.474030\pi\)
\(234\) 0 0
\(235\) 3.46410 0.225973
\(236\) 0 0
\(237\) 38.3684 2.49229
\(238\) 0 0
\(239\) 16.7775i 1.08525i 0.839976 + 0.542624i \(0.182569\pi\)
−0.839976 + 0.542624i \(0.817431\pi\)
\(240\) 0 0
\(241\) 29.0794i 1.87317i 0.350439 + 0.936585i \(0.386032\pi\)
−0.350439 + 0.936585i \(0.613968\pi\)
\(242\) 0 0
\(243\) −14.2356 −0.913211
\(244\) 0 0
\(245\) 2.61186i 0.166866i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 44.6427i − 2.82912i
\(250\) 0 0
\(251\) −19.1208 −1.20689 −0.603447 0.797403i \(-0.706207\pi\)
−0.603447 + 0.797403i \(0.706207\pi\)
\(252\) 0 0
\(253\) − 13.5409i − 0.851310i
\(254\) 0 0
\(255\) 10.2566i 0.642291i
\(256\) 0 0
\(257\) −13.7091 −0.855148 −0.427574 0.903980i \(-0.640632\pi\)
−0.427574 + 0.903980i \(0.640632\pi\)
\(258\) 0 0
\(259\) −20.4210 −1.26890
\(260\) 0 0
\(261\) −2.62983 −0.162783
\(262\) 0 0
\(263\) −11.9135 −0.734617 −0.367309 0.930099i \(-0.619721\pi\)
−0.367309 + 0.930099i \(0.619721\pi\)
\(264\) 0 0
\(265\) 12.5939i 0.773637i
\(266\) 0 0
\(267\) 15.6169i 0.955738i
\(268\) 0 0
\(269\) −20.9312 −1.27620 −0.638100 0.769954i \(-0.720279\pi\)
−0.638100 + 0.769954i \(0.720279\pi\)
\(270\) 0 0
\(271\) − 1.95161i − 0.118552i −0.998242 0.0592760i \(-0.981121\pi\)
0.998242 0.0592760i \(-0.0188792\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.73205i 0.104447i
\(276\) 0 0
\(277\) −12.4805 −0.749881 −0.374941 0.927049i \(-0.622337\pi\)
−0.374941 + 0.927049i \(0.622337\pi\)
\(278\) 0 0
\(279\) 29.1638i 1.74599i
\(280\) 0 0
\(281\) − 2.29553i − 0.136940i −0.997653 0.0684698i \(-0.978188\pi\)
0.997653 0.0684698i \(-0.0218117\pi\)
\(282\) 0 0
\(283\) −14.9297 −0.887477 −0.443739 0.896156i \(-0.646348\pi\)
−0.443739 + 0.896156i \(0.646348\pi\)
\(284\) 0 0
\(285\) −3.02299 −0.179067
\(286\) 0 0
\(287\) 8.94045 0.527738
\(288\) 0 0
\(289\) −3.83559 −0.225623
\(290\) 0 0
\(291\) − 42.9527i − 2.51793i
\(292\) 0 0
\(293\) 1.43213i 0.0836657i 0.999125 + 0.0418329i \(0.0133197\pi\)
−0.999125 + 0.0418329i \(0.986680\pi\)
\(294\) 0 0
\(295\) 1.40370 0.0817264
\(296\) 0 0
\(297\) − 9.74846i − 0.565663i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 19.5753i 1.12830i
\(302\) 0 0
\(303\) 10.3538 0.594808
\(304\) 0 0
\(305\) − 11.1088i − 0.636088i
\(306\) 0 0
\(307\) 17.3833i 0.992118i 0.868289 + 0.496059i \(0.165220\pi\)
−0.868289 + 0.496059i \(0.834780\pi\)
\(308\) 0 0
\(309\) 38.9551 2.21608
\(310\) 0 0
\(311\) −20.2164 −1.14637 −0.573185 0.819426i \(-0.694292\pi\)
−0.573185 + 0.819426i \(0.694292\pi\)
\(312\) 0 0
\(313\) −4.86425 −0.274944 −0.137472 0.990506i \(-0.543898\pi\)
−0.137472 + 0.990506i \(0.543898\pi\)
\(314\) 0 0
\(315\) 10.4551 0.589079
\(316\) 0 0
\(317\) − 23.6177i − 1.32650i −0.748396 0.663252i \(-0.769176\pi\)
0.748396 0.663252i \(-0.230824\pi\)
\(318\) 0 0
\(319\) 0.912641i 0.0510981i
\(320\) 0 0
\(321\) 9.15079 0.510748
\(322\) 0 0
\(323\) 3.88004i 0.215891i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 25.8085i 1.42721i
\(328\) 0 0
\(329\) −7.25656 −0.400067
\(330\) 0 0
\(331\) − 14.8798i − 0.817869i −0.912564 0.408934i \(-0.865901\pi\)
