Properties

Label 3380.2.f.i.3041.2
Level $3380$
Weight $2$
Character 3380.3041
Analytic conductor $26.989$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,2,Mod(3041,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.3041");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3380.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.9894358832\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.22581504.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3041.2
Root \(1.40994 + 0.109843i\) of defining polynomial
Character \(\chi\) \(=\) 3380.3041
Dual form 3380.2.f.i.3041.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.33225 q^{3} +1.00000i q^{5} -0.399804i q^{7} +2.43937 q^{9} +O(q^{10})\) \(q-2.33225 q^{3} +1.00000i q^{5} -0.399804i q^{7} +2.43937 q^{9} +1.73205i q^{11} -2.33225i q^{15} -0.692481 q^{17} +5.37182i q^{19} +0.932442i q^{21} +0.107127 q^{23} -1.00000 q^{25} +1.30752 q^{27} -4.90348 q^{29} -7.86488i q^{31} -4.03957i q^{33} +0.399804 q^{35} +2.26469i q^{37} +7.73205i q^{41} -6.01060 q^{43} +2.43937i q^{45} +3.46410i q^{47} +6.84016 q^{49} +1.61504 q^{51} +11.7189 q^{53} -1.73205 q^{55} -12.5284i q^{57} +7.27529i q^{59} +8.68922 q^{61} -0.975272i q^{63} -1.32801i q^{67} -0.249847 q^{69} +3.87803i q^{71} -10.2251i q^{73} +2.33225 q^{75} +0.692481 q^{77} -13.1533 q^{79} -10.3676 q^{81} -14.0791i q^{83} -0.692481i q^{85} +11.4361 q^{87} +0.347088i q^{89} +18.3428i q^{93} -5.37182 q^{95} +8.85004i q^{97} +4.22512i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{3} + 8 q^{9} - 12 q^{17} + 12 q^{23} - 8 q^{25} + 4 q^{27} + 12 q^{35} - 20 q^{43} + 8 q^{49} + 24 q^{53} + 8 q^{61} + 48 q^{69} - 4 q^{75} + 12 q^{77} - 16 q^{79} - 16 q^{81} + 12 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.33225 −1.34652 −0.673262 0.739404i \(-0.735107\pi\)
−0.673262 + 0.739404i \(0.735107\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) − 0.399804i − 0.151112i −0.997142 0.0755559i \(-0.975927\pi\)
0.997142 0.0755559i \(-0.0240731\pi\)
\(8\) 0 0
\(9\) 2.43937 0.813125
\(10\) 0 0
\(11\) 1.73205i 0.522233i 0.965307 + 0.261116i \(0.0840907\pi\)
−0.965307 + 0.261116i \(0.915909\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 2.33225i − 0.602183i
\(16\) 0 0
\(17\) −0.692481 −0.167951 −0.0839757 0.996468i \(-0.526762\pi\)
−0.0839757 + 0.996468i \(0.526762\pi\)
\(18\) 0 0
\(19\) 5.37182i 1.23238i 0.787598 + 0.616190i \(0.211324\pi\)
−0.787598 + 0.616190i \(0.788676\pi\)
\(20\) 0 0
\(21\) 0.932442i 0.203476i
\(22\) 0 0
\(23\) 0.107127 0.0223376 0.0111688 0.999938i \(-0.496445\pi\)
0.0111688 + 0.999938i \(0.496445\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.30752 0.251632
\(28\) 0 0
\(29\) −4.90348 −0.910553 −0.455276 0.890350i \(-0.650460\pi\)
−0.455276 + 0.890350i \(0.650460\pi\)
\(30\) 0 0
\(31\) − 7.86488i − 1.41257i −0.707925 0.706287i \(-0.750369\pi\)
0.707925 0.706287i \(-0.249631\pi\)
\(32\) 0 0
\(33\) − 4.03957i − 0.703199i
\(34\) 0 0
\(35\) 0.399804 0.0675793
\(36\) 0 0
\(37\) 2.26469i 0.372313i 0.982520 + 0.186156i \(0.0596031\pi\)
−0.982520 + 0.186156i \(0.940397\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.73205i 1.20754i 0.797157 + 0.603772i \(0.206336\pi\)
−0.797157 + 0.603772i \(0.793664\pi\)
\(42\) 0 0
\(43\) −6.01060 −0.916608 −0.458304 0.888795i \(-0.651543\pi\)
−0.458304 + 0.888795i \(0.651543\pi\)
\(44\) 0 0
\(45\) 2.43937i 0.363640i
\(46\) 0 0
\(47\) 3.46410i 0.505291i 0.967559 + 0.252646i \(0.0813007\pi\)
−0.967559 + 0.252646i \(0.918699\pi\)
\(48\) 0 0
\(49\) 6.84016 0.977165
\(50\) 0 0
\(51\) 1.61504 0.226150
\(52\) 0 0
\(53\) 11.7189 1.60972 0.804858 0.593468i \(-0.202242\pi\)
0.804858 + 0.593468i \(0.202242\pi\)
\(54\) 0 0
\(55\) −1.73205 −0.233550
\(56\) 0 0
\(57\) − 12.5284i − 1.65943i
\(58\) 0 0
\(59\) 7.27529i 0.947162i 0.880750 + 0.473581i \(0.157039\pi\)
−0.880750 + 0.473581i \(0.842961\pi\)
\(60\) 0 0
\(61\) 8.68922 1.11254 0.556270 0.831001i \(-0.312232\pi\)
0.556270 + 0.831001i \(0.312232\pi\)
\(62\) 0 0
\(63\) − 0.975272i − 0.122873i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.32801i − 0.162242i −0.996704 0.0811210i \(-0.974150\pi\)
0.996704 0.0811210i \(-0.0258500\pi\)
\(68\) 0 0
\(69\) −0.249847 −0.0300781
\(70\) 0 0
\(71\) 3.87803i 0.460238i 0.973163 + 0.230119i \(0.0739115\pi\)
−0.973163 + 0.230119i \(0.926089\pi\)
\(72\) 0 0