0.912564 0.408934i \(-0.134099\pi\)
\(332\) 0 0
\(333\) − 48.6547i − 2.66626i
\(334\) 0 0
\(335\) −10.8334 −0.591893
\(336\) 0 0
\(337\) −29.1906 −1.59012 −0.795058 0.606534i \(-0.792559\pi\)
−0.795058 + 0.606534i \(0.792559\pi\)
\(338\) 0 0
\(339\) −30.9641 −1.68174
\(340\) 0 0
\(341\) 10.1208 0.548073
\(342\) 0 0
\(343\) − 20.1348i − 1.08718i
\(344\) 0 0
\(345\) 22.0998i 1.18981i
\(346\) 0 0
\(347\) −24.2250 −1.30047 −0.650234 0.759734i \(-0.725329\pi\)
−0.650234 + 0.759734i \(0.725329\pi\)
\(348\) 0 0
\(349\) 12.8815i 0.689532i 0.938689 + 0.344766i \(0.112042\pi\)
−0.938689 + 0.344766i \(0.887958\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 16.2167i − 0.863130i −0.902082 0.431565i \(-0.857962\pi\)
0.902082 0.431565i \(-0.142038\pi\)
\(354\) 0 0
\(355\) 14.1692 0.752023
\(356\) 0 0
\(357\) − 21.4853i − 1.13712i
\(358\) 0 0
\(359\) 9.19261i 0.485167i 0.970131 + 0.242584i \(0.0779949\pi\)
−0.970131 + 0.242584i \(0.922005\pi\)
\(360\) 0 0
\(361\) 17.8564 0.939811
\(362\) 0 0
\(363\) 22.6147 1.18696
\(364\) 0 0
\(365\) −2.64469 −0.138430
\(366\) 0 0
\(367\) −4.60132 −0.240187 −0.120094 0.992763i \(-0.538319\pi\)
−0.120094 + 0.992763i \(0.538319\pi\)
\(368\) 0 0
\(369\) 21.3014i 1.10891i
\(370\) 0 0
\(371\) − 26.3815i − 1.36966i
\(372\) 0 0
\(373\) −20.4925 −1.06106 −0.530532 0.847665i \(-0.678008\pi\)
−0.530532 + 0.847665i \(0.678008\pi\)
\(374\) 0 0
\(375\) − 2.82684i − 0.145977i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 8.02872i − 0.412407i −0.978509 0.206204i \(-0.933889\pi\)
0.978509 0.206204i \(-0.0661110\pi\)
\(380\) 0 0
\(381\) −2.56569 −0.131445
\(382\) 0 0
\(383\) − 30.1425i − 1.54021i −0.637918 0.770104i \(-0.720204\pi\)
0.637918 0.770104i \(-0.279796\pi\)
\(384\) 0 0
\(385\) − 3.62828i − 0.184914i
\(386\) 0 0
\(387\) −46.6399 −2.37084
\(388\) 0 0
\(389\) −35.8264 −1.81647 −0.908236 0.418459i \(-0.862570\pi\)
−0.908236 + 0.418459i \(0.862570\pi\)
\(390\) 0 0
\(391\) 28.3654 1.43450
\(392\) 0 0
\(393\) −37.2086 −1.87693
\(394\) 0 0
\(395\) 13.5729i 0.682926i
\(396\) 0 0
\(397\) − 15.3830i − 0.772052i −0.922488 0.386026i \(-0.873847\pi\)
0.922488 0.386026i \(-0.126153\pi\)
\(398\) 0 0
\(399\) 6.33252 0.317023
\(400\) 0 0
\(401\) 9.77689i 0.488235i 0.969746 + 0.244117i \(0.0784982\pi\)
−0.969746 + 0.244117i \(0.921502\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.937188i 0.0465692i
\(406\) 0 0
\(407\) −16.8848 −0.836950
\(408\) 0 0
\(409\) 1.00658i 0.0497720i 0.999690 + 0.0248860i \(0.00792228\pi\)
−0.999690 + 0.0248860i \(0.992078\pi\)
\(410\) 0 0
\(411\) 34.1052i 1.68229i
\(412\) 0 0
\(413\) −2.94045 −0.144690
\(414\) 0 0
\(415\) 15.7925 0.775221
\(416\) 0 0
\(417\) −15.8638 −0.776855
\(418\) 0 0
\(419\) 9.70269 0.474007 0.237004 0.971509i \(-0.423835\pi\)
0.237004 + 0.971509i \(0.423835\pi\)
\(420\) 0 0
\(421\) 14.2955i 0.696721i 0.937361 + 0.348361i \(0.113262\pi\)
−0.937361 + 0.348361i \(0.886738\pi\)
\(422\) 0 0
\(423\) − 17.2894i − 0.840639i
\(424\) 0 0
\(425\) −3.62828 −0.175997
\(426\) 0 0
\(427\) 23.2706i 1.12614i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 12.1471i − 0.585107i −0.956249 0.292554i \(-0.905495\pi\)