\(73\) − 10.2251i − 1.19676i −0.801213 0.598380i \(-0.795811\pi\)
0.801213 0.598380i \(-0.204189\pi\)
\(74\) 0 0
\(75\) 2.33225 0.269305
\(76\) 0 0
\(77\) 0.692481 0.0789156
\(78\) 0 0
\(79\) −13.1533 −1.47986 −0.739932 0.672681i \(-0.765142\pi\)
−0.739932 + 0.672681i \(0.765142\pi\)
\(80\) 0 0
\(81\) −10.3676 −1.15195
\(82\) 0 0
\(83\) − 14.0791i − 1.54539i −0.634780 0.772693i \(-0.718909\pi\)
0.634780 0.772693i \(-0.281091\pi\)
\(84\) 0 0
\(85\) − 0.692481i − 0.0751102i
\(86\) 0 0
\(87\) 11.4361 1.22608
\(88\) 0 0
\(89\) 0.347088i 0.0367913i 0.999831 + 0.0183956i \(0.00585584\pi\)
−0.999831 + 0.0183956i \(0.994144\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 18.3428i 1.90206i
\(94\) 0 0
\(95\) −5.37182 −0.551137
\(96\) 0 0
\(97\) 8.85004i 0.898586i 0.893385 + 0.449293i \(0.148324\pi\)
−0.893385 + 0.449293i \(0.851676\pi\)
\(98\) 0 0
\(99\) 4.22512i 0.424640i
\(100\) 0 0
\(101\) −4.10387 −0.408350 −0.204175 0.978934i \(-0.565451\pi\)
−0.204175 + 0.978934i \(0.565451\pi\)
\(102\) 0 0
\(103\) −11.2325 −1.10677 −0.553384 0.832926i \(-0.686664\pi\)
−0.553384 + 0.832926i \(0.686664\pi\)
\(104\) 0 0
\(105\) −0.932442 −0.0909970
\(106\) 0 0
\(107\) −17.6033 −1.70178 −0.850888 0.525348i \(-0.823935\pi\)
−0.850888 + 0.525348i \(0.823935\pi\)
\(108\) 0 0
\(109\) 15.1830i 1.45427i 0.686495 + 0.727134i \(0.259148\pi\)
−0.686495 + 0.727134i \(0.740852\pi\)
\(110\) 0 0
\(111\) − 5.28181i − 0.501327i
\(112\) 0 0
\(113\) 8.90021 0.837262 0.418631 0.908156i \(-0.362510\pi\)
0.418631 + 0.908156i \(0.362510\pi\)
\(114\) 0 0
\(115\) 0.107127i 0.00998967i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.276857i 0.0253794i
\(120\) 0 0
\(121\) 8.00000 0.727273
\(122\) 0 0
\(123\) − 18.0330i − 1.62599i
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) −12.1566 −1.07872 −0.539361 0.842075i \(-0.681334\pi\)
−0.539361 + 0.842075i \(0.681334\pi\)
\(128\) 0 0
\(129\) 14.0182 1.23423
\(130\) 0 0
\(131\) −2.11773 −0.185027 −0.0925135 0.995711i \(-0.529490\pi\)
−0.0925135 + 0.995711i \(0.529490\pi\)
\(132\) 0 0
\(133\) 2.14768 0.186227
\(134\) 0 0
\(135\) 1.30752i 0.112533i
\(136\) 0 0
\(137\) − 18.0330i − 1.54067i −0.637641 0.770334i \(-0.720090\pi\)
0.637641 0.770334i \(-0.279910\pi\)
\(138\) 0 0
\(139\) −9.84016 −0.834631 −0.417316 0.908762i \(-0.637029\pi\)
−0.417316 + 0.908762i \(0.637029\pi\)
\(140\) 0 0
\(141\) − 8.07914i − 0.680386i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 4.90348i − 0.407211i
\(146\) 0 0
\(147\) −15.9529 −1.31578
\(148\) 0 0
\(149\) 8.88299i 0.727723i 0.931453 + 0.363861i \(0.118542\pi\)
−0.931453 + 0.363861i \(0.881458\pi\)
\(150\) 0 0
\(151\) − 4.43937i − 0.361271i −0.983550 0.180636i \(-0.942185\pi\)
0.983550 0.180636i \(-0.0578155\pi\)
\(152\) 0 0
\(153\) −1.68922 −0.136565
\(154\) 0 0
\(155\) 7.86488 0.631723
\(156\) 0 0
\(157\) −4.16719 −0.332578 −0.166289 0.986077i \(-0.553178\pi\)
−0.166289 + 0.986077i \(0.553178\pi\)
\(158\) 0 0
\(159\) −27.3314 −2.16752
\(160\) 0 0
\(161\) − 0.0428299i − 0.00337547i
\(162\) 0 0
\(163\) − 3.69672i − 0.289549i −0.989465 0.144775i \(-0.953754\pi\)
0.989465 0.144775i \(-0.0462458\pi\)
\(164\) 0 0
\(165\) 4.03957 0.314480
\(166\) 0 0
\(167\) − 21.4972i − 1.66350i −0.555151 0.831750i \(-0.687339\pi\)
0.555151 0.831750i \(-0.312661\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 13.1039i 1.00208i
\(172\) 0 0
\(173\) 11.6118 0.882827 0.441414 0.897304i \(-0.354477\pi\)
0.441414 + 0.897304i \(0.354477\pi\)
\(174\) 0 0
\(175\) 0.399804i 0.0302224i
\(176\) 0 0
\(177\) − 16.9678i − 1.27538i
\(178\) 0 0
\(179\) 4.97032 0.371499 0.185749 0.982597i \(-0.440529\pi\)
0.185749 + 0.982597i \(0.440529\pi\)
\(180\) 0 0
\(181\) −17.3695 −1.29107 −0.645534 0.763732i \(-0.723365\pi\)
−0.645534 + 0.763732i \(0.723365\pi\)
\(182\) 0 0
\(183\) −20.2654 −1.49806
\(184\) 0 0
\(185\) −2.26469 −0.166503
\(186\) 0 0
\(187\) − 1.19941i − 0.0877098i
\(188\) 0 0
\(189\) − 0.522752i − 0.0380246i
\(190\) 0 0
\(191\) −20.5046 −1.48366 −0.741832 0.670586i \(-0.766043\pi\)
−0.741832 + 0.670586i \(0.766043\pi\)
\(192\) 0 0
\(193\) − 26.6075i − 1.91525i −0.288014 0.957626i \(-0.592995\pi\)
0.288014 0.957626i \(-0.407005\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.408282i 0.0290889i 0.999894 + 0.0145445i \(0.00462981\pi\)
−0.999894 + 0.0145445i \(0.995370\pi\)
\(198\) 0 0
\(199\) −24.3996 −1.72965 −0.864823 0.502078i \(-0.832569\pi\)
−0.864823 + 0.502078i \(0.832569\pi\)
\(200\) 0 0
\(201\) 3.09724i 0.218463i
\(202\) 0 0
\(203\) 1.96043i 0.137595i
\(204\) 0 0
\(205\) −7.73205 −0.540030
\(206\) 0 0
\(207\) 0.261323 0.0181632
\(208\) 0 0
\(209\) −9.30426 −0.643589
\(210\) 0 0
\(211\) 1.76102 0.121233 0.0606167 0.998161i \(-0.480693\pi\)
0.0606167 + 0.998161i \(0.480693\pi\)
\(212\) 0 0
\(213\) − 9.04452i − 0.619721i
\(214\) 0 0
\(215\) − 6.01060i − 0.409920i
\(216\) 0 0
\(217\) −3.14441 −0.213457
\(218\) 0 0
\(219\) 23.8475i 1.61146i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 11.3191i 0.757983i 0.925400 + 0.378991i \(0.123729\pi\)
−0.925400 + 0.378991i \(0.876271\pi\)
\(224\) 0 0
\(225\) −2.43937 −0.162625
\(226\) 0 0
\(227\) 8.06077i 0.535012i 0.963556 + 0.267506i \(0.0861996\pi\)
−0.963556 + 0.267506i \(0.913800\pi\)
\(228\) 0 0
\(229\) − 11.5715i − 0.764666i −0.924025 0.382333i \(-0.875121\pi\)
0.924025 0.382333i \(-0.124879\pi\)
\(230\) 0 0
\(231\) −1.61504 −0.106262
\(232\) 0 0
\(233\) −24.0900 −1.57819 −0.789094 0.614272i \(-0.789450\pi\)
−0.789094 + 0.614272i \(0.789450\pi\)
\(234\) 0 0
\(235\) −3.46410 −0.225973
\(236\) 0 0
\(237\) 30.6768 1.99267
\(238\) 0 0
\(239\) 30.7089i 1.98639i 0.116459 + 0.993196i \(0.462846\pi\)
−0.116459 + 0.993196i \(0.537154\pi\)
\(240\) 0 0
\(241\) − 7.92749i − 0.510654i −0.966855 0.255327i \(-0.917817\pi\)
0.966855 0.255327i \(-0.0821832\pi\)
\(242\) 0 0
\(243\) 20.2572 1.29950
\(244\) 0 0
\(245\) 6.84016i 0.437002i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 32.8360i 2.08090i
\(250\) 0 0
\(251\) −22.6224 −1.42791 −0.713956 0.700191i \(-0.753098\pi\)
−0.713956 + 0.700191i \(0.753098\pi\)
\(252\) 0 0
\(253\) 0.185550i 0.0116654i
\(254\) 0 0
\(255\) 1.61504i 0.101138i
\(256\) 0 0
\(257\) −25.7963 −1.60913 −0.804566 0.593863i \(-0.797602\pi\)
−0.804566 + 0.593863i \(0.797602\pi\)
\(258\) 0 0
\(259\) 0.905432 0.0562608
\(260\) 0 0
\(261\) −11.9614 −0.740393
\(262\) 0 0
\(263\) 1.59057 0.0980788 0.0490394 0.998797i \(-0.484384\pi\)
0.0490394 + 0.998797i \(0.484384\pi\)
\(264\) 0 0
\(265\) 11.7189i 0.719887i
\(266\) 0 0
\(267\) − 0.809495i − 0.0495403i
\(268\) 0 0
\(269\) −27.8228 −1.69638 −0.848192 0.529689i \(-0.822309\pi\)
−0.848192 + 0.529689i \(0.822309\pi\)
\(270\) 0 0
\(271\) − 23.5004i − 1.42755i −0.700376 0.713774i \(-0.746984\pi\)
0.700376 0.713774i \(-0.253016\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.73205i − 0.104447i
\(276\) 0 0
\(277\) 2.99674 0.180057 0.0900283 0.995939i \(-0.471304\pi\)
0.0900283 + 0.995939i \(0.471304\pi\)
\(278\) 0 0
\(279\) − 19.1854i − 1.14860i
\(280\) 0 0
\(281\) − 24.6085i − 1.46802i −0.679138 0.734011i \(-0.737646\pi\)
0.679138 0.734011i \(-0.262354\pi\)
\(282\) 0 0
\(283\) −8.16888 −0.485590 −0.242795 0.970078i \(-0.578064\pi\)
−0.242795 + 0.970078i \(0.578064\pi\)
\(284\) 0 0
\(285\) 12.5284 0.742118
\(286\) 0 0
\(287\) 3.09131 0.182474
\(288\) 0 0
\(289\) −16.5205 −0.971792
\(290\) 0 0
\(291\) − 20.6405i − 1.20997i
\(292\) 0 0
\(293\) 7.50367i 0.438369i 0.975683 + 0.219185i \(0.0703397\pi\)
−0.975683 + 0.219185i \(0.929660\pi\)
\(294\) 0 0
\(295\) −7.27529 −0.423584
\(296\) 0 0
\(297\) 2.26469i 0.131411i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.40306i 0.138510i
\(302\) 0 0
\(303\) 9.57123 0.549853
\(304\) 0 0
\(305\) 8.68922i 0.497543i
\(306\) 0 0
\(307\) − 5.95293i − 0.339752i −0.985465 0.169876i \(-0.945663\pi\)
0.985465 0.169876i \(-0.0543367\pi\)
\(308\) 0 0
\(309\) 26.1969 1.49029
\(310\) 0 0
\(311\) −17.9247 −1.01642 −0.508208 0.861235i \(-0.669692\pi\)
−0.508208 + 0.861235i \(0.669692\pi\)
\(312\) 0 0
\(313\) −17.0073 −0.961312 −0.480656 0.876909i \(-0.659601\pi\)
−0.480656 + 0.876909i \(0.659601\pi\)
\(314\) 0 0
\(315\) 0.975272 0.0549504
\(316\) 0 0
\(317\) − 3.09300i − 0.173720i −0.996221 0.0868601i \(-0.972317\pi\)
0.996221 0.0868601i \(-0.0276833\pi\)
\(318\) 0 0
\(319\) − 8.49307i − 0.475521i
\(320\) 0 0
\(321\) 41.0552 2.29148
\(322\) 0 0
\(323\) − 3.71988i − 0.206980i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 35.4105i − 1.95821i
\(328\) 0 0
\(329\) 1.38496 0.0763555
\(330\) 0 0
\(331\) − 22.5722i − 1.24068i −0.784333 0.620340i \(-0.786994\pi\)
0.784333 0.620340i \(-0.213006\pi\)
\(332\) 0 0
\(333\) 5.52442i 0.302736i
\(334\) 0 0
\(335\) 1.32801 0.0725568