0.956249 0.292554i \(-0.0945050\pi\)
\(432\) 0 0
\(433\) 0.209020 0.0100448 0.00502242 0.999987i \(-0.498401\pi\)
0.00502242 + 0.999987i \(0.498401\pi\)
\(434\) 0 0
\(435\) − 1.48950i − 0.0714161i
\(436\) 0 0
\(437\) 8.36033i 0.399929i
\(438\) 0 0
\(439\) 27.7207 1.32303 0.661517 0.749930i \(-0.269913\pi\)
0.661517 + 0.749930i \(0.269913\pi\)
\(440\) 0 0
\(441\) 13.0359 0.620755
\(442\) 0 0
\(443\) −7.98798 −0.379521 −0.189760 0.981830i \(-0.560771\pi\)
−0.189760 + 0.981830i \(0.560771\pi\)
\(444\) 0 0
\(445\) −5.52451 −0.261887
\(446\) 0 0
\(447\) 59.3314i 2.80628i
\(448\) 0 0
\(449\) 7.13220i 0.336589i 0.985737 + 0.168295i \(0.0538260\pi\)
−0.985737 + 0.168295i \(0.946174\pi\)
\(450\) 0 0
\(451\) 7.39230 0.348090
\(452\) 0 0
\(453\) − 19.7625i − 0.928522i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.6808i 1.48197i 0.671523 + 0.740984i \(0.265640\pi\)
−0.671523 + 0.740984i \(0.734360\pi\)
\(458\) 0 0
\(459\) 20.4210 0.953169
\(460\) 0 0
\(461\) − 11.8529i − 0.552043i −0.961151 0.276021i \(-0.910984\pi\)
0.961151 0.276021i \(-0.0890161\pi\)
\(462\) 0 0
\(463\) − 12.7655i − 0.593263i −0.954992 0.296632i \(-0.904137\pi\)
0.954992 0.296632i \(-0.0958633\pi\)
\(464\) 0 0
\(465\) −16.5179 −0.766001
\(466\) 0 0
\(467\) 31.3402 1.45025 0.725125 0.688617i \(-0.241782\pi\)
0.725125 + 0.688617i \(0.241782\pi\)
\(468\) 0 0
\(469\) 22.6937 1.04790
\(470\) 0 0
\(471\) 10.5939 0.488141
\(472\) 0 0
\(473\) 16.1856i 0.744215i
\(474\) 0 0
\(475\) − 1.06939i − 0.0490669i
\(476\) 0 0
\(477\) 62.8563 2.87799
\(478\) 0 0
\(479\) − 16.1261i − 0.736818i −0.929664 0.368409i \(-0.879903\pi\)
0.929664 0.368409i \(-0.120097\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 46.2944i − 2.10647i
\(484\) 0 0
\(485\) 15.1946 0.689951
\(486\) 0 0
\(487\) − 5.59001i − 0.253308i −0.991947 0.126654i \(-0.959576\pi\)
0.991947 0.126654i \(-0.0404237\pi\)
\(488\) 0 0
\(489\) − 18.0304i − 0.815364i
\(490\) 0 0
\(491\) 18.2954 0.825662 0.412831 0.910808i \(-0.364540\pi\)
0.412831 + 0.910808i \(0.364540\pi\)
\(492\) 0 0
\(493\) −1.91179 −0.0861027
\(494\) 0 0
\(495\) 8.64469 0.388550
\(496\) 0 0
\(497\) −29.6815 −1.33140
\(498\) 0 0
\(499\) 0.553868i 0.0247945i 0.999923 + 0.0123973i \(0.00394627\pi\)
−0.999923 + 0.0123973i \(0.996054\pi\)
\(500\) 0 0
\(501\) 43.8977i 1.96120i
\(502\) 0 0
\(503\) 14.6832 0.654694 0.327347 0.944904i \(-0.393845\pi\)
0.327347 + 0.944904i \(0.393845\pi\)
\(504\) 0 0
\(505\) 3.66266i 0.162986i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 6.92295i − 0.306855i −0.988160 0.153427i \(-0.950969\pi\)
0.988160 0.153427i \(-0.0490311\pi\)
\(510\) 0 0
\(511\) 5.54007 0.245078
\(512\) 0 0
\(513\) 6.01882i 0.265737i
\(514\) 0 0
\(515\) 13.7804i 0.607239i
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) 13.5011 0.592632
\(520\) 0 0
\(521\) −18.3551 −0.804152 −0.402076 0.915606i \(-0.631711\pi\)
−0.402076 + 0.915606i \(0.631711\pi\)
\(522\) 0 0
\(523\) −18.2713 −0.798947 −0.399473 0.916745i \(-0.630807\pi\)
−0.399473 + 0.916745i \(0.630807\pi\)
\(524\) 0 0
\(525\) 5.92163i 0.258441i