\(336\) 0 0
\(337\) 18.0603 0.983808 0.491904 0.870649i \(-0.336301\pi\)
0.491904 + 0.870649i \(0.336301\pi\)
\(338\) 0 0
\(339\) −20.7575 −1.12739
\(340\) 0 0
\(341\) 13.6224 0.737693
\(342\) 0 0
\(343\) − 5.53335i − 0.298773i
\(344\) 0 0
\(345\) − 0.249847i − 0.0134513i
\(346\) 0 0
\(347\) 26.4717 1.42108 0.710538 0.703659i \(-0.248452\pi\)
0.710538 + 0.703659i \(0.248452\pi\)
\(348\) 0 0
\(349\) 12.3772i 0.662536i 0.943537 + 0.331268i \(0.107476\pi\)
−0.943537 + 0.331268i \(0.892524\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.2809i 1.02622i 0.858323 + 0.513110i \(0.171507\pi\)
−0.858323 + 0.513110i \(0.828493\pi\)
\(354\) 0 0
\(355\) −3.87803 −0.205825
\(356\) 0 0
\(357\) − 0.645699i − 0.0341740i
\(358\) 0 0
\(359\) 26.5506i 1.40129i 0.713512 + 0.700643i \(0.247103\pi\)
−0.713512 + 0.700643i \(0.752897\pi\)
\(360\) 0 0
\(361\) −9.85641 −0.518758
\(362\) 0 0
\(363\) −18.6580 −0.979290
\(364\) 0 0
\(365\) 10.2251 0.535207
\(366\) 0 0
\(367\) 7.37436 0.384938 0.192469 0.981303i \(-0.438350\pi\)
0.192469 + 0.981303i \(0.438350\pi\)
\(368\) 0 0
\(369\) 18.8614i 0.981883i
\(370\) 0 0
\(371\) − 4.68527i − 0.243247i
\(372\) 0 0
\(373\) −28.3149 −1.46609 −0.733044 0.680181i \(-0.761901\pi\)
−0.733044 + 0.680181i \(0.761901\pi\)
\(374\) 0 0
\(375\) 2.33225i 0.120437i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 10.4267i 0.535581i 0.963477 + 0.267791i \(0.0862936\pi\)
−0.963477 + 0.267791i \(0.913706\pi\)
\(380\) 0 0
\(381\) 28.3521 1.45252
\(382\) 0 0
\(383\) 10.8520i 0.554511i 0.960796 + 0.277256i \(0.0894249\pi\)
−0.960796 + 0.277256i \(0.910575\pi\)
\(384\) 0 0
\(385\) 0.692481i 0.0352921i
\(386\) 0 0
\(387\) −14.6621 −0.745317
\(388\) 0 0
\(389\) 20.2893 1.02871 0.514353 0.857578i \(-0.328032\pi\)
0.514353 + 0.857578i \(0.328032\pi\)
\(390\) 0 0
\(391\) −0.0741836 −0.00375163
\(392\) 0 0
\(393\) 4.93907 0.249143
\(394\) 0 0
\(395\) − 13.1533i − 0.661815i
\(396\) 0 0
\(397\) − 25.2527i − 1.26740i −0.773581 0.633698i \(-0.781536\pi\)
0.773581 0.633698i \(-0.218464\pi\)
\(398\) 0 0
\(399\) −5.00891 −0.250759
\(400\) 0 0
\(401\) 12.5143i 0.624933i 0.949929 + 0.312467i \(0.101155\pi\)
−0.949929 + 0.312467i \(0.898845\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 10.3676i − 0.515169i
\(406\) 0 0
\(407\) −3.92256 −0.194434
\(408\) 0 0
\(409\) − 5.99576i − 0.296471i −0.988952 0.148236i \(-0.952641\pi\)
0.988952 0.148236i \(-0.0473594\pi\)
\(410\) 0 0
\(411\) 42.0575i 2.07454i
\(412\) 0 0
\(413\) 2.90869 0.143127
\(414\) 0 0
\(415\) 14.0791 0.691118
\(416\) 0 0
\(417\) 22.9497 1.12385
\(418\) 0 0
\(419\) −10.9703 −0.535935 −0.267968 0.963428i \(-0.586352\pi\)
−0.267968 + 0.963428i \(0.586352\pi\)
\(420\) 0 0
\(421\) 36.6085i 1.78419i 0.451848 + 0.892095i \(0.350765\pi\)
−0.451848 + 0.892095i \(0.649235\pi\)
\(422\) 0 0
\(423\) 8.45024i 0.410865i
\(424\) 0 0
\(425\) 0.692481 0.0335903
\(426\) 0 0
\(427\) − 3.47399i − 0.168118i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 12.1097i − 0.583302i −0.956525 0.291651i \(-0.905795\pi\)
0.956525 0.291651i \(-0.0942046\pi\)
\(432\) 0 0
\(433\) 9.01794 0.433375 0.216687 0.976241i \(-0.430475\pi\)
0.216687 + 0.976241i \(0.430475\pi\)
\(434\) 0 0
\(435\) 11.4361i 0.548320i
\(436\) 0 0
\(437\) 0.575468i 0.0275284i
\(438\) 0 0
\(439\) 12.1509 0.579933 0.289966 0.957037i \(-0.406356\pi\)
0.289966 + 0.957037i \(0.406356\pi\)
\(440\) 0 0
\(441\) 16.6857 0.794557
\(442\) 0 0
\(443\) 15.3116 0.727476 0.363738 0.931501i \(-0.381500\pi\)
0.363738 + 0.931501i \(0.381500\pi\)
\(444\) 0 0
\(445\) −0.347088 −0.0164536
\(446\) 0 0
\(447\) − 20.7173i − 0.979895i
\(448\) 0 0
\(449\) 22.7394i 1.07314i 0.843856 + 0.536569i \(0.180280\pi\)
−0.843856 + 0.536569i \(0.819720\pi\)
\(450\) 0 0
\(451\) −13.3923 −0.630619
\(452\) 0 0
\(453\) 10.3537i 0.486460i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 10.7450i − 0.502632i −0.967905 0.251316i \(-0.919137\pi\)
0.967905 0.251316i \(-0.0808633\pi\)
\(458\) 0 0
\(459\) −0.905432 −0.0422620
\(460\) 0 0
\(461\) − 11.8903i − 0.553788i −0.960900 0.276894i \(-0.910695\pi\)
0.960900 0.276894i \(-0.0893051\pi\)
\(462\) 0 0
\(463\) − 3.39726i − 0.157884i −0.996879 0.0789420i \(-0.974846\pi\)
0.996879 0.0789420i \(-0.0251542\pi\)
\(464\) 0 0
\(465\) −18.3428 −0.850629
\(466\) 0 0
\(467\) −6.39426 −0.295891 −0.147946 0.988996i \(-0.547266\pi\)
−0.147946 + 0.988996i \(0.547266\pi\)
\(468\) 0 0
\(469\) −0.530943 −0.0245167
\(470\) 0 0
\(471\) 9.71890 0.447823
\(472\) 0 0
\(473\) − 10.4107i − 0.478683i
\(474\) 0 0
\(475\) − 5.37182i − 0.246476i
\(476\) 0 0
\(477\) 28.5868 1.30890
\(478\) 0 0
\(479\) 16.3194i 0.745651i 0.927902 + 0.372825i \(0.121611\pi\)
−0.927902 + 0.372825i \(0.878389\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0.0998900i 0.00454515i
\(484\) 0 0
\(485\) −8.85004 −0.401860
\(486\) 0 0
\(487\) 11.9346i 0.540807i 0.962747 + 0.270403i \(0.0871571\pi\)
−0.962747 + 0.270403i \(0.912843\pi\)
\(488\) 0 0
\(489\) 8.62166i 0.389885i
\(490\) 0 0
\(491\) 34.0517 1.53673 0.768366 0.640011i \(-0.221070\pi\)
0.768366 + 0.640011i \(0.221070\pi\)
\(492\) 0 0
\(493\) 3.39557 0.152929
\(494\) 0 0
\(495\) −4.22512 −0.189905
\(496\) 0 0
\(497\) 1.55045 0.0695473
\(498\) 0 0
\(499\) 12.5854i 0.563398i 0.959503 + 0.281699i \(0.0908979\pi\)
−0.959503 + 0.281699i \(0.909102\pi\)
\(500\) 0 0
\(501\) 50.1367i 2.23994i
\(502\) 0 0
\(503\) −18.1887 −0.810992 −0.405496 0.914097i \(-0.632901\pi\)
−0.405496 + 0.914097i \(0.632901\pi\)
\(504\) 0 0
\(505\) − 4.10387i − 0.182620i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 29.0135i − 1.28600i −0.765865 0.643001i \(-0.777689\pi\)
0.765865 0.643001i \(-0.222311\pi\)
\(510\) 0 0
\(511\) −4.08805 −0.180845
\(512\) 0 0
\(513\) 7.02375i 0.310106i
\(514\) 0 0
\(515\) − 11.2325i − 0.494961i
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) −27.0815 −1.18875
\(520\) 0 0
\(521\) 35.0240 1.53443 0.767214 0.641391i \(-0.221642\pi\)
0.767214 + 0.641391i \(0.221642\pi\)
\(522\) 0 0
\(523\) −9.27741 −0.405673 −0.202836 0.979213i \(-0.565016\pi\)
−0.202836 + 0.979213i \(0.565016\pi\)
\(524\) 0 0
\(525\) − 0.932442i − 0.0406951i
\(526\) 0 0
\(527\) 5.44629i 0.237244i
\(528\) 0 0
\(529\) −22.9885 −0.999501
\(530\) 0 0
\(531\) 17.7472i 0.770161i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 17.6033i − 0.761057i
\(536\) 0 0
\(537\) −11.5920 −0.500232
\(538\) 0 0
\(539\) 11.8475i 0.510308i
\(540\) 0 0
\(541\) − 24.3814i − 1.04824i −0.851644 0.524120i \(-0.824394\pi\)
0.851644 0.524120i \(-0.175606\pi\)
\(542\) 0 0
\(543\) 40.5100 1.73845
\(544\) 0 0
\(545\) −15.1830 −0.650369
\(546\) 0 0
\(547\) 26.5270 1.13421 0.567106 0.823645i \(-0.308063\pi\)
0.567106 + 0.823645i \(0.308063\pi\)
\(548\) 0 0
\(549\) 21.1963 0.904634
\(550\) 0 0
\(551\) − 26.3406i − 1.12215i
\(552\) 0 0
\(553\) 5.25875i 0.223625i
\(554\) 0 0
\(555\) 5.28181 0.224200
\(556\) 0 0
\(557\) − 3.21171i − 0.136085i −0.997682 0.0680423i \(-0.978325\pi\)
0.997682 0.0680423i \(-0.0216753\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 2.79733i 0.118103i
\(562\) 0 0
\(563\) 34.2852 1.44495 0.722474 0.691398i \(-0.243005\pi\)
0.722474 + 0.691398i \(0.243005\pi\)
\(564\) 0 0
\(565\) 8.90021i 0.374435i
\(566\) 0 0
\(567\) 4.14500i 0.174074i
\(568\) 0 0
\(569\) 35.6457 1.49434 0.747172 0.664630i \(-0.231411\pi\)
0.747172 + 0.664630i \(0.231411\pi\)
\(570\) 0 0
\(571\) −4.53590 −0.189821 −0.0949107 0.995486i \(-0.530257\pi\)
−0.0949107 + 0.995486i \(0.530257\pi\)
\(572\) 0 0
\(573\) 47.8219 1.99779
\(574\) 0 0
\(575\) −0.107127 −0.00446751
\(576\) 0 0
\(577\) − 18.4475i − 0.767981i −0.923337 0.383991i \(-0.874550\pi\)
0.923337 0.383991i \(-0.125450\pi\)
\(578\) 0 0
\(579\) 62.0553i 2.57893i
\(580\) 0 0
\(581\) −5.62890 −0.233526
\(582\) 0 0
\(583\) 20.2977i 0.840646i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 42.9914i − 1.77444i −0.461343 0.887222i \(-0.652632\pi\)
0.461343 0.887222i \(-0.347368\pi\)
\(588\) 0 0
\(589\) 42.2487 1.74083
\(590\) 0 0
\(591\) − 0.952215i − 0.0391689i
\(592\) 0 0
\(593\) 12.8614i 0.528153i 0.964502 + 0.264076i \(0.0850671\pi\)
−0.964502 + 0.264076i \(0.914933\pi\)
\(594\) 0 0
\(595\) −0.276857 −0.0113500
\(596\) 0 0
\(597\) 56.9060 2.32901
\(598\) 0 0
\(599\) 28.3170 1.15700 0.578500 0.815682i \(-0.303638\pi\)
0.578500 + 0.815682i \(0.303638\pi\)
\(600\) 0 0
\(601\) −7.13469 −0.291030 −0.145515 0.989356i \(-0.546484\pi\)
−0.145515 + 0.989356i \(0.546484\pi\)
\(602\) 0 0
\(603\) − 3.23951i − 0.131923i
\(604\) 0 0
\(605\) 8.00000i 0.325246i
\(606\) 0 0
\(607\) −22.1802 −0.900266 −0.450133 0.892962i \(-0.648623\pi\)
−0.450133 + 0.892962i \(0.648623\pi\)
\(608\) 0 0