\(526\) 0 0
\(527\) 21.2009i 0.923528i
\(528\) 0 0
\(529\) 38.1188 1.65734
\(530\) 0 0
\(531\) − 7.00587i − 0.304029i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 3.23711i 0.139953i
\(536\) 0 0
\(537\) −44.3890 −1.91553
\(538\) 0 0
\(539\) − 4.52388i − 0.194857i
\(540\) 0 0
\(541\) − 31.8881i − 1.37098i −0.728084 0.685488i \(-0.759589\pi\)
0.728084 0.685488i \(-0.240411\pi\)
\(542\) 0 0
\(543\) 30.7703 1.32048
\(544\) 0 0
\(545\) −9.12979 −0.391077
\(546\) 0 0
\(547\) 44.7966 1.91537 0.957683 0.287826i \(-0.0929325\pi\)
0.957683 + 0.287826i \(0.0929325\pi\)
\(548\) 0 0
\(549\) −55.4442 −2.36630
\(550\) 0 0
\(551\) − 0.563476i − 0.0240049i
\(552\) 0 0
\(553\) − 28.4323i − 1.20907i
\(554\) 0 0
\(555\) 27.5573 1.16974
\(556\) 0 0
\(557\) − 26.3064i − 1.11464i −0.830298 0.557319i \(-0.811830\pi\)
0.830298 0.557319i \(-0.188170\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 17.7649i − 0.750034i
\(562\) 0 0
\(563\) 5.78984 0.244013 0.122006 0.992529i \(-0.461067\pi\)
0.122006 + 0.992529i \(0.461067\pi\)
\(564\) 0 0
\(565\) − 10.9536i − 0.460821i
\(566\) 0 0
\(567\) − 1.96321i − 0.0824471i
\(568\) 0 0
\(569\) −23.6368 −0.990905 −0.495452 0.868635i \(-0.664998\pi\)
−0.495452 + 0.868635i \(0.664998\pi\)
\(570\) 0 0
\(571\) −11.4641 −0.479758 −0.239879 0.970803i \(-0.577108\pi\)
−0.239879 + 0.970803i \(0.577108\pi\)
\(572\) 0 0
\(573\) −16.8428 −0.703620
\(574\) 0 0
\(575\) −7.81785 −0.326027
\(576\) 0 0
\(577\) 34.2415i 1.42549i 0.701422 + 0.712746i \(0.252549\pi\)
−0.701422 + 0.712746i \(0.747451\pi\)
\(578\) 0 0
\(579\) − 36.0972i − 1.50015i
\(580\) 0 0
\(581\) −33.0818 −1.37247
\(582\) 0 0
\(583\) − 21.8133i − 0.903413i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.63599i 0.232622i 0.993213 + 0.116311i \(0.0371070\pi\)
−0.993213 + 0.116311i \(0.962893\pi\)
\(588\) 0 0
\(589\) −6.24871 −0.257474
\(590\) 0 0
\(591\) 45.5345i 1.87304i
\(592\) 0 0
\(593\) 15.3014i 0.628353i 0.949365 + 0.314177i \(0.101728\pi\)
−0.949365 + 0.314177i \(0.898272\pi\)
\(594\) 0 0
\(595\) 7.60047 0.311589
\(596\) 0 0
\(597\) 24.1074 0.986651
\(598\) 0 0
\(599\) 9.82414 0.401404 0.200702 0.979652i \(-0.435678\pi\)
0.200702 + 0.979652i \(0.435678\pi\)
\(600\) 0 0
\(601\) −46.1889 −1.88409 −0.942043 0.335492i \(-0.891097\pi\)
−0.942043 + 0.335492i \(0.891097\pi\)
\(602\) 0 0
\(603\) 54.0697i 2.20189i
\(604\) 0 0
\(605\) 8.00000i 0.325246i
\(606\) 0 0
\(607\) 24.6964 1.00240 0.501198 0.865333i \(-0.332893\pi\)
0.501198 + 0.865333i \(0.332893\pi\)
\(608\) 0 0
\(609\) 3.12019i 0.126436i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.6455i 0.672307i 0.941807 + 0.336154i \(0.109126\pi\)
−0.941807 + 0.336154i \(0.890874\pi\)
\(614\) 0 0
\(615\) −12.0648 −0.486500
\(616\) 0 0
\(617\) − 1.61564i − 0.0650432i −0.999471 0.0325216i \(-0.989646\pi\)
0.999471 0.0325216i \(-0.0103538\pi\)
\(618\) 0 0
\(619\) − 23.3922i − 0.940213i −0.882610 0.470106i \(-0.844216\pi\)
0.882610 0.470106i \(-0.155784\pi\)
\(620\) 0 0
\(621\) 44.0011 1.76570
\(622\) 0 0
\(623\) 11.5727 0.463649
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 5.23597 0.209105
\(628\) 0 0
\(629\) − 35.3701i − 1.41030i
\(630\) 0 0
\(631\) 3.20381i 0.127542i 0.997965 + 0.0637708i \(0.0203127\pi\)
−0.997965 + 0.0637708i \(0.979687\pi\)
\(632\) 0 0
\(633\) −11.8179 −0.469718
\(634\) 0 0
\(635\) − 0.907620i − 0.0360178i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 70.7187i − 2.79759i
\(640\) 0 0
\(641\) 19.9759 0.789000 0.394500 0.918896i \(-0.370918\pi\)
0.394500 + 0.918896i \(0.370918\pi\)
\(642\) 0 0
\(643\) − 28.5368i − 1.12538i −0.826668 0.562690i \(-0.809767\pi\)
0.826668 0.562690i \(-0.190233\pi\)
\(644\) 0 0
\(645\) − 26.4161i − 1.04013i
\(646\) 0 0
\(647\) −6.08651 −0.239285 −0.119643 0.992817i \(-0.538175\pi\)
−0.119643 + 0.992817i \(0.538175\pi\)
\(648\) 0 0
\(649\) −2.43127 −0.0954359
\(650\) 0 0
\(651\) 34.6016 1.35614
\(652\) 0 0
\(653\) 19.6300 0.768181 0.384090 0.923296i \(-0.374515\pi\)
0.384090 + 0.923296i \(0.374515\pi\)
\(654\) 0 0
\(655\) − 13.1626i − 0.514306i
\(656\) 0 0
\(657\) 13.1997i 0.514969i
\(658\) 0 0
\(659\) −19.5950 −0.763314 −0.381657 0.924304i \(-0.624646\pi\)
−0.381657 + 0.924304i \(0.624646\pi\)
\(660\) 0 0
\(661\) − 34.7259i − 1.35068i −0.737506 0.675341i \(-0.763997\pi\)
0.737506 0.675341i \(-0.236003\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.24014i 0.0868690i
\(666\) 0 0
\(667\) −4.11933 −0.159501
\(668\) 0 0
\(669\) 29.6793i 1.14747i
\(670\) 0 0
\(671\) 19.2410i 0.742790i
\(672\) 0 0
\(673\) 34.0103 1.31100 0.655500 0.755195i \(-0.272458\pi\)
0.655500 + 0.755195i \(0.272458\pi\)
\(674\) 0 0
\(675\) −5.62828 −0.216633
\(676\) 0 0
\(677\) 29.9209 1.14995 0.574977 0.818169i \(-0.305011\pi\)
0.574977 + 0.818169i \(0.305011\pi\)
\(678\) 0 0
\(679\) −31.8295 −1.22150
\(680\) 0 0
\(681\) 44.0584i 1.68832i
\(682\) 0 0
\(683\) 27.8573i 1.06593i 0.846138 + 0.532964i \(0.178922\pi\)
−0.846138 + 0.532964i \(0.821078\pi\)
\(684\) 0 0
\(685\) −12.0648 −0.460972
\(686\) 0 0
\(687\) 54.4772i 2.07843i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 36.3211i − 1.38172i −0.722988 0.690860i \(-0.757232\pi\)
0.722988 0.690860i \(-0.242768\pi\)
\(692\) 0 0
\(693\) −18.1088 −0.687896
\(694\) 0 0
\(695\) − 5.61186i − 0.212870i
\(696\) 0 0
\(697\) 15.4853i 0.586548i
\(698\) 0 0
\(699\) 7.03302 0.266013
\(700\) 0 0
\(701\) 2.16156 0.0816411 0.0408206 0.999166i \(-0.487003\pi\)
0.0408206 + 0.999166i \(0.487003\pi\)
\(702\) 0 0
\(703\) 10.4249 0.393183
\(704\) 0 0
\(705\) 9.79246 0.368805
\(706\) 0 0
\(707\) − 7.67250i − 0.288554i
\(708\) 0 0
\(709\) − 47.6165i − 1.78827i −0.447793 0.894137i \(-0.647790\pi\)
0.447793 0.894137i \(-0.352210\pi\)
\(710\) 0 0
\(711\) 67.7425 2.54054
\(712\) 0 0
\(713\) 45.6817i 1.71079i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 47.4273i 1.77121i
\(718\) 0 0
\(719\) 20.2937 0.756829 0.378414 0.925636i \(-0.376469\pi\)
0.378414 + 0.925636i \(0.376469\pi\)
\(720\) 0 0
\(721\) − 28.8671i − 1.07507i
\(722\) 0 0
\(723\) 82.2029i 3.05716i
\(724\) 0 0
\(725\) 0.526914 0.0195691
\(726\) 0 0
\(727\) 11.0681 0.410494 0.205247 0.978710i \(-0.434200\pi\)
0.205247 + 0.978710i \(0.434200\pi\)
\(728\) 0 0
\(729\) −43.0532 −1.59456