\(609\) − 4.57221i − 0.185275i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 0.322622i − 0.0130306i −0.999979 0.00651530i \(-0.997926\pi\)
0.999979 0.00651530i \(-0.00207390\pi\)
\(614\) 0 0
\(615\) 18.0330 0.727163
\(616\) 0 0
\(617\) 37.1987i 1.49756i 0.662817 + 0.748781i \(0.269361\pi\)
−0.662817 + 0.748781i \(0.730639\pi\)
\(618\) 0 0
\(619\) 3.94911i 0.158728i 0.996846 + 0.0793641i \(0.0252890\pi\)
−0.996846 + 0.0793641i \(0.974711\pi\)
\(620\) 0 0
\(621\) 0.140071 0.00562085
\(622\) 0 0
\(623\) 0.138767 0.00555959
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 21.6998 0.866607
\(628\) 0 0
\(629\) − 1.56825i − 0.0625304i
\(630\) 0 0
\(631\) − 33.5815i − 1.33686i −0.743776 0.668429i \(-0.766967\pi\)
0.743776 0.668429i \(-0.233033\pi\)
\(632\) 0 0
\(633\) −4.10713 −0.163244
\(634\) 0 0
\(635\) − 12.1566i − 0.482419i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 9.45997i 0.374231i
\(640\) 0 0
\(641\) −33.1800 −1.31053 −0.655266 0.755398i \(-0.727443\pi\)
−0.655266 + 0.755398i \(0.727443\pi\)
\(642\) 0 0
\(643\) − 31.3666i − 1.23698i −0.785793 0.618489i \(-0.787745\pi\)
0.785793 0.618489i \(-0.212255\pi\)
\(644\) 0 0
\(645\) 14.0182i 0.551966i
\(646\) 0 0
\(647\) −19.5906 −0.770185 −0.385092 0.922878i \(-0.625830\pi\)
−0.385092 + 0.922878i \(0.625830\pi\)
\(648\) 0 0
\(649\) −12.6012 −0.494639
\(650\) 0 0
\(651\) 7.33355 0.287424
\(652\) 0 0
\(653\) 7.11251 0.278334 0.139167 0.990269i \(-0.455557\pi\)
0.139167 + 0.990269i \(0.455557\pi\)
\(654\) 0 0
\(655\) − 2.11773i − 0.0827466i
\(656\) 0 0
\(657\) − 24.9429i − 0.973115i
\(658\) 0 0
\(659\) 18.5842 0.723938 0.361969 0.932190i \(-0.382105\pi\)
0.361969 + 0.932190i \(0.382105\pi\)
\(660\) 0 0
\(661\) 16.7908i 0.653087i 0.945182 + 0.326543i \(0.105884\pi\)
−0.945182 + 0.326543i \(0.894116\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.14768i 0.0832833i
\(666\) 0 0
\(667\) −0.525296 −0.0203395
\(668\) 0 0
\(669\) − 26.3989i − 1.02064i
\(670\) 0 0
\(671\) 15.0502i 0.581005i
\(672\) 0 0
\(673\) −22.5914 −0.870834 −0.435417 0.900229i \(-0.643399\pi\)
−0.435417 + 0.900229i \(0.643399\pi\)
\(674\) 0 0
\(675\) −1.30752 −0.0503264
\(676\) 0 0
\(677\) 5.31616 0.204317 0.102158 0.994768i \(-0.467425\pi\)
0.102158 + 0.994768i \(0.467425\pi\)
\(678\) 0 0
\(679\) 3.53829 0.135787
\(680\) 0 0
\(681\) − 18.7997i − 0.720407i
\(682\) 0 0
\(683\) − 3.95391i − 0.151292i −0.997135 0.0756461i \(-0.975898\pi\)
0.997135 0.0756461i \(-0.0241019\pi\)
\(684\) 0 0
\(685\) 18.0330 0.689007
\(686\) 0 0
\(687\) 26.9876i 1.02964i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 12.8741i − 0.489753i −0.969554 0.244877i \(-0.921253\pi\)
0.969554 0.244877i \(-0.0787474\pi\)
\(692\) 0 0
\(693\) 1.68922 0.0641682
\(694\) 0 0
\(695\) − 9.84016i − 0.373258i
\(696\) 0 0
\(697\) − 5.35430i − 0.202809i
\(698\) 0 0
\(699\) 56.1838 2.12507
\(700\) 0 0
\(701\) 34.9777 1.32109 0.660544 0.750787i \(-0.270326\pi\)
0.660544 + 0.750787i \(0.270326\pi\)
\(702\) 0 0
\(703\) −12.1655 −0.458830
\(704\) 0 0
\(705\) 8.07914 0.304278
\(706\) 0 0
\(707\) 1.64074i 0.0617065i
\(708\) 0 0
\(709\) 19.7665i 0.742347i 0.928564 + 0.371173i \(0.121044\pi\)
−0.928564 + 0.371173i \(0.878956\pi\)
\(710\) 0 0
\(711\) −32.0859 −1.20331
\(712\) 0 0
\(713\) − 0.842543i − 0.0315535i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 71.6206i − 2.67472i
\(718\) 0 0
\(719\) 44.2467 1.65012 0.825062 0.565042i \(-0.191140\pi\)
0.825062 + 0.565042i \(0.191140\pi\)
\(720\) 0 0
\(721\) 4.49079i 0.167246i
\(722\) 0 0
\(723\) 18.4889i 0.687608i
\(724\) 0 0
\(725\) 4.90348 0.182111
\(726\) 0 0
\(727\) −31.4877 −1.16781 −0.583907 0.811821i \(-0.698477\pi\)
−0.583907 + 0.811821i \(0.698477\pi\)
\(728\) 0 0
\(729\) −16.1420 −0.597853
\(730\) 0 0
\(731\) 4.16223 0.153946
\(732\) 0 0
\(733\) 42.4714i 1.56872i 0.620307 + 0.784359i \(0.287008\pi\)
−0.620307 + 0.784359i \(0.712992\pi\)
\(734\) 0 0
\(735\) − 15.9529i − 0.588433i
\(736\) 0 0
\(737\) 2.30018 0.0847281
\(738\) 0 0
\(739\) − 13.7835i − 0.507033i −0.967331 0.253516i \(-0.918413\pi\)
0.967331 0.253516i \(-0.0815872\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 15.9392i − 0.584753i −0.956303 0.292377i \(-0.905554\pi\)
0.956303 0.292377i \(-0.0944461\pi\)
\(744\) 0 0
\(745\) −8.88299 −0.325447
\(746\) 0 0
\(747\) − 34.3443i − 1.25659i
\(748\) 0 0
\(749\) 7.03787i 0.257158i
\(750\) 0 0
\(751\) 1.51708 0.0553590 0.0276795 0.999617i \(-0.491188\pi\)
0.0276795 + 0.999617i \(0.491188\pi\)
\(752\) 0 0
\(753\) 52.7610 1.92272
\(754\) 0 0
\(755\) 4.43937 0.161565
\(756\) 0 0
\(757\) 47.4829 1.72579 0.862897 0.505380i \(-0.168648\pi\)
0.862897 + 0.505380i \(0.168648\pi\)
\(758\) 0 0
\(759\) − 0.432748i − 0.0157078i
\(760\) 0 0
\(761\) 38.5445i 1.39724i 0.715495 + 0.698618i \(0.246201\pi\)
−0.715495 + 0.698618i \(0.753799\pi\)
\(762\) 0 0
\(763\) 6.07023 0.219757
\(764\) 0 0
\(765\) − 1.68922i − 0.0610739i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 39.8645i 1.43755i 0.695243 + 0.718775i \(0.255297\pi\)
−0.695243 + 0.718775i \(0.744703\pi\)
\(770\) 0 0
\(771\) 60.1634 2.16673
\(772\) 0 0
\(773\) − 32.9547i − 1.18530i −0.805460 0.592650i \(-0.798082\pi\)
0.805460 0.592650i \(-0.201918\pi\)
\(774\) 0 0
\(775\) 7.86488i 0.282515i
\(776\) 0 0
\(777\) −2.11169 −0.0757565
\(778\) 0 0
\(779\) −41.5352 −1.48815
\(780\) 0 0
\(781\) −6.71695 −0.240351
\(782\) 0 0
\(783\) −6.41139 −0.229124
\(784\) 0 0
\(785\) − 4.16719i − 0.148733i
\(786\) 0 0
\(787\) 1.07930i 0.0384728i 0.999815 + 0.0192364i \(0.00612351\pi\)
−0.999815 + 0.0192364i \(0.993876\pi\)
\(788\) 0 0
\(789\) −3.70960 −0.132065
\(790\) 0 0
\(791\) − 3.55834i − 0.126520i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 27.3314i − 0.969344i
\(796\) 0 0
\(797\) 19.1014 0.676607 0.338304 0.941037i \(-0.390147\pi\)
0.338304 + 0.941037i \(0.390147\pi\)
\(798\) 0 0
\(799\) − 2.39883i − 0.0848644i
\(800\) 0 0
\(801\) 0.846678i 0.0299159i
\(802\) 0 0
\(803\) 17.7104 0.624987
\(804\) 0 0
\(805\) 0.0428299 0.00150956
\(806\) 0 0
\(807\) 64.8896 2.28422
\(808\) 0 0
\(809\) 1.76340 0.0619980 0.0309990 0.999519i \(-0.490131\pi\)
0.0309990 + 0.999519i \(0.490131\pi\)
\(810\) 0 0
\(811\) 52.3298i 1.83755i 0.394784 + 0.918774i \(0.370819\pi\)
−0.394784 + 0.918774i \(0.629181\pi\)
\(812\) 0 0
\(813\) 54.8088i 1.92223i
\(814\) 0 0
\(815\) 3.69672 0.129490
\(816\) 0 0
\(817\) − 32.2879i − 1.12961i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 14.2703i − 0.498038i −0.968499 0.249019i \(-0.919892\pi\)
0.968499 0.249019i \(-0.0801082\pi\)
\(822\) 0 0
\(823\) −43.7145 −1.52379 −0.761896 0.647699i \(-0.775731\pi\)
−0.761896 + 0.647699i \(0.775731\pi\)
\(824\) 0 0
\(825\) 4.03957i 0.140640i
\(826\) 0 0
\(827\) 22.5962i 0.785748i 0.919592 + 0.392874i \(0.128519\pi\)
−0.919592 + 0.392874i \(0.871481\pi\)
\(828\) 0 0
\(829\) −54.0946 −1.87878 −0.939392 0.342844i \(-0.888610\pi\)
−0.939392 + 0.342844i \(0.888610\pi\)
\(830\) 0 0
\(831\) −6.98914 −0.242450
\(832\) 0 0
\(833\) −4.73668 −0.164116
\(834\) 0 0
\(835\) 21.4972 0.743940
\(836\) 0 0
\(837\) − 10.2835i − 0.355449i
\(838\) 0 0
\(839\) − 22.2337i − 0.767593i −0.923418 0.383796i \(-0.874616\pi\)
0.923418 0.383796i \(-0.125384\pi\)
\(840\) 0 0
\(841\) −4.95593 −0.170894
\(842\) 0 0
\(843\) 57.3931i 1.97672i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 3.19843i − 0.109900i
\(848\) 0 0
\(849\) 19.0518 0.653858
\(850\) 0 0
\(851\) 0.242610i 0.00831656i
\(852\) 0 0
\(853\) 16.5312i 0.566019i 0.959117 + 0.283009i \(0.0913328\pi\)
−0.959117 + 0.283009i \(0.908667\pi\)
\(854\) 0 0
\(855\) −13.1039 −0.448143
\(856\) 0 0
\(857\) 27.5842 0.942259 0.471129 0.882064i \(-0.343846\pi\)
0.471129 + 0.882064i \(0.343846\pi\)
\(858\) 0 0
\(859\) −32.5016 −1.10894 −0.554469 0.832204i \(-0.687079\pi\)
−0.554469 + 0.832204i \(0.687079\pi\)
\(860\) 0 0
\(861\) −7.20969 −0.245706
\(862\) 0 0
\(863\) 29.7986i 1.01436i 0.861842 + 0.507178i \(0.169311\pi\)
−0.861842 + 0.507178i \(0.830689\pi\)
\(864\) 0 0
\(865\) 11.6118i 0.394812i
\(866\) 0 0
\(867\) 38.5298 1.30854
\(868\) 0 0
\(869\) − 22.7822i − 0.772834i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 21.5886i 0.730662i
\(874\) 0 0
\(875\) −0.399804 −0.0135159
\(876\) 0 0
\(877\) 14.4036i 0.486376i 0.969979 + 0.243188i \(0.0781932\pi\)
−0.969979 + 0.243188i \(0.921807\pi\)
\(878\) 0 0
\(879\) − 17.5004i − 0.590274i
\(880\) 0 0
\(881\) 7.36914 0.248273 0.124136 0.992265i \(-0.460384\pi\)
0.124136 + 0.992265i \(0.460384\pi\)
\(882\) 0 0
\(883\) 24.3646 0.819933 0.409967 0.912101i \(-0.365540\pi\)
0.409967 + 0.912101i \(0.365540\pi\)
\(884\) 0 0
\(885\) 16.9678 0.570365
\(886\) 0 0
\(887\) −24.0644 −0.808004 −0.404002 0.914758i \(-0.632381\pi\)
−0.404002 + 0.914758i \(0.632381\pi\)
\(888\) 0 0
\(889\) 4.86025i 0.163008i