\(730\) 0 0
\(731\) −33.9054 −1.25404
\(732\) 0 0
\(733\) 23.4002i 0.864304i 0.901801 + 0.432152i \(0.142246\pi\)
−0.901801 + 0.432152i \(0.857754\pi\)
\(734\) 0 0
\(735\) 7.38332i 0.272338i
\(736\) 0 0
\(737\) 18.7640 0.691182
\(738\) 0 0
\(739\) 25.5902i 0.941349i 0.882307 + 0.470675i \(0.155989\pi\)
−0.882307 + 0.470675i \(0.844011\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 8.41424i − 0.308688i −0.988017 0.154344i \(-0.950674\pi\)
0.988017 0.154344i \(-0.0493265\pi\)
\(744\) 0 0
\(745\) −20.9886 −0.768963
\(746\) 0 0
\(747\) − 78.8204i − 2.88389i
\(748\) 0 0
\(749\) − 6.78106i − 0.247775i
\(750\) 0 0
\(751\) −40.5190 −1.47856 −0.739279 0.673399i \(-0.764834\pi\)
−0.739279 + 0.673399i \(0.764834\pi\)
\(752\) 0 0
\(753\) −54.0514 −1.96974
\(754\) 0 0
\(755\) 6.99102 0.254429
\(756\) 0 0
\(757\) −11.3519 −0.412590 −0.206295 0.978490i \(-0.566141\pi\)
−0.206295 + 0.978490i \(0.566141\pi\)
\(758\) 0 0
\(759\) − 38.2780i − 1.38940i
\(760\) 0 0
\(761\) − 6.77075i − 0.245440i −0.992441 0.122720i \(-0.960838\pi\)
0.992441 0.122720i \(-0.0391616\pi\)
\(762\) 0 0
\(763\) 19.1250 0.692371
\(764\) 0 0
\(765\) 18.1088i 0.654725i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 23.1591i 0.835138i 0.908645 + 0.417569i \(0.137118\pi\)
−0.908645 + 0.417569i \(0.862882\pi\)
\(770\) 0 0
\(771\) −38.7533 −1.39567
\(772\) 0 0
\(773\) 41.9540i 1.50898i 0.656311 + 0.754491i \(0.272116\pi\)
−0.656311 + 0.754491i \(0.727884\pi\)
\(774\) 0 0
\(775\) − 5.84325i − 0.209896i
\(776\) 0 0
\(777\) −57.7268 −2.07094
\(778\) 0 0
\(779\) −4.56410 −0.163526
\(780\) 0 0
\(781\) −24.5418 −0.878174
\(782\) 0 0
\(783\) −2.96562 −0.105983
\(784\) 0 0
\(785\) 3.74761i 0.133758i
\(786\) 0 0
\(787\) 37.4153i 1.33371i 0.745187 + 0.666856i \(0.232360\pi\)
−0.745187 + 0.666856i \(0.767640\pi\)
\(788\) 0 0
\(789\) −33.6775 −1.19895
\(790\) 0 0
\(791\) 22.9455i 0.815847i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 35.6009i 1.26263i
\(796\) 0 0
\(797\) −47.2400 −1.67333 −0.836663 0.547719i \(-0.815496\pi\)
−0.836663 + 0.547719i \(0.815496\pi\)
\(798\) 0 0
\(799\) − 12.5687i − 0.444650i
\(800\) 0 0
\(801\) 27.5729i 0.974240i
\(802\) 0 0
\(803\) 4.58074 0.161651
\(804\) 0 0
\(805\) 16.3767 0.577204
\(806\) 0 0
\(807\) −59.1692 −2.08286
\(808\) 0 0
\(809\) −46.4741 −1.63394 −0.816972 0.576677i \(-0.804349\pi\)
−0.816972 + 0.576677i \(0.804349\pi\)
\(810\) 0 0
\(811\) − 11.4041i − 0.400453i −0.979750 0.200227i \(-0.935832\pi\)
0.979750 0.200227i \(-0.0641678\pi\)
\(812\) 0 0
\(813\) − 5.51689i − 0.193486i
\(814\) 0 0
\(815\) 6.37830 0.223422
\(816\) 0 0
\(817\) − 9.99319i − 0.349618i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.5615i 0.857202i 0.903494 + 0.428601i \(0.140993\pi\)
−0.903494 + 0.428601i \(0.859007\pi\)
\(822\) 0 0
\(823\) −2.96448 −0.103335 −0.0516676 0.998664i \(-0.516454\pi\)
−0.0516676 + 0.998664i \(0.516454\pi\)
\(824\) 0 0
\(825\) 4.89623i 0.170465i
\(826\) 0 0
\(827\) − 17.7265i − 0.616412i −0.951320 0.308206i \(-0.900271\pi\)
0.951320 0.308206i \(-0.0997286\pi\)
\(828\) 0 0
\(829\) 11.5758 0.402045 0.201022 0.979587i \(-0.435574\pi\)