\(890\) 0 0
\(891\) − 17.9572i − 0.601588i
\(892\) 0 0
\(893\) −18.6085 −0.622710
\(894\) 0 0
\(895\) 4.97032i 0.166139i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 38.5653i 1.28622i
\(900\) 0 0
\(901\) −8.11512 −0.270354
\(902\) 0 0
\(903\) − 5.60454i − 0.186507i
\(904\) 0 0
\(905\) − 17.3695i − 0.577383i
\(906\) 0 0
\(907\) −37.5073 −1.24541 −0.622705 0.782457i \(-0.713966\pi\)
−0.622705 + 0.782457i \(0.713966\pi\)
\(908\) 0 0
\(909\) −10.0109 −0.332039
\(910\) 0 0
\(911\) 12.6000 0.417458 0.208729 0.977974i \(-0.433067\pi\)
0.208729 + 0.977974i \(0.433067\pi\)
\(912\) 0 0
\(913\) 24.3858 0.807052
\(914\) 0 0
\(915\) − 20.2654i − 0.669954i
\(916\) 0 0
\(917\) 0.846678i 0.0279598i
\(918\) 0 0
\(919\) −31.6664 −1.04458 −0.522288 0.852769i \(-0.674922\pi\)
−0.522288 + 0.852769i \(0.674922\pi\)
\(920\) 0 0
\(921\) 13.8837i 0.457484i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 2.26469i − 0.0744625i
\(926\) 0 0
\(927\) −27.4002 −0.899940
\(928\) 0 0
\(929\) − 29.7378i − 0.975666i −0.872937 0.487833i \(-0.837787\pi\)
0.872937 0.487833i \(-0.162213\pi\)
\(930\) 0 0
\(931\) 36.7441i 1.20424i
\(932\) 0 0
\(933\) 41.8048 1.36863
\(934\) 0 0
\(935\) 1.19941 0.0392250
\(936\) 0 0
\(937\) −52.3124 −1.70897 −0.854486 0.519474i \(-0.826128\pi\)
−0.854486 + 0.519474i \(0.826128\pi\)
\(938\) 0 0
\(939\) 39.6653 1.29443
\(940\) 0 0
\(941\) 29.5767i 0.964174i 0.876123 + 0.482087i \(0.160121\pi\)
−0.876123 + 0.482087i \(0.839879\pi\)
\(942\) 0 0
\(943\) 0.828313i 0.0269736i
\(944\) 0 0
\(945\) 0.522752 0.0170051
\(946\) 0 0
\(947\) 48.0330i 1.56086i 0.625240 + 0.780432i \(0.285001\pi\)
−0.625240 + 0.780432i \(0.714999\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 7.21364i 0.233918i
\(952\) 0 0
\(953\) −29.7824 −0.964745 −0.482373 0.875966i \(-0.660225\pi\)
−0.482373 + 0.875966i \(0.660225\pi\)
\(954\) 0 0
\(955\) − 20.5046i − 0.663515i
\(956\) 0 0
\(957\) 19.8079i 0.640299i
\(958\) 0 0
\(959\) −7.20969 −0.232813
\(960\) 0 0
\(961\) −30.8564 −0.995368
\(962\) 0 0
\(963\) −42.9410 −1.38376
\(964\) 0 0
\(965\) 26.6075 0.856527
\(966\) 0 0
\(967\) 20.6730i 0.664798i 0.943139 + 0.332399i \(0.107858\pi\)
−0.943139 + 0.332399i \(0.892142\pi\)
\(968\) 0 0
\(969\) 8.67568i 0.278703i
\(970\) 0 0
\(971\) −19.9861 −0.641386 −0.320693 0.947183i \(-0.603916\pi\)
−0.320693 + 0.947183i \(0.603916\pi\)
\(972\) 0 0
\(973\) 3.93414i 0.126123i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 45.6276i − 1.45976i −0.683577 0.729878i \(-0.739577\pi\)
0.683577 0.729878i \(-0.260423\pi\)
\(978\) 0 0
\(979\) −0.601174 −0.0192136
\(980\) 0 0
\(981\) 37.0370i 1.18250i
\(982\) 0 0
\(983\) − 54.1966i − 1.72860i −0.502975 0.864301i \(-0.667761\pi\)
0.502975 0.864301i \(-0.332239\pi\)
\(984\) 0 0
\(985\) −0.408282 −0.0130090
\(986\) 0 0
\(987\) −3.23007 −0.102814
\(988\) 0 0
\(989\) −0.643899 −0.0204748
\(990\) 0 0
\(991\) 46.5278 1.47800 0.739002 0.673703i \(-0.235297\pi\)
0.739002 + 0.673703i \(0.235297\pi\)
\(992\) 0 0
\(993\) 52.6440i 1.67061i
\(994\) 0 0
\(995\) − 24.3996i − 0.773521i
\(996\) 0 0
\(997\) −39.1029 −1.23840 −0.619200 0.785233i \(-0.712543\pi\)
−0.619200 + 0.785233i \(0.712543\pi\)
\(998\) 0 0
\(999\) 2.96112i 0.0936858i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.2.f.i.3041.2 8
13.5 odd 4 3380.2.a.q.1.1 4
13.8 odd 4 3380.2.a.p.1.1 4
13.9 even 3 260.2.x.a.101.4 8
13.10 even 6 260.2.x.a.121.4 yes 8
13.12 even 2 inner 3380.2.f.i.3041.1 8
39.23 odd 6 2340.2.dj.d.901.3 8
39.35 odd 6 2340.2.dj.d.361.1 8
52.23 odd 6 1040.2.da.c.641.1 8
52.35 odd 6 1040.2.da.c.881.1 8
65.9 even 6 1300.2.y.b.101.1 8
65.22 odd 12 1300.2.ba.c.49.3 8
65.23 odd 12 1300.2.ba.c.849.3 8
65.48 odd 12 1300.2.ba.b.49.2 8
65.49 even 6 1300.2.y.b.901.1 8
65.62 odd 12 1300.2.ba.b.849.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.x.a.101.4 8 13.9 even 3
260.2.x.a.121.4 yes 8 13.10 even 6
1040.2.da.c.641.1 8 52.23 odd 6
1040.2.da.c.881.1 8 52.35 odd 6
1300.2.y.b.101.1 8 65.9 even 6
1300.2.y.b.901.1 8 65.49 even 6
1300.2.ba.b.49.2 8 65.48 odd 12
1300.2.ba.b.849.2 8 65.62 odd 12
1300.2.ba.c.49.3 8 65.22 odd 12
1300.2.ba.c.849.3 8 65.23 odd 12
2340.2.dj.d.361.1 8 39.35 odd 6
2340.2.dj.d.901.3 8 39.23 odd 6
3380.2.a.p.1.1 4 13.8 odd 4
3380.2.a.q.1.1 4 13.5 odd 4
3380.2.f.i.3041.1 8 13.12 even 2 inner
3380.2.f.i.3041.2 8 1.1 even 1 trivial