0.201022 + 0.979587i \(0.435574\pi\)
\(830\) 0 0
\(831\) −35.2804 −1.22386
\(832\) 0 0
\(833\) 9.47657 0.328344
\(834\) 0 0
\(835\) −15.5289 −0.537400
\(836\) 0 0
\(837\) 32.8874i 1.13676i
\(838\) 0 0
\(839\) 42.8795i 1.48037i 0.672405 + 0.740183i \(0.265261\pi\)
−0.672405 + 0.740183i \(0.734739\pi\)
\(840\) 0 0
\(841\) −28.7224 −0.990426
\(842\) 0 0
\(843\) − 6.48908i − 0.223496i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 16.7583i − 0.575822i
\(848\) 0 0
\(849\) −42.2038 −1.44843
\(850\) 0 0
\(851\) − 76.2121i − 2.61252i
\(852\) 0 0
\(853\) 13.4599i 0.460857i 0.973089 + 0.230428i \(0.0740127\pi\)
−0.973089 + 0.230428i \(0.925987\pi\)
\(854\) 0 0
\(855\) −5.33734 −0.182533
\(856\) 0 0
\(857\) −10.5950 −0.361919 −0.180960 0.983491i \(-0.557920\pi\)
−0.180960 + 0.983491i \(0.557920\pi\)
\(858\) 0 0
\(859\) −8.75716 −0.298791 −0.149395 0.988778i \(-0.547733\pi\)
−0.149395 + 0.988778i \(0.547733\pi\)
\(860\) 0 0
\(861\) 25.2732 0.861308
\(862\) 0 0
\(863\) − 30.8640i − 1.05062i −0.850910 0.525311i \(-0.823949\pi\)
0.850910 0.525311i \(-0.176051\pi\)
\(864\) 0 0
\(865\) 4.77604i 0.162390i
\(866\) 0 0
\(867\) −10.8426 −0.368234
\(868\) 0 0
\(869\) − 23.5089i − 0.797486i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 75.8365i − 2.56668i
\(874\) 0 0
\(875\) −2.09479 −0.0708167
\(876\) 0 0
\(877\) 20.1037i 0.678853i 0.940633 + 0.339427i \(0.110233\pi\)
−0.940633 + 0.339427i \(0.889767\pi\)
\(878\) 0 0
\(879\) 4.04839i 0.136549i
\(880\) 0 0
\(881\) −3.13396 −0.105586 −0.0527930 0.998605i \(-0.516812\pi\)
−0.0527930 + 0.998605i \(0.516812\pi\)
\(882\) 0 0
\(883\) −34.0429 −1.14563 −0.572817 0.819683i \(-0.694149\pi\)
−0.572817 + 0.819683i \(0.694149\pi\)
\(884\) 0 0
\(885\) 3.96802 0.133384
\(886\) 0 0
\(887\) 50.8069 1.70593 0.852964 0.521969i \(-0.174802\pi\)
0.852964 + 0.521969i \(0.174802\pi\)
\(888\) 0 0
\(889\) 1.90127i 0.0637666i
\(890\) 0 0
\(891\) − 1.62326i − 0.0543812i
\(892\) 0 0
\(893\) 3.70447 0.123965
\(894\) 0 0
\(895\) − 15.7027i − 0.524883i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 3.07889i − 0.102687i
\(900\) 0 0
\(901\) 45.6942 1.52229
\(902\) 0 0
\(903\) 55.3362i 1.84147i
\(904\) 0 0
\(905\) 10.8851i 0.361832i
\(906\) 0 0
\(907\) 50.9605 1.69212 0.846058 0.533090i \(-0.178969\pi\)
0.846058 + 0.533090i \(0.178969\pi\)
\(908\) 0 0
\(909\) 18.2804 0.606323
\(910\) 0 0
\(911\) −23.7176 −0.785800 −0.392900 0.919581i \(-0.628528\pi\)
−0.392900 + 0.919581i \(0.628528\pi\)
\(912\) 0 0
\(913\) −27.3533 −0.905263
\(914\) 0 0
\(915\) − 31.4028i − 1.03814i
\(916\) 0 0
\(917\) 27.5729i 0.910537i
\(918\) 0 0
\(919\) −42.3031 −1.39545 −0.697725 0.716365i \(-0.745804\pi\)
−0.697725 + 0.716365i \(0.745804\pi\)
\(920\) 0 0
\(921\) 49.1398i 1.61921i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 9.74846i 0.320528i
\(926\) 0 0
\(927\) 68.7784 2.25898
\(928\) 0 0
\(929\) − 13.3290i − 0.437310i −0.975802 0.218655i \(-0.929833\pi\)
0.975802 0.218655i \(-0.0701669\pi\)
\(930\) 0 0
\(931\) 2.79310i 0.0915402i
\(932\) 0 0
\(933\) −57.1486 −1.87096
\(934\) 0 0
\(935\) 6.28436 0.205521
\(936\) 0 0
\(937\) 14.0848 0.460129 0.230065 0.973175i \(-0.426106\pi\)
0.230065 + 0.973175i \(0.426106\pi\)
\(938\) 0 0
\(939\) −13.7505 −0.448729
\(940\) 0 0
\(941\) 49.0399i 1.59866i 0.600895 + 0.799328i \(0.294811\pi\)
−0.600895 + 0.799328i \(0.705189\pi\)
\(942\) 0 0
\(943\) 33.3662i 1.08655i
\(944\) 0 0
\(945\) 11.7900 0.383530
\(946\) 0 0
\(947\) 17.9352i 0.582816i 0.956599 + 0.291408i \(0.0941237\pi\)
−0.956599 + 0.291408i \(0.905876\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 66.7635i − 2.16496i
\(952\) 0 0
\(953\) −44.3830 −1.43771 −0.718853 0.695162i \(-0.755333\pi\)
−0.718853 + 0.695162i \(0.755333\pi\)
\(954\) 0 0
\(955\) − 5.95819i − 0.192802i
\(956\) 0 0
\(957\) 2.57989i 0.0833960i
\(958\) 0 0
\(959\) 25.2732 0.816114
\(960\) 0 0
\(961\) −3.14359 −0.101406
\(962\) 0 0
\(963\) 16.1565 0.520635
\(964\) 0 0
\(965\) 12.7695 0.411064
\(966\) 0 0
\(967\) 24.3595i 0.783348i 0.920104 + 0.391674i \(0.128104\pi\)
−0.920104 + 0.391674i \(0.871896\pi\)
\(968\) 0 0
\(969\) 10.9683i 0.352351i
\(970\) 0 0
\(971\) −1.17472 −0.0376985 −0.0188492 0.999822i \(-0.506000\pi\)
−0.0188492 + 0.999822i \(0.506000\pi\)
\(972\) 0 0
\(973\) 11.7557i 0.376869i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 12.3101i − 0.393835i −0.980420 0.196917i \(-0.936907\pi\)
0.980420 0.196917i \(-0.0630931\pi\)
\(978\) 0 0
\(979\) 9.56873 0.305818
\(980\) 0 0
\(981\) 45.5669i 1.45484i
\(982\) 0 0
\(983\) 2.29060i 0.0730589i 0.999333 + 0.0365295i \(0.0116303\pi\)
−0.999333 + 0.0365295i \(0.988370\pi\)
\(984\) 0 0
\(985\) −16.1079 −0.513242
\(986\) 0 0
\(987\) −20.5131 −0.652940
\(988\) 0 0
\(989\) −73.0560 −2.32305
\(990\) 0 0
\(991\) 21.6998 0.689318 0.344659 0.938728i \(-0.387994\pi\)
0.344659 + 0.938728i \(0.387994\pi\)
\(992\) 0 0
\(993\) − 42.0628i − 1.33482i
\(994\) 0 0
\(995\) 8.52805i 0.270357i
\(996\) 0 0
\(997\) −19.0625 −0.603716 −0.301858 0.953353i \(-0.597607\pi\)
−0.301858 + 0.953353i \(0.597607\pi\)
\(998\) 0 0
\(999\) − 54.8671i − 1.73592i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.2.f.i.3041.8 8
13.3 even 3 260.2.x.a.121.1 yes 8
13.4 even 6 260.2.x.a.101.1 8
13.5 odd 4 3380.2.a.q.1.4 4
13.8 odd 4 3380.2.a.p.1.4 4
13.12 even 2 inner 3380.2.f.i.3041.7 8
39.17 odd 6 2340.2.dj.d.361.3 8
39.29 odd 6 2340.2.dj.d.901.1 8
52.3 odd 6 1040.2.da.c.641.4 8
52.43 odd 6 1040.2.da.c.881.4 8
65.3 odd 12 1300.2.ba.b.849.1 8
65.4 even 6 1300.2.y.b.101.4 8
65.17 odd 12 1300.2.ba.b.49.1 8
65.29 even 6 1300.2.y.b.901.4 8
65.42 odd 12 1300.2.ba.c.849.4 8
65.43 odd 12 1300.2.ba.c.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.x.a.101.1 8 13.4 even 6
260.2.x.a.121.1 yes 8 13.3 even 3
1040.2.da.c.641.4 8 52.3 odd 6
1040.2.da.c.881.4 8 52.43 odd 6
1300.2.y.b.101.4 8 65.4 even 6
1300.2.y.b.901.4 8 65.29 even 6
1300.2.ba.b.49.1 8 65.17 odd 12
1300.2.ba.b.849.1 8 65.3 odd 12
1300.2.ba.c.49.4 8 65.43 odd 12
1300.2.ba.c.849.4 8 65.42 odd 12
2340.2.dj.d.361.3 8 39.17 odd 6
2340.2.dj.d.901.1 8 39.29 odd 6
3380.2.a.p.1.4 4 13.8 odd 4
3380.2.a.q.1.4 4 13.5 odd 4
3380.2.f.i.3041.7 8 13.12 even 2 inner
3380.2.f.i.3041.8 8 1.1 even 1 trivial